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Abstract—Structured regression has been successfully used
in many applications where explanatory and response variables
are inter-correlated, such as in weighted attributed networks.
One of structured models, Gaussian Conditional Random
Fields (GCRF), utilizing multiple unstructured models to learn
the non-linear relationships between node attributes and the
structured response variable, achieves high prediction accu-
racy. However, it does not scale well with large networks. We
propose a novel model, called Scalable Approximate GCRF
(SA-GCRF), which integrates weighted attributed network
compression with GCRF, with the aim of making GCRF
applicable to large networks. The model consists of three
steps: first, it compresses a network into a smaller one by
generalizing nodes into supernodes and edges into superedges;
then, it applies GCRF to the reduced network; and finally,
it unfolds the predicted response variables into the original
nodes. Our hypothesis is that the reduced network maintains
most information of the original network such that the loss
in prediction accuracy obtained by GCRF on the reduced
network is minor. The comprehensive experimental results
indicate that SA-GCRF was 150-520 times faster than standard
GCRF and 11-29 times faster than state-of-the-art UmGCRF
on large networks, and provided regression results where
GCRF and UmGCRF were not applicable. Furthermore, SA-
GCRF achieved a similar regression accuracy, 0.76, to the
one obtained from the original real-world weighted attributed
citation network, even after compressing the network to 10%
of its size.

I. INTRODUCTION

Predictive modeling on data that exhibits sequential, spa-
tial, and/or temporal dependencies is a challenging task.
Traditional predictive models assume independent and iden-
tically distributed random variables (iid) and thus often fail
to provide high accuracy in real-world applications that
naturally have structured dependence. Structured models like
Conditional Random Fields (CRFs) [8], avoid iid assumption
by simultaneously learning to predict all outputs given all
inputs. These methods represent network structure of vari-
ables of interest (y) and attribute values of the nodes (x) in
the form of graphical models in order to exploit correlations
among output variables, which often results in accuracy
improvements over traditional unstructured approaches [14].
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Table I
TIME AND ACCURACY ON CAIDA NETWORK [9] OF 26K NODES

GCRF [15] UmGCRF [6] Our model (SA-GCRF)
Accuracy 0.99 0.99 0.90

Time (mins) 715 40.5 2.15

Recently, Gaussian CRF (GCRF), which is a discrimi-
native model that defines feature functions in a Gaussian
canonical form, is proposed ( [15], [18]). GCRF allows the
utilization of unstructured predictors as feature functions,
and modeling of non-linear relationships between inputs
and outputs. These properties led to numerous extensions
of GCRF ( [4], [13]). However, GCRF does not scale
well on networks with tens of thousands of nodes. For
example, GCRF takes 12 hours on CAIDA network [9] of
26K nodes (Table I). An approach [24] for sparse GCRF
optimization exploits the network sparsity and provides
specialized optimization techniques. However, the method
is very computationally expensive on moderate networks
(few hundreds of nodes). One approach for addressing this
problem is the development of approximate methods for
GCRF [16]. The method assumes fully connected networks
in Euclidean feature space, which does not hold in many
real-world applications. A very recent model [6], called
Unimodal GCRF (UmGCRF), is 20 times faster than GCRF.
However, the model still can not handle networks with more
than 100K nodes (Table II).

We address the problem of applying GCRF to large
attributed weighted networks. The idea is to compress a large
network into a smaller one, and then map the predictions
obtained from the reduced network to the original network,
with the goal that the prediction accuracy on the reduced
network is similar to the original one. There are two ways
to decide the size of the reduced network. One is based
on the user-specified size. A user could specify the size of
the reduced network where GCRF is applicable according to
his/her accepted running time. For large networks, regression
accuracy is usually similar for different sizes of reduced
networks, but running time varies a lot (Table II). The other
approach is based on the user-specified error. A user could
specify how much accepted error is in the prediction, and
the network is compressed to the size where no more size
could be reduced. However, the local compression may have
global influence in the structured regression, thus the size of
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the reduced network is not easy to calculate. Therefore, in
this work, we will focus on the first approach, where users
could specify the resolution of the reduced network. The
step of generalizing the original network into a compact
representation is known as network summarization, which
is different from graph partitioning/clustering [11] in that:
the former one groups nodes that have similar link structure,
whereas the latter one groups nodes that are more strongly
connected to each other.

Network summarization (or graph compression, hereafter
we use the term network and graph interchangeably) has
been studied recently ( [3], [12], [20]) due to its successful
applications [27]. The goal is to generalize a large network
into a smaller one while maintaining approximately the same
information. For example, a Minimum Description Length
based algorithm is proposed to produce an unweighted graph
summary, with a set of edge corrections to fix the errors
introduced by merging nodes and edges [12]. An attributed
graph with categorical node attributes and continuous edge
attributes is considered in [19], where the goal was to
find relatively homogeneous supernodes and superedges.
This approach has been generalized to numerical node
attributes [26], but the node attributes are categorized based
on domain knowledge. Furthermore, a method that consid-
ers both edge weights and long-range indirect connections
between nodes was developed in [20].

We propose a novel model, called Scalable Approximate
GCRF (SA-GCRF), which integrates graph compression
with GCRF. Our model first generates a network into a user-
specified size, where GCRF could finish regression in an
acceptable time. Then, it applies GCRF to perform predic-
tion on the reduced network based on the generalized node
attributes and edge weights. Finally, it maps the prediction
from the generalized nodes to the original ones. The first
step in the SA-GCRF model is weighted attributed graph
compression, which is inspired by the model of Toivonen
et al. [20], but we extended the model to consider not
only edge weights, but also numerical node attributes during
compression, which significantly improves the prediction
accuracy of SA-GCRF. Our work differs from the lifted
inference [7] in that the latter focuses on extracting compact
representations from multi-rational domains.

The main conclusions of this paper are the following: (1)
In SA-GCRF, the weighted attributed network compression
approach extends the state-of-the-art model to consider both
node attributes and link structure, which significantly im-
proves the prediction accuracy. (2) The proposed SA-GCRF
model greatly reduces the running time of GCRF on large
networks, while the loss in prediction accuracy is minor
(e.g., on a network of 26K nodes, SA-GCRF is 332 times
faster than standard GCRF, and 19 times faster than state-
of-the-art UmGCRF, whereas the loss in R2 is less than
0.1). (3) SA-GCRF provides solutions in an acceptable time
where GCRF and UmGCRF are not applicable (Table II). (4)

Figure 1. Unstructured predictor Rk considers only xi to regress yi,
while GCRF models the conditional distribution of all y given all x as a
function of the structure wl and the unstructured predictor Rk .

Extensive experimental results on synthetic and real-world
networks provide evidence that SA-GCRF allows efficient
and effective learning and inference for structured regression
on large networks.

II. METHODOLOGY

The structured (network) regression problem can be de-
fined as modeling a function that predicts the response
variables from the nodes’ explanatory variables, where there
is a structure among the response variables [14]. This
problem was formulated as Gaussian Conditional Random
Fields (GCRF) [15]. In Section II-A, we introduce the
main building blocks of GCRF and then briefly introduce
UmGCRF [6], which is much faster than GCRF. The graph
compression is then discussed in Section II-B and the
proposed algorithm SA-GCRF is explained in Section II-C.

A. GCRF and UmGCRF

In regression on networks, a vector of attributes x and
a real-valued response variable y are observed, while the
objective is to predict y at all nodes given new values
for x. GCRF is a discriminative model for regression on
an attributed weighted network that models the conditional
distribution P (y|x) over N nodes for y given x as:

P (y|x) = 1

Z(x, α, β)
exp

( N∑
i=1

A(α, yi,x)+
∑
j∼i

I(β, yi, yj,x)
)
,

(1)
where α and β are parameters of the association A and the
interaction I potentials, respectively, and the normalization
term Z(x, α, β) is an integral over y of the term in the
exponent. The association and interaction potential functions
are defined as [15], respectively,

A(α, yi,x) = −
K∑

k=1

αk(yi −Rk(x))
2,

I(β, yi, yj ,x) = −
L∑

l=1

βlw
l
ij(yi − yj)

2,

where Rk(x) represents any function that maps x→ yi for
each node in the network (Figure 1). We refer to this function
as unstructured predictor that gives independent predictions.
The influence of each unstructured predictor Rk on the final
predicted value is modeled by optimizing parameters αk,
where K is the number of unstructured predictors. The
similarity between two nodes i and j is defined as wl

ij . The
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influence of network structure wl is modeled through the
interaction potential and is weighted by the parameter βl,
where L is the number of similarity functions.

Modeling association and interaction potentials as
quadratic functions of y enables GCRF to represent (1) as
a multivariate Gaussian distribution [15]:

P (y|x) = 1

(2π)
N
2 |Σ| 12 exp

(
−1

2
(y − μ)TQ(y − μ)

)
, (2)

where Σ−1(:= 2Q) is the inverse covariance matrix:

Q =

⎧⎪⎪⎨
⎪⎪⎩

∑
k

αk +
∑
h

∑
l

βlw
l
ih if i = j

−
∑
l

βlw
l
ij if i �= j

(3)

Inference. The inference task argmaxyP (y|x) is straight-
forward. Since GCRF is represented as a multivariate Gaus-
sian distribution, the maximum posterior estimate of y is
obtained by computing the expected value μ = Q−1b,
where bi =

∑
k αkRk(x).

Learning. The learning objective is to optimize the param-
eters α and β by maximizing the conditional log–likelihood

ll = argmax
α,β

∑
y

logP (y|x).

The feasibility of the model is ensured when the Q matrix
is positive definite and hence all parameters α and β are
greater than 0 (constrained optimization). The exponential
transformation of parameters is used to make the opti-
mization unconstrained [14], which can be solved by any
standard optimization algorithm, such as gradient descent.
The resulting negative log-likelihood is convex, which leads
to a globally optimal solution of α and β.

GCRF suffers from the computational explosion issue in
large networks. In each iteration, in the gradient descent
algorithm computing the inverse of the precision matrix
takes O(N3) time for dense networks and O(N2) for sparse
networks.1 So, the total running time for learning GCRF is
O(IN3), where I is the number of iterations (for details,
please review [15]). In order to reduce the running time
of the optimization, a simple but efficient trick to eigen-
decompose the precision matrix once before the iterations
was recently proposed [6], which is called UmGCRF2.
Once the matrix is decomposed, the eigenvalues are used to
perform all other operations inside the iterations, resulting
in a model that is much faster than the standard GCRF. The
time complexity of UmGCRF is O(N3 + IN).

1Since Q is a Laplacian matrix there exists a fast solver [22] for
pseudo-inverse in O(Mlog(N)), where M is the number of edges,
resulting in O(I(Mlog(N)+N2)) learning time for GCRF, which
is still slower than the proposed SA-GCRF model O(Id3), where
d is the node degree � N (Sec. II-B4).

2The fastest exact state-of-the-art GCRF optimization method.

Figure 2. Illustration of Compression. G has N = 4 nodes and 4 edges,
while Gs has Ns = 3 supernodes {vs1, vs2, vs4} and two superedges es12
with weight ws

12 and es24 with weight ws
24.

B. Graph compression

The goal of graph compression is to discover hidden
structure in a given network and use it to generalize the
network into a user-specified size such that the generalized
one maintains original information as much as possible. The
graph compression algorithms consider only structure and
node attributes x.

1) Preliminaries: Definition 1 (Weighted Attributed
Network). A weighted attributed undirected network is
defined as a tuple G = (V,E,W ,X ), where V is a set
of N nodes, E ⊂ V × V is a set of edges, W : E → R

+

assigns a (non-negative) weight to each edge e ∈ E, and
X is a set of m attributes associated with vertices in V ,
such that the vector xi = {xi1, · · · , xim} is a set of
numerical attribute values to describe the properties of the
node vi, ∀i = {1, 2, . . . , N}.

Definition 2 (Compressed Network). A weighted at-
tributed network defined as Gs = (V s, Es,Ws,X s) is
a compressed representation of G = (V,E,W ,X ) if
V s = {vs1, vs2, · · · , vsNs}, vsi ⊂ V , and V = ∪Ns

i=1v
s
i , and

vsi ∩ vsj = ∅ for any i �= j. The nodes vsi ∈ V s are called
supernodes, and the edges esij ∈ Es are called superedges
between vsi and vsj .

The idea is that a supernode represents all original nodes
within it, and that a single superedge represents all edges
between its subnodes and their neighbors. For example, in
Figure 2, the supernode vs2 represents the original nodes v2
and v3. The superedge between vs1 and vs2 represents two
edges: one is between the original nodes v1 and v2, and the
other is between the original nodes v1 and v3.

Since the time complexity of GCRF is dominant by node
number N , the compression ratio is defined as follows:

cr =
Ns

N
, (4)

which measures how much smaller the compressed network
Gs is with respect to the original network G. We then
measure the compression error, denoted by dist(G,Gs), by
calculating (1) the change of node attributes related to each
individual node, denoted as dist(X ,X s), and (2) the change
of connections between any pair of nodes with respect to the
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original network, denoted as dist(W ,Ws).

dist(X ,X s) =
1

m

m∑
j=1

∑
vi∈V,vi∈vs

k

(xij − xs
kj)

2

dist(W ,Ws) =
∑

{vi,vl}∈V ×V

(wil − ws
il)

2

dist(G,Gs) =
(
dist(X ,X s) + dist(W ,Ws)

) 1
2

, (5)

where xs
kj represents the j th attribute of the supernode xs

k

to which the original node vi belongs, so dist(X ,X s) is the
total difference between the original attributes of nodes and
attributes of their corresponding supernodes. dist(W ,Ws)
is the total change of the original edge weights between any
pairs of nodes and the weights of the connections between
their corresponding supernodes. For example, in Figure 2,
the edge weight between v1 and v3 is changed from w13 to
ws

12. If vi and vl are in the same supernode, then ws
il is 0.

Definition 3 (Graph Compression). Given a weighted
attributed network G and a compression ratio cr (0 <
cr < 1), the weighted attributed graph compression problem
is to produce a compressed representation Gs of G with
cr(Gs) ≤ cr such that dist(G,Gs) is minimized.

The goal of compression is to generalize a network
into a user-specified size while maintaining most original
information. Another way of using a compression algorithm
is to compress the network until a user-defined value of loss
in R2 is reached. This approach is out of our scope of this
paper and we leave it as future work.

2) Merge operation: A network is compressed by merg-
ing a pair of nodes iteratively (Section II-B3). A merge
operation groups a pair of (super)nodes into a new supern-
ode, and links the new supernode with the neighbors of
the merged nodes, and then assigns weights to the new
superedges. Thereby, it generalizes the attributes of two
merged nodes and the weights of the original edges between
the new generalized supernode and the neighbors of the
merged node. An illustrated example is shown in Figure 2.
Nodes v2 and v3 are chosen to be merged to a new supernode
vs2. The new supernode vs2 has links with the merged nodes’
neighbors, which are vs1 and vs4 (here vs1 is the same as v1,
but when the process of compression begins, all nodes are
considered as supernodes). The attributes of the two merged
nodes x2 and x3 are generalized to xs

2. The edge weights
between v1 and v2, and v1 and v3 are generalized to ws

12.
Similarly, the edge weights between v4 and v2, and v4 and
v3 are generalized to ws

24. We next discuss the error induced
by such merge.

In each iteration, two (super)nodes are merged into a new
supernode. Assume that in the tth iteration, (super)nodes
v
st−1
m and v

st−1
n are merged into supernode vstz . The value

of the j th attribute of the supernode vstz is the average of
the corresponding values of the two merged nodes, v

st−1
m

and v
st−1
n , weighted by the corresponding number of nodes

within it; that is,

xst
zj =

|vst−1
m | ∗ xst−1

mj + |vst−1
n | ∗ xst−1

nj

|vst−1
m |+ |vst−1

n | , (6)

where |vst−1
m | represents the number of subnodes that are

within the supernode v
st−1
m .

Let vst−1

l be one of the k neighbors of v
st−1
m and v

st−1
n .

Similarly, the weight of the superedge between vstz and
v
st−1

l is the average of edge weights between two merged
nodes, vst−1

m and v
st−1
n , and v

st−1

l weighted by the number
of subnodes within v

st−1
m and v

st−1
n ; that is,

wst
zl =

|vst−1
m | ∗ wst−1

ml + |vst−1
n | ∗ wst−1

nl

|vst−1
m |+ |vst−1

n | . (7)

Merging a node pair, vst−1
m and v

st−1
n , compared to the

previous stage of the network Gst−1 , only changes the
attributes of two merged nodes and the connection weights
between the merged nodes and their neighbors. Therefore,
we calculate the error caused by a merge locally (Equa-
tion 8). In addition, we could have a parameter γ to assign
a weight to the change of attributes in order to put a different
emphasis to the attributes vs. edge weights with respect to
the application of the problem. The default value of γ could
be the average node degree for balancing the amount of
attribute change and edge weight change.

err merge(vst−1
m , vst−1

n )

=
(
γ · 1

m

m∑
j=1

(
(x

st−1

mj − xst
zj)

2 + (x
st−1

nj − xst
zj)

2
)

+
∑
k

(
(w

st−1

ml − wst
zl )

2 + (w
st−1

nl − wst
zl )

2
)) 1

2

. (8)

3) Compression algorithms: We present three algorithms
for the weighted attributed graph compression. Similar to
Toivonen et al. [20]3, in all algorithms pairs of (super)nodes,
which are within 2 hops apart from each other, and also
their edges are merged until the specified compression ratio
is achieved.
• Brute-force algorithm. It iteratively evaluates the merge

error of all possible pairwise merges and selects the best
merge, and then repeats this until the requested compression
ratio is achieved.
• Random algorithm. It merges pairs of nodes randomly

without any aim to produce a good compression. It provides
a baseline for the quality of other methods that make
informed decisions about mergers.
• Semi-greedy algorithm. This method (outlined in Fig-

ure 3) is a hybrid between brute-froce and random algo-
rithms. In each iteration, it first picks a node v at random,
and then chooses a node u from the 2-hop neighbors, so that
the merge of v and u is optimal with respect to the error
caused by the merge.

3We did not consider the thresholded algorithm in [20], as the
threshold is difficult to choose for different types of networks.
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Input: Network G, compression ratio cr
Output: Compressed representation Gs

1: Gs ← G {i.e., (V s, Es, ws)← (V,E,w)}
2: while Ns > cr N do
3: randomly choose vs ∈ V s

4: for all nodes us that are within 2-hops of vs do
5: dus ← err merge(vs, us)
6: end for
7: Gs ← merge vs with argminus dus

8: end while

Figure 3. Semi-greedy Algorithm

4) Computational complexity for compression: Let d be
the maximum node degree in the original network, and
I = (1 − cr)N be the number of iterations. The time
complexity of the brute-force algorithm is is O(Id3N). For
the random algorithm, the total complexity is O(Id). The
time complexity of semi-greedy algorithm is O(Id3). The
efficiency of the semi-greedy algorithm is highly affected by
the node degree d (Section III-B7). In real-world networks,
the node degree d is much smaller than N , which makes
the compression algorithm much faster than GCRF and
UmGCRF as evident in our experiments.

C. Scalable Approximate GCRF (SA-GCRF)

The proposed SA-GCRF model integrates graph com-
pression with GCRF. Our model consists of three steps
illustrated in Figure 4. STEP 1: it compresses a network
into a smaller size by using the weighted attributed graph
compression algorithms introduced in Section II-B; STEP 2:
it applies GCRF to the reduced network to infer the response
of supernodes; and STEP 3: it unfolds the prediction
from supernodes to its subnodes. The prediction is evenly
distributed among all its subnodes.

In step 2, UmGCRF is applied in most cases, as it is a fast
version of GCRF. For simplicity, we use SA-GCRF without
explicitly mentioning that UmGCRF is applied. The only
case where GCRF is applied in step 2 is when measuring
the speed up (see Sec. III-A). We use SpeedUPUm to specify
that UmGCRF is applied, and SpeedUPGR to specify that
GCRF is applied.

III. EXPERIMENTAL EVALUATION

We present the experimental results using SA-GCRF on
both synthetic and real-world datasets. With these exper-
iments we aim to address the following questions: (1)
How effective and efficient are weighted attributed graph
compression algorithms? (2) How do node attributes affect
SA-GCRF regression accuracy? (3) What is the trade-off
between the speedup in the running time and the loss in
the regression accuracy of SA-GCRF? (4) What is the
performance of SA-GCRF on different types of networks
with different size and density? and (5) How scalable is
SA-GCRF?

A. Datasets and experimental setup

We briefly describe the networks used in our experiments
and their node attributes and edge weights.

Random networks. The network structure was generated
using an Erdős-Rényi random graph model. We varied the
number of nodes N = {1K, 5K, 10K, 20K, 30K} gener-
ated by the model with average node degree 14. In addition,
we fixed the number of nodes N = 10K and varied average
node degree d = {5, 10, 20, 40, 80}, to get another set of
random networks.

Scale-free networks. The networks were generated using
the RTG method [1]. We varied the parameters of the RTG
method to obtain networks with sizes N = {1K, 3K, 5K,
7K, 9K} with average node degree around 10.

In both random and scale-free networks, for each network
setting, we generated 5 networks and computed the statistics
as average among all networks of the same size.

Networks with real-world structure. To test the scalabil-
ity of our model on more realistic situations, we also used the
network structure extracted from seven real-world datasets
( [2], [5], [9], [25]). The node degree distribution of those
seven networks (Table II) follows the power-law distribution.
Since all datasets are unlabeled and unweighted networks,
we randomly generated link weights and the unstructured
predictions from [0, 1]. In order to generate the response
variable y, we used GCRF as a generative model and set
α = 3 and β = 1. (We set α > β because in most
real-world applications studied elsewhere we found that the
unstructured predictions are more influential than the net-
work structure on the response variable.) Finally, we added
Gaussian noiseN ∼ (0, 0.5σ) to the unstructured prediction,
where σ is the variance of unstructured predictor. Since the
compression algorithm uses the unstructured prediction as
input, we added the noise to the unstructured prediction
instead of the response variable y to test the robustness of
SA-GCRF to the noise.

Real-world weighted attributed networks. Finally, we
evaluated our model on a real-world weighted attributed
network. The network used is the High Energy Physics
Theory citation network (HEP-TH), which is a bibliographic
network extracted from arXiv for the 2003 KDD cup com-
petitions [10]. Node attributes, link weights and response
variables are extracted from data (Section III-D).

We evaluated the performance of SA-GCRF using:
• R2 (the regression accuracy of the model): R2 = 1 −∑

i(yi−ŷi)
2

∑
i(yi−ȳ)2 , where yi (ŷi) is the true response value (pre-

dicted value) for node i and ȳ is the average of y. A score
of 0 indicates a poor matching, while a score of 1 indicates
a perfect match.
• Speed up which measures the speedup of SA-GCRF
with respect to UmGCRF [6]. The speed up is computed
as SpeedUPUm = TUmGCRF

TCompression+TUmGCRFComp
, where TUmGCRF

(TUmGCRFComp) is the learning and inference running time
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Figure 4. SA-GCRF process. Step 1: Compress a network by generalizing nodes and edges; Step 2: Apply GCRF to the compressed graph to predict the
response of each supernode; Step 3: Unfold the predicted response of supernodes to original nodes.

of UmGCRF on the original (compressed) network, re-
spectively, and TCompression is the running time of graph
compression. We also compared our model with the standard
GCRF [15]. This speedup is computed as SpeedUPGR =

TGCRF
TCompression+TGCRFComp

, where TGCRF (TGCRFComp) is the learn-
ing and inference running time of GCRF on the original
(compressed) network, respectively. All experiments were
conducted on a PC with Intel Core i7-3770 3.40 GHz and
32 GB memory.

B. Performance on synthetic networks

Experiments were conducted on weighted attributed syn-
thetic networks. Node attributes and link weights were gen-
erated according to the procedure described in Section III-A.
Each boxplot in Figures 5 – 12 shows results of 5 networks
(in some cases, the variance is small and not noticeable).

1) Effectiveness of SA-GCRF: The objective of SA-
GCRF is to compress a large network to a smaller size on
which GCRF is applicable more effectively. Our hypothesis
is that the error caused by the compression algorithm will
not significantly affect the loss in R2 obtained by GCRF.
Figure 5 shows the prediction accuracy R2 of SA-GCRF as
a function of compression ratio on two types of synthetic
networks: scale-free networks with 9K nodes (left panel)
and random networks with 30K nodes (right panel). The
performance on both types of networks are similar. It is
clear that SA-GCRF using the semi-greedy compression
algorithm produced much more accurate regression results
than the one using random compression. The performance of
using the brute-force compression algorithm will be shown
in Section III-B2.

Compression to half of the original node size using
the semi-greedy algorithm, SA-GCRF maintains average
R2 = 0.89 on scale-free networks and R2 = 0.9 on random
networks. Compression to even a smaller size, such as 10%
of original node size, still yields good results. These results
indicate that the superiority of SA-GCRF using the semi-
greedy algorithm is more obvious when the compression
ratio decreases (that is, compressing a network to much
smaller size) which will be very useful in large networks.

2) Comparison of three compression algorithms: We
proceed to compare the performance of three compres-

Compression ratio
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R
2

0
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(a) Scale-free networks (9K)

Compression ratio
0.1 0.3 0.5 0.7 0.9

R
2

0
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0.6

0.8

1

Semigreedy
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(b) Random networks (30K)

Figure 5. Accuracy comparison between SA-GCRF using the semi-greedy
(red) merge and SA-GCRF using random (blue) merge. R2 on the original
network is 0.99.

sion algorithms: brute-force, semi-greedy, and random al-
gorithms. Since the brute-force compression algorithm is
very computationally expensive and slower than semi-greedy
(Section II-B4), we applied brute-force algorithm to scale-
free networks with 1K nodes using ratio from 0.5 to 0.9.
As expected, brute-force algorithm gives better results than
semi-greedy compression (Figure 6(a)), but the gap (around
0.04) is not big, and their accuracy is more similar with
increased compression ratio and network size.

Figure 6(b) shows the speedup by semi-greedy and brute-
force algorithms as compared to using UmGCRF. Semi-
greedy is 1.5 times faster than brute-force on the networks
with 1K nodes, which indicates that brute-force compression
is not applicable to large size networks. Since the semi-
greedy algorithm has comparable accuracy performance to
the brute-force algorithm and it is much faster, in the
subsequent experiments we will report only the results of
SA-GCRF using the semi-greedy algorithm.

3) Effect of node attributes on regression: We evaluated
the benefit of using the node attributes in improving network
regression. Including the node attributes in the compression
process would group nodes that have similar structure and
similar node attributes. The hypothesis is that including the
node attributes in the compression process would make the
compressed nodes more homogeneous rather than relying
solely on the node structure; hence, the regression on the
compressed nodes would be very similar.

We applied SA-GCRF using the semi-greedy algorithm
in which node attributes are taken into account, versus the
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Figure 6. R2 (left) and SpeedUPUm (right) comparison between semi-
greedy (red) and brute force (blue) on scale-free networks with size 1K.
R2 on the original network is 0.99.
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Figure 7. Effect of node attributes on the quality of regression. R2 on
the original network is 0.99.

model [20] that does not consider node attributes. The results
on both scale-free networks with 9K nodes and random
networks with 30K nodes are shown in Figure 7. It is
clear that including the node attributes into the compression
algorithm significantly improves the regression results on the
compressed network, which validates our hypothesis.

4) Effectiveness with respect to noise: In order to evaluate
the robustness of SA-GCRF against the noise in the node
attributes, we varied the noise level in the unstructured
predictions. In particular, we added Gaussian noise N ∼
(0, γσ) to unstructured prediction, where γ = {.5, 1, 1.5, 2}.
R2 on the original network with these four different noises
are 0.99, 0.98, 0.958 and 0.93, respectively. Since the R2

of UmGCRF on the original network decreases with more
noisy data, we expect similar accuracy performance of SA-
GCRF by adding more noise to unstructured prediction.

We applied SA-GCRF using the semi-greedy algorithm
to both scale-free networks (9K, d = 10) and random
networks (10K, d = 10) with different noise levels. In both
types of networks, when adding more noise to unstructured
prediction, the accuracy performance of SA-GCRF decreases
(Figure 8), but not significantly. For example, with ratio 0.5
on random networks, R2 decreases from 0.86 to 0.826 when
noise level drops from γ = 2 to γ = 0.5. The prediction
performance with different levels of noise is quite similar
especially when compression ratio is small. The compression
could smooth out the prediction so that our model is robust
to noise in the node attributes.
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Figure 8. Prediction accuracy of SA-GCRF using the semi-greedy
algorithm with respect to different noises.
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Figure 9. Comparison between SpeedUPGR (blue) and SpeedUPUm (red).

5) Efficiency of SA-GCRF: Figure 9(a) shows the
speedup of our model with respect to GCRF [15] and
UmGCRF [6] using the semi-greedy algorithm on scale-
free networks (5K nodes) as a function of compression
ratio. SA-GCRF with compression ratio 0.1 is 65 times
faster than GCRF on average, whereas it is 1.74 times faster
than UmGCRF. The difference between the two speedups is
huge, especially when compression ratio is small, but the gap
is becoming smaller with the increased compression ratio.
The speedup with respect to UmGCRF is not obvious in
Figure 9(a) because of the small size of networks (a clear
pattern of speedup with respect to UmGCRF can be seen in
Figure 10).

Figure 9(b) shows SA-GCRF using the semi-greedy algo-
rithm with a fixed compression ratio (0.5) as a function of
network size. SpeedUPGR is decreasing with the increased
network size, whereas SpeedUPUm is increasing, the reason
is that GCRF is costly when the size of compressed networks
is large. Therefore, we used UmGCRF in our model on large
networks in the following experiments.

The efficiency of SA-GCRF with respect to UmGCRF
on scale-free networks (9K, d = 10) and random networks
(10K, d = 10) are shown in Figure 10. It is clear that
SA-GCRF is 2-4 times faster than UmGCRF on scale-free
networks, and 2-8 times faster on random networks. The
reason that SA-GCRF has high speedup on random networks
is that (1) the efficiency of semi-greedy compression is
highly affected by node degree, and (2) more compression
could cause the compressed network to be denser, as the
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Figure 10. Efficiency of SA-GCRF using the semi-greedy algorithm as a
function of compression ratio.

new supernode links to all the neighbors of the merged
nodes. For example, when compression ratio is small (0.3),
in the scale-free networks, a few nodes have quite large node
degree which makes compressed network denser and causes
compression take more time.

Note that the value of speedup is small when the com-
pression ratio is small (0.1), and it increases until it reaches
the peak (when cr = 0.3), after which it decreases with
increased compression ratio (0.9). The rationale for such
behavior is that the running time for UmGCRF is the domi-
nant term in computing the speedup. In particular, when the
compression ratio is large (0.9) the compression algorithm
is fast but UmGCRF still takes much time to optimize
because the compressed network is not small enough to
make UmGCRF fast, and vice versa. Therefore, a trade-
off between running time of the compression algorithm and
UmGCRF is advised. Nevertheless, since the time consumed
by UmGCRF is the dominant term, SA-GCRF achieves
higher speedup on lower compression ratios (0.3). Together
with Figure 5, we see the utility of SA-GCRF on large
networks, where it achieves good accuracy while being fast.

6) Efficiency as a function of network size: The speedup
of SA-GCRF as a function of network size using both types
of networks with a fixed compression ratio (0.5) is shown
in Figure 11. When the network is small, e.g. 1K nodes,
the time spent by SA-GCFR is similar to UmGCRF on the
original network. However, when the network size increases
to 30K nodes, SA-GCRF is 7 times faster than UmGCRF
on the original network. It is quite obvious that with the
increased size of networks, the speedup of SA-GCRF is
increasing. It clearly indicates the benefit of applying SA-
GCRF on large networks where UmGCRF is not applicable.

7) Performance of SA-GCRF as a function of network
density: We applied SA-GCRF to random networks (10K)
with varied node degree. The performance of SA-GCRF
with a fixed compression ratio (0.5) is shown in Figure 12.
Figure 12(a) shows a very nice pattern: with the increased
node degree, the regression accuracy (R2) increases as well.
It indicates that for denser networks the loss in prediction ac-
curacy diminishes. However, the time complexity O(Id2) of
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Figure 11. Efficiency of SA-GCRF using the semi-greedy algorithm as a
function of network size.
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Figure 12. R2 and speedup of SA-GCRF using the semi-greedy algorithm
with 0.5 compression as a function of node degree on random networks of
sizes 10K. R2 on the original network is 0.98.

SA-GCRF increases with denser networks (Section II-B4).
Figure 12(b) verifies this point: when the network is becom-
ing denser, the running time taken by SA-GCRF is getting
close to UmGCRF on the original network. Therefore, the
utility of SA-GCRF is more evident in sparse networks.

C. Scalability of SA-GCRF

In this section, we discuss the performance of SA-GCRF
on large networks, where UmGCRF is not applicable. The
network structures were extracted from real-world datasets.
The node attributes and link weights were generated fol-
lowing the procedure described in Section III-A. To have
an intuition about R2 on the original network, we set zero
noise to the unstructured prediction when we generated the
response variable, to assume that R2 obtained by UmGCRF
on the original network is 1.

Table II shows the effectiveness and efficiency of SA-
GCRF with varied compression ratios on large networks.
For example, on CAIDA network [9] with 26K nodes,
GCRF takes 12 hours and UmGCRF takes 40.5 minutes
to perform regression on the original network, whereas SA-
GCRF obtains regression results in 5.92 minutes with 0.93
regression accuracy, which is comparable to the accuracy on
the original network. On Facebook [23], a relatively dense
network, SA-GCRF takes 32 mins to finish regression with
0.7 accuracy due to its high density. However, UmGCRF
takes 6 hours, and GCRF takes more than 7 days.

For the networks containing more than one hundred thou-
sand nodes to which UmGCRF is completely inapplicable,
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Table II
EFFECTIVENESS AND EFFICIENCY OF SA-GCRF USING THE SEMI-GREEDY ALGORITHM ON LARGE NETWORKS

Network name N |E| Running Time SA-GCRF SA-GCRF Running time (mins)
GCRF [15] UmGCRF [6] cr R2 TCompression TUmGCRFComp Total

CAIDA [9] 26,475 53,381 12 hours1 40.5 mins
0.5 0.93 0.84 5.08 5.92
0.3 0.90 1.02 1.12 2.15
0.1 0.86 1.33 0.05 1.38

Facebook
63,392 816,831 > 7 days1 6 hours

0.5 0.77 11.87 43.78 55.65
friend- 0.3 0.70 22.83 9.29 32.11

ships [23] 0.1 0.65 68.19 0.39 68.58

WordNet [5] 145,145 656,230 NA NA
0.2 0.69 2.83 52.23 55.06

0.15 0.68 3.08 22.31 25.39
0.1 0.65 3.54 6.64 10.18

Gowalla [2] 196,591 950,327 NA NA
0.15 0.75 95.77 53.88 149.65
0.1 0.73 158.72 16.09 174.81

0.05 0.71 214.06 2.18 216.24

Amazon [25] 334,863 925,872 NA NA
0.1 0.73 0.95 86.14 87.09

0.05 0.70 1.92 10.36 12.28
0.01 0.65 9.99 0.08 10.07

DBLP [25] 317,080 1,049,866 NA NA
0.1 0.71 2.30 68.92 71.22

0.05 0.67 4.23 8.72 12.95
0.01 0.66 19.23 0.08 19.31

Youtube [25] 1,134,890 2,987,624 NA NA 0.03 0.76 3492.9 86.4 3579.3
1 The experiment was conducted on a sever with 128 GB of memory and Intel(R) Xeon(R) E5-2630 v2 2.60GHz processors.

we chose a compression ratio with which UmGCRF is
applicable to the compressed network. For example, on
WordNet network [5] that contains 145K nodes, SA-GCRF
could finish regression in 10 mins with 0.1 compression
ratio. Compared to the result with 0.2 compression ratio,
there is a large decrease in running time, from 1 hour to 10
mins, with little decrease in regression accuracy.

Gowalla [2] has 196K nodes, which is smaller than
Amazon network [25] and DBLP collaboration network [25],
however, it is much denser. Hence, SA-GCRF takes more
time, 174.81 mins, to finish regression with 0.73 accuracy.

On Amazon and DBLP networks, which contain similar
number of nodes (∼ 300K) and edges (∼ 1M ), SA-GCRF
takes around 12 mins to compress the network to 5% of
original size and finishes the regression with 0.7 accuracy.

On Youtube social network [25] that consists of 1M nodes
and 2M edges, SA-GCRF takes 3579 mins (=59.65 hours)
to reach a 0.79 regression accuracy with a compression ratio
0.03. SA-GCRF training was costly, but much more efficient
than UmGCRF and GCRF, which could not provide results
in an acceptable time on such big networks.

From Table II, we conclude that SA-GCRF allows ef-
fective and efficient learning and inference for structured
regression on networks with hundreds of thousands of nodes.

D. Performance on citation networks

The effectiveness of SA-GCRF is further characterized on
real-world weighted attributed networks with the objective of
predicting the number of citations in a high-energy physics
citations network [10]. The dataset consists of 29,955 pa-
pers (nodes) and 352,807 citations spanning over 11 years.
Following [17], [21], we filtered out papers that received
less than 3 citations from 2000 to 2002, selected papers
that were published before January 2000, and collected
their citation numbers received after January 2000 on a

Figure 13. Citation Prediction Problem.

Table III
AVERAGE (STANDARD DEVIATION) R2 OF SA-GCRF ON PREDICTING

CITATION FOR THE FOLLOWING 6 MONTHS IN A NETWORK OVER 5 TIME
POINTS. AVERAGE R2 ON ORIGINAL NETWORK OF UMGCRF IS

0.823(±0.042).

cr R2

0.9 0.825(±0.043)
0.5 0.814(±0.043)
0.1 0.766(±0.055)

half-yearly basis. Therefore, we constructed six weighted
attributed networks for the period 2000-2002. Each node in
the network represents a paper and the attribute of the node
is the number of citations the paper received in the last 6
months (Figure 13). Two papers A and B are connected
based on the coCiter measure [21], which is computed as:

simcoCiter(A,B) =
2×# cocitations of A and B

# citations of A +# citations of B
.

The regression problem is, based on the number of citations
obtained from the current 6 months, to predict the number
of citations in the following 6 months. We train the model
on the network at time t and test it on the network at time
t+1, where t = {1, 2, . . . , 5}. The average R2 of SA-GCRF
over 5 time points t are shown in Table III.

We conclude from Table III: (1) SA-GCRF has very
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comparable results with respect to UmGCRF on the citation
network even when using compression ratio 0.1, which
is consistent with results on synthetic networks; and (2)
The prediction obtained by SA-GCRF when cr = 0.9 is
surprisingly even better than the one obtained by UmGCRF,
which indicates that the compression helped the model to
overcome the noise and smooth out the prediction such that
it became robust to outliers.

IV. CONCLUSION

We proposed a novel model (SA-GCRF) that integrates
graph compression with GCRF for structured regression.
The goal is to make GCRF applicable to large networks.
The model is based on the hypothesis that the compressed
network maintains most information of the original network,
such that the loss in regression accuracy obtained by GCRF
is minor. In particular, the weighted attributed graph com-
pression extends the existing approach to take node attributes
into account during compression.

We conducted comprehensive experiments to test our hy-
pothesis on synthetic and real-world networks, and conclude
that: (1) SA-GCRF allows efficient and effective learning
and inference on large networks; (2) SA-GCRF is robust to
the noise in the node attributes; (3) Node weights can guide
the compression process to better group nodes with similar
attributes, such that the regression accuracy is improved.

Our work in progress is how to utilize the domain
knowledge to further guide the compression and unfolding to
achieve better predictions. Besides, we will integrate graph
compression with other structured models to evaluate the
performance of regression in large networks. Finally, we will
study the theoretical guarantee for our model.
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