
Vocabularies in Collaboration Channels

George Mathew, Zoran Obradovic
Center for Information Science and Technology

Temple University, Philadelphia, PA, USA
{George.Mathew,Zoran.Obradovic}@temple.edu

Abstract— Collaborators use vocabulary germane to

the domain in context. Collaboration applications and
collaborating systems use vocabularies at different
(lower) layers that are specific to the state in which they
execute. Distributed, yet collaborative domain-specific
applications have demonstrated success when lower layer
vocabularies are well defined. These standard
vocabularies enable platform neutral, programming
language neutral and client neutral mechanisms to realize
successful handshake between collaboration applications.
The concept can be extended to an application neutral,
protocol neutral, platform neutral, programming
language neutral and client neutral vocabulary model
that will facilitate harmonious handshake of
collaboration channels. This paper addresses the need for
standardizing vocabulary at the collaboration channel
level and presents a model for realizing vocabulary-
awareness in a generalized neutral format. A pilot study
done to implement the model using a sample vocabulary
is presented.

I. INTRODUCTION

A vocabulary is a set of tokens that has specific
meaning pertaining to the domain under consideration
and helps facilitate effective exchange of information
in that domain. Vocabulary is integral to collaboration.
An agreed upon vocabulary is imperative to avoid
ambiguity and convey right notion in collaborative
environments. Participants in a given collaboration use
the same vocabulary. Proficiency of the participants in
the vocabulary is well pronounced in the case of
human entities at the cognitive level. This difference in
scale can slide due to various factors (participation,
teaching, learning, etc.). At the collaboration
application execution level and systems (node)
collaboration level, proficiency is based on the subset
of vocabulary implemented in the stack. The
proficiency can move up in scale if the developers
implement a superset of the currently implemented
vocabulary stack.

A vocabulary can be implicit and can function as
the base/foundation vocabulary on which to build
others. Same schooling leads to implicit vocabulary.
For example, principals collaborating in a document
management system (irrespective of their technical
background, education, etc.) identifies a pdf document
by a well known icon. The use of GUI in personal
computers provides the common schooling.

 A vocabulary can be the defacto standard.
<user>@<dns_domain> became the de facto token for
email addresses. Addresses with the separators !, %
and :: were once in use [1]. The token
"<user>@<dns_domain>" is part of the email domain
specific vocabulary. The addition of MIME types to
email is an example of vocabulary expansion.
 A standard vocabulary is a formalized and agreed
upon designed vocabulary. Universal domain-specific
vocabulary could be rooted in
profession/religion/language.
 With the proliferation of web services and global e-
activities, standardization of vocabularies has been
initiated by various institutions. EDI (Electronic Data
Interchange) format within the United Nations
Economic Commission for Europe (UN/ECE) in the
working Party for the Facilitation of International
Trade (WP.4) standardized on the vocabulary for
international business transactions. The syntax or
grammar of this common business language, known
today under the acronym UN/EDIFACT, was approved
as ISO standard 9735 [2]. In e-science, the VCDE
(Vocabularies and Common Data Elements) workspace
within caBIG [3] has created standardized
vocabularies.

II. VOCABULARIES AT VARIOUS PHASES AND

TIERS

 The Initiation, Formation and Operation phases of a
Collaboration Life Cycle [4] uses different
vocabularies. Initiators use a base vocabulary to
address the “why tackle this problem?” issue.

Initiators collaborate with facilitators to map an
execution plan and team building. The vocabulary used
during the collaboration operation phase is domain
specific (see Fig. 1). The collaborators use a
vocabulary for peer-peer communications. The
collaboration applications (tools) that facilitate the
collaboration use a different context specific
vocabulary. This vocabulary could be completely
hidden from the collaborators. The collaboration
channels make use of an even lower level vocabulary
to exchange information.

Figure 1. Vocabularies in different tiers

Kock [5] has referred to the vocabulary at the
collaborator level as ‘mental schemas possessed by the
individuals’. UN/EDIFACT is a vocabulary at the
collaboration application level.

III. COLLABORATION APPLICATIONS

 Principals use CAs (Collaboration Applications) as

tools to collaborate with peers. An existing tool might
be used for this purpose. Sometimes custom CAs are
developed as in the case of TeraGrid [6]. A hybrid
approach of retrofitting tools into a collaboration
environment is possible using some technologies. Eg:
SAML [7]. Zimbra [8] attempts to integrate popular
tools (email, IM, calendar, etc.) while Accessgrid [9]
attempts to integrate independent tools into a group-
group collaboration environment. The CAs themselves
are designed and developed based on the requirements

and needs of the collaborators. Retrofitting existing
applications into a collaborative suite is expensive and
not without problems.

Collaboration applications being distributed in
nature, requires a well-defined vocabulary at the
communication channel level. Traditionally, the
protocol level vocabulary has been well defined.
SMTP protocol (RFC 821 [10]) and HTTP protocol
(RFC 2616 [11]) provides a platform neutral, client
neutral and language neutral vocabulary for the
protocol. A great deal of efforts has gone into
integrating multiple protocols into collaboration suites.
A simple chat application integrates text, audio and
video. A collaborative groupware supports email,
shared calendars and shared resource managers. Even
social collaborations (eg. mashups [12] and yahoo
pipes [13]) provide glue for integration. These facilities
exist at higher levels. Philip’s [14] work on semantic
similarity is aimed at avoiding ambiguity at natural
language level. At the tool level, C-SciPort (see [15])
was designed to help researchers with a centralized
thesaurus-aided collaboration application. All these
works are at higher levels focused on the principals in
the collaboration. In this paper, the focus is on the
lower levels of collaboration channels. To our
knowledge, there has been no prior work done at the
lower levels to integrate vocabularies for collaboration
channels. Many protocols that once existed as the basis
for standalone applications have evolved to become
part of collaboration suites. A collaboration portal can
have email, instant messaging, calendar, white pages,
soft phone, etc. integrated within a single framework.
Because of this trend towards integrating more and
more collaboration channels, a common vocabulary at
the lower levels will aid in smoothing out the bumps in
integration work.

Given the popular use of different operating
systems (Windows, MacOS, linux, etc.), multiple
languages (JAVA, C#, C++, Python, PHP etc.), various
protocols (HTTP, IRC, SMTP, FTP, etc.) and client
accesses (web or desktop); coupled with the distributed
nature of collaboration applications, a framework for
vocabulary at the collaboration channel level is
significant. Middleware technologies (eg. DCE,
CORBA, Web Services, etc.) add another layer of
integration factor. Integrating heterogeneous
technologies with no common grounds require costly
development effort. Achieving transparency is even
more challenging. As was noted in the 1st System of
Systems symposium, “The diversity of terminology is
a barrier to conversation. We need to develop a
working lexicon to facilitate better understanding”
[16].

collaborator collaborator

collaboration
 application

collaboration
 application

collaboration
 channel

collaboration
 channel

legend : vocabularies

IV. STANDARD VOCABULARY FOR
COLLABORATION CHANNELS

 Historically, UNIX systems provided a collection of
error codes and messages in a header file ‘errno.h’.
This provided a protocol-neutral de facto standard for
specifying error codes and messages. Protocol-specific
status codes and message codes were defined in RFCs.
Eg. RFC 977 for network news transfer protocol, RFC
821 for SMTP. These define vocabulary at the protocol
level. JAVA exceptions [17] provide a language-
specific vocabulary. The JNDI facility in JAVA allows
a level of abstraction to interact with various directory
services. But, this is limited to directory services and
not available in other languages.
 Since collaboration channel edges could be housed
in any platform, environment or language, a neutral
vocabulary that can be used across any parameter of
interest will alleviate communication barriers. A
generalized framework to achieve this should use a
format neutral to the parameters for structuring the
information. Various generalized categories can be
used to provide the necessary groupings for
functionalities. For example, consider ‘resource
exchange’ between collaboration channels. The
following table illustrates the protocol-specific
versions of resource exchange:

Table 1. Similar features in various protocols

Protocol Resource Error # Message
FTP file 550 no such file
HTTP html page 440 not found
LDAP entry 32 no such object

A parameters-neutral generalization of this could
simply be: <message #, ‘No such resource’>. Similar
generalizations for ‘channel initialization’ tasks can be
done. An email MTA (Mail Transport Agent) server
may be trying to connect to another MTA that is
unavailable. Or, the user credentials presented for
establishing a channel may be invalid. Nosek [18] has
characterized this generalization from a tools-neutral
perspective as Collaboration Envelopes™ Level 1. A
Level 1 Collaboration Envelope™ supports data
sharing, but in a way that is non-tool-centric and more
of a natural wrapper around sharing. In this paper, data
sharing is implied for vocabulary data.

V. A MODEL FOR IMPLEMENTATION

A structural specification for a parameter neutral
implementation can be given as follows:

<channel_vocabulary> ::= <category> {<category>}
<category> ::= <message> {<message>}
<message> ::= <id> <description>
<id> ::= <integer>
<description> ::= <text>

A parameter-neutral implementation can be done in
different ways. A sample prototype implementation
(using 3 categories – channel initialization, resource
exchange and normal operations) using XML is
outlined below:

 <channel_vocabulary>
 <channel_initiation>
 <message>
 <id>0001</id>
 <description>OK</description>
 </message>
 <message>
 <id>0002</id>
 <description>TIMED OUT</description>
 </message>
 </channel_initiation>
 <resource_exchange>
 <message>
 <id>1001</id>
 <description>OK</description>
 </message>
 <message>
 <id>1013</id>
 <description>
 NO SUCH RESOURCE
 </description>
 </message>
 </resource_exchange>
 <normal>
 <message>
 <id>2001</id>
 <description>OK</description>
 </message>
 </normal>
 </channel_vocabulary>

It is obvious that other categories can easily be added
to the xml description (suggesting an extensible
implementation of the structural specification of this
vocabulary using xml). Any implementation of the
structural specification should allow for the expansion
of vocabulary definitions to add new categories.
 Fig 2. shows how the collaboration channels will
interact using this model in a working environment.
The library routines should parse the XML
information.

Figure 2. Vocabulary Utilization

The vocabulary collection can be implemented as a
centralized model or a distributed model with
delegation of authority for domain-specific elements.
Note that the distributed model will require an
integration point for adding new domains into the main
trunk.

A prototype snippet of C code using the library is as
follows (interpret_vocabulary() is a library call):

main()
{
 CONNECTION_PROFILE *service;
 CHANNEL *channel;
 RESOURCE *resource;
 int ret;

 channel = channel_open(service);
 ret = getresource(channel,resource);
/*--- assumed that 0 is returned on success ---*/
 if (ret)
 interpret_vocabulary(ret);
}

Figure 3. Snippet of code in C showing incorporation of
library call to interpret the vocabulary

A corresponding prototype snippet of JAVA code
using the library is similar to the following:

public static void main(String args)
{
 ConnectionProfile service
 = new ConnectionProfile();
 Channel channel;

 Resource *resource;
 int ret;

 channel = channelOpen(service);
 ret = channel.getResource(resource);
/*--- assumed that 0 is returned on success ---*/
 if (ret)
 interpretVocabulary(ret);
}

Figure 4. Snippet of code in JAVA showing incorporation

of API call to interpret the vocabulary

VI. FEASIBILITY STUDY

An implementation was done to study the feasibility of
these concepts. The study was conducted in two
phases. The first phase was to verify that this is an
implementable mechanism. In order to ascertain the
implementablity, a gateway model was made use of.
The gateway model was successful and so a native
implementation was done. The native implementation
also proved to be successful. An outline of the
feasibility study is furnished below.
 A JAVA program was written to connect to a mySQL
[19] database. The program had tests for the following
conditions:

server timeout
invalid user credentials
no such resource
invalid resource format
ok

An xml file was created with the <id,description> pairs
matching these conditions. In the initial viability study,
the xml file had values for id’s in sequential order. The
purpose of this phase was just to test the hypothesis
without modifying source code for the backend
mySQL database. A JAVA method was written to do a
cross-match between the value returned by the mySQL
database and the value in the xml file. (This is the
gateway method between the mySQL database and the
vocabulary data.) The library API was written to
replace the method that makes the connection to the
database (viz. the getConnection() JDBC call). The
new method made use of the gateway method for
cross-matching. For example, mySQL error code 1049
(suggesting INVALID SERVER NAME) was cross-
matched with the code (id 003) in the xml file. The
main program needed only one feature change. This
change was essentially to call the getConnection()
method from the new library API. The program
worked as expected.
 Based on the success of the gateway API, the next
natural progression was to try the API natively. In
order for the message id’s returned by mySQL to

 application application

channel channel

library library

vocabulary

match the ones in the xml file, the source code for
mySQL had to be modified. The source code for
mySQL (version 5.1.40) was used for this purpose. It
was found that all message identifiers that had to be
modified were recorded in the single file ‘errmsg.txt’.
The message identifiers in this file were changed to
match with the message identifiers in the xml file. The
source code was compiled and deployed as the mySQL
server for this stage of the experiment. The library API
was rewritten to do a native xml parsing of the
vocabulary. The main JAVA program was recompiled
and executed. The results were consistent and as
expected.

VII. CONCLUSION

Collaboration channels being distributed in nature, the
environment of the end points can neither be pre-
determined nor be controlled. Consequently, it is
necessary to have an open shared vocabulary. Given
the heterogeneous environments the collaboration
channels have to participate in, it is important to have a
consistent vocabulary to avoid ambiguities. A model
for implementing a common vocabulary for
collaboration channels was presented. The model is
application neutral, protocol neutral, platform neutral,
programming language neutral and client neutral.
Extending the vocabulary to more categories can be
accomplished. Actual experiment was conducted to
study the feasibility of an implementation. The
experiment done suggests that the formulations
proposed in the paper can be implemented in real
applications. This is encouraging and provides an
incentive for looking into expanding the study to
integrate more collaboration channels.

REFERENCES
[1] D. Frey and R. Adams, !%@:: A Directory of Electronic Mail
Addressing & Networks, O’Reilly & Associates Inc., Sebastopol,
CA, USA, June 1994, pp. 8-13.
[2] ISO 9735, International Standard for UN/EDIFACT,
http://www.unece.org/trade/untdid/download/r1244r1.doc, June 1997
[3] caBIG, Cancer Biomedical Informatics Grid,
http://cabig.nci.nih.gov
[4] H. Telliöglu, “Collaboration Life Cycle”, in Proceedings of the
2008 International Symposium on Collaboration Technologies and
Systems, Irvine, CA, USA. pp. 357-366.
[5] N. Kock, Emerging E-collaboration concepts and applications,
Cybertech Publishing, Hershey, PA, USA, 2007. pp 6.
[6] TeraGrid, http://www.teragrid.org
[7] Online Community for SAML OASIS standard,
http://saml.xml.org
[8] Zimbra for messaging and collaboration, http://www.zimbra.com
[9] Access Grid, http://www.accesgrid.org
[10] Simple Mail Transport Protocol (SMTP),
http://ietf.org/rfc/rfc0821.txt, 1982
[11] Hypertext Transport Protocol (HTTP),
http://ietf.org/rfc/rfc2616.txt, 1996
[12] Mashup (web application hybrid),
http://en.wikipedia.org/wiki/Mashup_(web_application_hybrid)
[13] Yahoo Pipes, http://pipes.yahoo.com
[14] R. Philip, “Semantic Similarity in a Taxonomy: An Information-
Based Measure and its Application to Problems of Ambiguity in
Natural Language”, Journal of Artificial Intelligence Research, Vol
11, pp. 95-130, 1999
[15] F. Wang, C. Rabsch, P. Kling, P. Liu, and J. Pearson, “Web-
based Collaborative Information Integration for Scientific Research”,
IEEE 23rd International Conference on Data Engineering, 15(20),
pp. 1232-1241. 2007
[16] S.W. Popper, S.C. Bankes, R. Callaway and D. DeLaurentis,
“1st System of Systems Symposium: Report on a summer
conversation”, November 2004, pp 8.
http://www.potomacinstitute.org/academiccen/SoS%20Summer%20
Conversation%20report.pdf
[17] Exceptions in Java,
http://java.sun.com/docs/books/tutorial/essential/exceptions/definitio
n.html
[18] J.T. Nosek, “Collaborative Sensemaking Support: Progressing
from Portals and Tools to Collaboration Envelopes™”, International
Journal of e-Collaboration, 1(2), April-June 2005. pp 30.
[19] mySQL opensource database, http://mysql.org

