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Abstract—Acute inflammation is a medical condition which
occurs over seconds, minutes or hours and is characterized
as a systemic inflammatory response to an infection. Delaying
treatment by only one hour decreases patient chance of survival
by about 7%. Therefore, there is a critical need for tools that
can aid therapy optimization for this potentially fatal condition.
Towards this objective we developed a data driven approach
for therapy optimization where a predictive model for patients’
behavior is learned directly from historical data. As such,
the predictive model is incorporated into a model predictive
control optimization algorithm to find optimal therapy, which
will lead the patient to a healthy state. To save on the cost
of clinical trials and potential failure, we evaluated our model
on a population of virtual patients capable of emulating the
inflammatory response. Patients are treated with two drugs
for which dosage and timing are critical for the outcome
of the treatment. Our results show significant improvement
in percentage of healthy outcomes comparing to previously
proposed methods for acute inflammation treatment found in
literature and in clinical practice. In particular, application of
our method rescued 87% of patients that would otherwise die
within 168 hours due to septic or aseptic state. In contrast, the
best method from literature rescued only 73% of patients.

Keywords-data mining; therapy optimization; acute inflam-
mation.

I. INTRODUCTION

One of the challenging problems in clinical practice is
planning of individualized therapy regimens and durations.
The state-of-the-art approach for therapy planning usually
follows general rules that are common for all patients. Due
to patients’ variability, such an approach often leads to sub-
optimal treatment that impacts therapy efficacy, toxicity, and
patient outcome.

Planning of optimal therapy is especially critical in rapid
progression medical conditions like acute inflammation, a
systematic inflammatory response syndrome triggered by
infection. Acute inflammation is often diagnosed too late and
the patient is then treated with broad-spectrum antibiotics
and/or intravenous fluids with dosages adjusted manually,
even though more specific therapy would be far more
effective. Inadequate treatment results in a mortality rate
of 30-35%, and for every hour that the administration of
appropriate therapy is delayed, the mortality rate increases
by about 7% [12]. Therefore, there is a critical need for
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tools that can aid clinicians in designing optimal strategies
for inflammation treatments.

One of the tools that can be used for finding optimal
therapy is model predictive control (MPC). MPC algorithms
are suitable for medical applications [3], [5], [8], [9] pri-
marily because of their ability to deal with a large number
of variables and constraints that are not well addressed
with other approaches. The key component of MPC is a
predictive model, which is used to predict a patient’s future
states as a response to the treatment. MPC uses predictions
of future states and a set of constraints to calculate an
optimal set of future treatments that will guide the patient
to a healthy state. The quality of MPC directly depends on
the ability of the predictive model to accurately predict the
future states. Deterministic predictive models that rely on
domain knowledge assumptions often fail when dealing with
complex biological processes like sepsis. On the other hand,
the hypothesis of our study is that data-driven models can
learn patient responses directly from historical data without
making any domain-based assumptions.

Data-driven models have been successfully utilized as
predictive models in MPC for other medical applications,
including the regulation of glucose supply [13], an ex-
ploration of optimal dosing of anticancer agents [7], the
regulation of mechanical ventilation [11], and defining an
optimal anesthesia [14].

Model predictive control for acute inflammation treatment
was introduced in [2], where a deterministic predictive
model was deployed to find optimal therapy. It was shown
that using two drugs in MPC for acute inflammation treat-
ment significantly increased the probability of success of
the treatment. On the other hand, treatment success strongly
depended on parameter settings in the predictive model.

We developed a data-driven model predictive control
approach which uses two control signals (two drugs) for
optimization of therapy and overcomes issues of the de-
terministic model from [2]. As in [2], all evaluations are
performed on virtual patients, which is common practice
for biomedical control research. Our results show significant
improvement in percentage of healthy outcomes comparing
to other methods for acute inflammation treatment found in
literature and in clinical practice.
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Figure 1.

Evolution of pathogen population (P), pro-inflammatory mediators (IN), tissue damage (D), and anti-inflammatory mediators (C'A) of three

virtual patients with healthy (green/solid), aseptic (blue/dashed), and septic (red/dotted) outcomes in the absence of therapy.

II. VIRTUAL PATIENT MODEL AND TREATMENT
CONSTRAINTS

To signifcantly reduce the chance of a clinical failure
and to save on the costs of clinical trials, biomedical
researchers use computer simulations of body processes
(often called virtual patients) to perform preliminary tests
of hypotheses before they prove them in real patient studies.
Virtual patients are generated using a carefully determined
mathematical model to simulate the process of interest. A
significant advantage of having a virtual patient model for
experiments is the possibility of testing different approaches
for finding optimal therapies on the same virtual patient
and comparing the outcomes. In order to follow a real-life
scenario, virtual patient models are accompanied with well-
defined constraints in therapy that are in accordance with
clinical practice.

A. Patient model

The mathematical model for inflammatory response to
severe infection is derived in [10]. This model has not
incorporated drug effect on inflammatory response and it
was not applicable for acute inflammation treatment. We
will use a slightly modified mathematical model recently
proposed in [2] that is capable of simulating:

« an evolution of a bacterial pathogen population (P) that

initiates the cascade of inflammation,

o dynamics of early pro-inflammatory mediators (IV),

« markers of tissue damage/dysfunction (D),

« the evolution of anti-inflammatory mediators (C'A),
which are controlled by doses of pro-inflammatory
(PIDOSE) and anti-inflammatory (AIDOSE) therapies.
This mathematical model is based on the system of ordinary
differential equations (ODE)
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All variables used in the mathematical model except out-
put signals P, N, D, C A are parameters with valid ranges
specified in [2]. Virtual patients were generated by random
initialization of three parameters in ODE (k,4, k., and
knq) and by random initialization of the initial conditions
for P and C A from uniform distribution on valid ranges.
Variability in the population of virtual patients is obtained
by changing parameter values and initial conditions. All
other parameters were fixed to referent values as in [2].
In all of the simulations, ¢ is an hourly step that starts
from 0. At ¢ = 0, outputs and parameters are set to
initial conditions. Then, all four outputs evolve according to
ODE through the simulation time of 168 hours (one week).
According to [2] there are three possible outcomes at the
end of simulation time, which are shown in Figure 1. A
patient is in healthy state if P = 0, N = 0, D = 0,
and CA > 0 at the end of simulation. The aseptic death
state of the patient is defined as P =0, N > 0, D > 0,
and CA > 0. The third possible outcome is septic death,
where all outputs are non-zero. Although conceptual, ODE is
capable of modeling the complex effect of pathogen P on the
patient. From ODE, a large P leads to the development of
a pro-inflammatory response N. A large N indicates faster
elimination of pathogen P. However, a large N damages
tissue D and therefore mobilizes a negative feedback, or
anti-inflammatory response C'A, which lowers N [2]. Also,
C'A inhibits damage to tissue D that may be caused by N.
Leading the patient to a healthy state is a difficult challenge
of maintaining a balance between objectives P = 0 and
D = 0 (if these conditions are satisfied /N will eventually



be O so there is no need to have N = 0 as an objective).
An emphasis on minimizing D by increasing CA (with
AIDOSE) might lead to unrestricted pathogen P growth.
On the other hand, an emphasis on minimizing pathogen
P by increasing N (with PIDOSFE) might lead to a pro-
inflammatory response aimed to eliminate pathogen P as
soon as possible, after which it might be too late to control
the tissue damage D. Both therapy timing and therapy
dosage are critical for finding optimal treatment.

B. Treatment constraints

Well-designed constraints on drug dosage levels would
make model predictive control applied to inflammation ther-
apy to be close to the clinical practice. We know that giving
large amounts of a drug at once can cause patients death
due to overdose. It is also known from clinical practice that
keeping anti-inflammatory doses at a high level for a longer
period of time may play a large role in predisposing patients
to secondary infections that might lead to death. We followed
[2] to formulate constraints:

e 0 < PIDOSE < PIDOSE,JCWAX - the difference
between the current level of N = Nj and N, = 0.5,

e 0<AIDOSE < AIDOSE,Q/[AX - the difference be-
tween the current level of CA = C' A, and a maximum
allowable level of C'A, initialized to C'A,,,.., = 0.6264,

o saturation of anti-inflammatory mediator: the situation
with C'A saturated for very long time would be avoided
clinically for fear of secondary infections that com-
promise organ recovery. Therefore, if the level of C' A
remained consistently elevated for more than 48 hours,
the C A4, Was reduced by half.

III. MODEL PREDICTIVE CONTROL

The objective of model predictive control in acute in-
flammation treatment is to compute optimal values of drug
doses that will probably lead the patient to a healthy state
over time. In order to do that, we need to define reference
trajectory (healthy state) such that minimizing the difference
between estimated future patient state (output of predictive
model) and reference trajectory might lead to success in
treatment. We will use the same reference trajectory as in
[2] which is defined as D = 0 and P = 0. Suppose that
we want to find optimal therapy at time point k. We need
to define following terms:

e Prediction horizon is a time window of length p which
dictates how far in the future we want to predict.

o Predicted patient states are the future patient states
{(P,N,D,dA)k+j,j = 1,...,p} predicted using a
predictive model which simulates patient behavior.

e Control horizon is a time window of length ¢ < p
which dictates the number of future control signals to
be found.

e Future control signals {(PIDOSE, AIDbSE)k+j,
j=0,...,¢c— 1} are determined by the optimization
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Figure 2. Model predictive control scheme for optimal therapy

algorithm. We consider that future control signals from
k 4+ c to k+ p— 1 stay constant having the value
(PIDOSE, AIDOSE)jic—1.

The objective of therapy is to find a sequence of control
signals from k to k+c—1 such that it satisfies all constraints
and also minimizes the difference between predicted pa-
tient’s states and reference trajectory over prediction horizon
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0 < PIDOSEj4j—1 < PIDOSEMAX,,
where wp, wp, and w, are weighting constants that have to
be chosen in advance.

We apply to the patient just the first term
(AIDOSE, PIDOSE); from the control sequence
obtained by minimization, observe the new state at time
point k + 1, and repeat the optimization procedure to obtain
new control sequences. The new state at time point k£ + 1 is
calculated as the output of the patient model since the state
at time point k is observed and control signals are found
by optimization. MPC scheme is illustrated in Figure 2.

A. Predictive Model

As we emphasized in the introduction, the quality of
an MPC directly depends on the ability of the predictive
model to accurately predict patients’ future states. The
predictive model has to be carefully designed in order to
be able to handle high variability in patients’ behaviors,
which is the greatest challenge in this application. When
using data-driven predictive models there are typically two
steps involved in predictive model design: 1) defining model
structure and 2) inferring model parameters from the set of
training data. Each of these steps we will consider separately.
The resulting model will be named LearnedMPC.



1) Structure of LearnedMPC predictive model: Virtual
patient state is represented by the four outputs P, N, D,
and C'A. The goal of the predictive model is to accurately
predict future states using past states along with past control
signals as inputs. To predict four-dimensional state with a
single model is not feasible in this application because of the
complex interactions among P, N, D, and C'A. Instead, we
propose splitting the predictive model into four sub-models,
each of which is responsible for prediction of one of the
outputs P, N, D, and C A, keeping the same set of inputs for
each of the sub-models. If we denote yj; and uy, to represent
patient’s state and control signal at time point k respectively,
it can be written

vi = (P, Ni, Dy, CA)", M
u, = (AIDOSEy, PIDOSE)T. (8)

Having observed patients’ states and control signals up to
time point k, the sub-model responsible for predicting Py ;
over prediction horizon can be represented by

7yk+17yk¢a s Yhti—npys
'7uk+jfnpu7ﬂp)v (9)

where 7 = 1,...,p. Fp is a function with unknown pa-
rameters 3p that models the input-output relation; n,,, and
Ny, are time lags for state and control signals respectively.
Sub-models responsible for prediction of Nk+j, lA)kH, and
C'Aj.+; have similar functional form but each of them has
its own function F, Fp, Foa and parameters 3y, Bp,
B¢ 4 respectively.

The next step in designing the predictive model is def-
inition of input-output functional relations Fp, Fn, Fp,
or Foa in terms of model parameters. Predictive models
based on machine learning tools such as neural networks
[6] or Gaussian processes [4] have been successfully used
in industrial applications. However, developing a non-linear
model is a very difficult task [1]. Due to the lack of a super-
position principle for non-linear models, the amount of data
required to train a non-linear model is much larger than
that for a linear model. If the process is multivariate, the
difference in the amount of data required is even larger.
Having in mind a realistic scenario of limited availability and
high cost of clinical data, we used linear functional forms
for Fp, FN, FD, or FCA-

2) Training of LearnedMPC predictive model: The criti-
cal aspect of the predictive model design is the availability
of representative training data to learn unknown model
parameters By, By, Bp, and Boy4. Our objective was
to address a real-life scenario in which data available for
training of the predictive model come from clinical trials
done on a small group of diverse patients observed in time.
Accordingly, a small set of Ny.qining virtual patients with
hourly observations for one week (168 hours) was generated
from ODE equations. To generate a sequence of observations

Pyt = Fp(Frtjzt,---

Ukt j—1y--+5 Uk, Ug—1, .-

for a virtual patient we need to know model parameters,
initial conditions and a control sequence. Initial conditions
and parameters are randomly generated following allowable
ranges while a control sequence was carefully chosen.

In industrial applications, control sequences are usually
generated randomly so that they span the whole operational
range and adequately characterize the response of the sys-
tem. Random generation of treatments is not a clinically rel-
evant scenario. Instead we propose the following approach.
For each of the Ny,qining virtual patients we used its own
mathematical model as a predictive model in MPC. Such
predictive models give perfect prediction of the patients’
future states, as their predictions are identical to future
observations at every time point (ideal predictive models).
Ideal control sequences for each virtual patient would be
obtained by minimizing objective function (6). Ideal control
sequences are not realistic in clinical practice and are also
unsuitable for learning data-driven models because they
do not contain enough dynamics to sufficiently represent
the system response. Therefore, we used a more clinically
realistic scenario, such that for an observed patient’s state at
time point k, control signals at £ may not be ideal but they
should be reasonably close to ideal. This is modelled such
that at each time point & random Gaussian noise is added
to AIDOSE and PIDOSE values found by the MPC
with the ideal predictive control. Then, instead of treating
patients with the ideal control sequences we treated patients
with non-ideal ones, which gave a wider range of system
response.

IV. EVALUATION
A. Model order of LearnedMPC

We need to determine the number of past signals (model
order) used as inputs to the predictive model. The predictive
model, which uses time lag set to 1, has not provided
satisfactory results in terms of predictive accuracies. It was
not able to distinguish between the beginning and the end of
the state sequence, which also resulted in simulations that
ended in unhealthy states. On the other hand, the predictive
model built with time lag set to 2 had much better predictive
power so we chose the model order of 2 to be applied to all
signals involved.

B. Number of patients to train LearnedMPC

We used a population of virtual patients with hourly
measurements of their states and control signals observed
for one week (168 hours). It is important to emphasize that
for learning our data driven predictive model we do not use
any knowledge about the patients models used to generate
data. Our training data set contains only virtual patients’
states and applied control signals in each state.

We noticed that if we applied non ideal control sequence
(see Section III-A2) for an entire week, many patients would
end up in a non-healthy state. Instead, we applied the noisy



Table I
AVERAGE PERFORMANCE OF LearnedMPC ON VALIDATION SET OF 50
PATIENTS FOR WELL BALANCED TRAINING SEST OF DIFFERENT SIZE.

Niraining Healthy (%)  Aseptic (%)  Septic (%)
3 482 + 194 254 £ 18.0 26.4 + 14.8
6 532 + 24.1 20.0 = 11.6 268 + 184
9 756 £223 148 £94 9.6 £ 16.2
12 83.4 £ 7.0 12.0 £+ 4.1 46 +£93
15 834 + 6.4 11.6 + 4.6 5.0 £ 10.1
18 883+ 23 11.0 £ 1.4 0.63 + 2.0
21 88.6 +£2.5 10.6 & 1.0 0.8 25
24 872 +1.68 11.8 £ 1.8 1.0 £25

control strategy just in the most critical first 10 hours of
treatment. After 10 hours we continued with the ideal control
strategy.

From the clinical aspect, where data are limited and
expensive, it is important to analyze the minimum number
of patients required in the training set that allows the learned
predictive model to achieve satisfactory performance. To in-
vestigate how the performance of the learned model changes
with respect to training data size we performed the following
analysis. We created a pool of 65 virtual patients along
with the corresponding non-ideal control sequences for each
of them. Among 65 patients there were 8 with septic, 14
with aseptic, and 43 with healthy outcomes. We selected
Niraining patients from this pool. In addition, we assumed
that the selected set of patients was well balanced, so there
were equal numbers of septic, aseptic, and healthy patients.
Performances of MPCs with predictive models trained on
Niraining patients were evaluated for different values of
Niraining on a validation set of 50 patients created inde-
pendently from the training data. We performed analysis for
Niraining = 3,6,9, ..., 24. For each Nirqining We repeated
experiments 10 times and reported results as the percentage
of septic, aseptic, and healthy outcomes on average along
with standard deviation. Results are reported in Table I.
Models learned on fewer patients have less success in
treatment. Stable performance with a high percentage of
healthy outcomes is achievable starting from 18 patients in
the training set.

C. Parameters of LearnedMPC

Based on results reported at Table I we chose a predictive
model trained on 18 patients as a predictive model in
MPC. The length of the prediction horizon is chosen as a
balance between two opposite requirements. The prediction
horizon should be long enough to capture the total effect of
therapy. On the other hand predictive model is not reliable
over too long prediction horizon because of accumulated
prediction error. We found optimal prediction horizon to be
5. The control horizon was set to 2, which resulted in less
aggressive therapies. Larger values of control horizon give
faster response but the system is less robust to predictive
model uncertainty [1]. To compensate for different scaling

objective functions, weights wp, wp, and w. were set to 3,
1, and 1 respectively.

D. Dataset

To evaluate the proposed LearnedMPC we generated a
population of Nis = 500 virtual patients by randomly
choosing parameters of the mathematical model. Patient
state was classified based on the values of the outputs at
the end of the simulation time of 168 hours. The resulting
population consisted of 298 virtual patients classified as
healthy, 117 classified as aseptic, and 85 classified as septic
without any treatment applied. Among them, 321 patients
were selected to receive therapy according to the criterion
that their value of N exceeded 0.05 at some point [2].

E. Baseline Methods
We compared our LearnedMPC to models in [2]:

e no treatment model (Placebo),

o the therapy that resembles the one currently used in
the intensive care units: a consistent dosing of an anti-
inflammatory therapy; we implemented this therapy by
giving a small AIDOSE = 0.005 each hour over
a period of 72 hours, after which therapy terminates
(Static),

« MPC with a predictive model set to the ODE with
parameters from a single patient [2] (Mismatch).

F. Results

Results on patients who received therapy are reported in
Table II. Along with percentage of healthy, aseptic and septic
outcomes we differentiate two possible effects of the therapy
on the patient: 1) harmed - outcome without therapy was
healthy whereas outcome after treatment was aseptic/septic;
2) rescued - outcome without therapy was either aseptic or
septic whereas outcome after treatment was healthy.

LearnedMPC achieved better accuracy than all alter-
natives in terms of all accuracy measures while at the
same time keeping the number of harmed patients to 0. A
therapy profile for the rescued virtual patient is illustrated
in Figure 3. Most of the successful therapies obtained
by LearnedMPC exhibit a similar pattern: high level pro-
inflammatory dose was applied at the early stage in order to
reduce the level of pathogens, at which point LearnedMPC
modulated anti-inflammation dose to alleviate inflammation
and restore health.

V. CONCLUSION AND FUTURE WORK

We have developed a completely new approach for acute
inflammation treatment based on the use of a machine learn-
ing technique. Results obtained from experiments conducted
on virtual patients have undoubtedly shown that our method
outperformed all existing alternatives over all accuracy mea-
sures. In addition, the treatment based on our method has not
been harmful to healthy patients, which is very important
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Figure 3. LearnedM PC (dotted) vs. Placebo (solid) on rescued patient: evolution of pathogen P and tissue damage D; control sequence of PIDOSE
(solid) and AIDOSE (dotted) found by LearnedM PC.

Table II
DISTRIBUTIONS OF THE OUTCOMES OF PATIENTS WHO RECEIVED THERAPY FOR: NO TREATMENT MODEL (Placebo), CONSTANT AIDOSE (Static),
MPC WITH PREDICTIVE MODEL SET TO ODE WITH PARAMETERS FROM A SINGLE PATIENT (Mismatch), AND OUR MPC APPROACH (LearnedMPC).

Septic

Harmed (out of 119)  Rescued (out of 202)

Healthy Aseptic
Placebo 119/321 (37.07%)  117/321 (36.45%)
Static 140/321 (43.61%)  96/321 (29.91%)
Mismatch 267/321 (83.18%)  50/321 (15.58%)
LearnedMPC ~ 294/321 (91.59%)  27/321 (8.41%)

85/321 (26.48%)
85/321 (26.48%)
4/321 (1.25%)
0/321 (0%)

N/A

3/119 (2.52%)
0/119 (0%)
0/119 (0%)

N/A

24/202 (11.88%)
148/202 (73.27%)
175/202 (86.63%)

for clinical practice. We have shown that using a pool of
18 diverse patients was enough to make a general and
efficient data-driven predictive model, which is consistent
with clinical practice. The obtained results provide evidence
that potential solutions for acute inflammation treatment can
be based on the joint work of domain scientists and the
machine learning community.
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