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SUMMARY

Synchrophasor technology has been used for monitoring, control, and protection of bulk power system
for over 10 years. Deployment of phasor measurement units (PMUs) in the USA power system has
surpassed 3000 units installed in the transmission substations as stand-alone intelligent electronic
devices (IEDs) or as a software add-on to other devices such as digital protective relays (DPRs) or
digital fault recorders (DFRs). By now, thousands of terabytes of PMU data may have been captured
and stored by various transmission system operators (TSOs) and independent system operators (ISOs).
This creates an opportunity to deploy advanced machine learning (ML) techniques to detect and
classify faults recorded by PMUs automatically to be used by the system operators for rapid, critical
decision-making when manual analysis of the past or unfolding events is not feasible.

In this paper we offer a brief background on how the automated fault analysis may be done using DPR
and/or DFR data, and compare some of the legacy approaches to the new ML approaches in the
context of the system-wide PMU recordings. We then offer insights from developing practical ML
solutions that have been applied on field recordings captured by close to 450 PMUs from all three US
interconnections (Western, Eastern and ERCOT) over two years (2016-2017). We identify and
illustrate ML challenges we addressed: inaccurate data, data with scarce and temporally imprecise
fault labels, data recorded by PMUSs sparsely located at substations resulting in the fault records taken
afar from the ends of the faulted lines, data containing only positive sequence values, and data taken at
different voltage levels. We then illustrate the ML model results for fault analysis under different
application scenarios.

The novelty of this study is not only in the design, implementation, and performance analysis of the
ML algorithms, but also in the use of advanced fault modelling and simulation approaches to improve
the training results when developing supervised ML models for fault detection and classification.
Extensive simulations of faults were conducted on a 14-bus power system to create a training dataset
with over 1400 accurately labelled faults. This dataset was applied to enhance the accuracy of fault
detection and classification of machine learning-based models trained with small number of labelled
faults in large datasets recorded in the grid interconnections ranging from 5,000 to 70,000 buses.
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1. BACKGROUND

As it is well known, power systems experience faults due to weather, deterioration of equipment,
animal intrusion and many other related causes [1]. Such faults typically result in a rapid change in the
current and quite often in a voltage collapse or swell accompanied by a possible appearance of a DC
offset and frequency changes. While the initial faults last for a relatively short time of one to several
alternating current cycles (a cycle is 16.67ms in a 60Hz system), the fault clearing event can last much
longer if autoreclosing sequences are involved. A single protective relay operation may also change
the power system topology and operating condition to a point where some other relays in the vicinity
operate unintentionally causing cascading events. As a consequence, the stability limits may be
reached, which may result in a system collapse. Hence, the analysis of faults requires details about the
local events as well as system-wide impacts. This leads to the analysis requirements that focus on
safety and reliability, range across variety of spatiotemporal scales, and aim at different end-users.

Dependability vs Security of Relay Operation

The concept of dependability and security of protection relay operation is defined to differentiate
between fast fault clearing requirements in the case the fault occurs (dependability) and restrained
operation in the case the event is not a fault (security) [2]. The relay operation performance under
such guidelines comes from the requirement to maintain operational safety (fast fault clearing) and
system reliability (avoidance of relay overtripping). In order to understand what is happening during
the faults, different fault analysis spatiotemporal granularity needs to be applied ranging from insights
into the local events to the characterization of the system-wide consequences.

Spatiotemporal Scales of Fault Analysis

Initial fault events may last as short as a fraction of the voltage or current cycle before the protective
relays detect the fault and issues a trip signal to operate a circuit breaker or set of breakers to isolate
the fault. The modern digital relays can operate as fast as one cycle and advanced circuit breakers can
trip as fast as 1-2 cycles bringing the initial fault clearing sequence to a few cycles [3]. After the
attempt to clear the faults is made, the automated reclosing sequences lasting several hundreds of
milliseconds may be deployed to try to restore the system in the case the faults are of a temporary
nature. Should the fault persist, the faulted element is removed and system operation is restored with
new system conditions that may affect the voltage, frequency and power flow. All of this is noticeable
during and after fault clearing sequence which may last up to several seconds. If a single fault is not
causing cascades, the system should be capable of recovering under such N-1 events. However, in
perhaps rare circumstances, the new system conditions may cause m failures of other equipment such
as circuit breakers, or initiate mis-operation of other relays, which may result in N-m system-wide
disturbance that can last for minutes and sometimes longer, and eventually may cause even a system
collapse [4]. As observed, the time scale of the fault analysis may range from milliseconds to minutes
or even hours, and the spatial scale may include the local relays involved in the fault clearing, or much
wider area that may include other affected relays or manifest in a system-wide disturbance.

Users of Automated Fault Analysis

Typically, the users of the automated faults analysis are the protection engineers and operators, former
with a goal of understanding the reasons for particular relay operation and related consequences so
that future protection system performance can be improved, and later with a goal of assessing the
system conditions to determine whether any manual operator action may be used to remedy or prevent
the consequences of faults on system reliability and safety. Since the data collected during faults may
be overwhelming, the automation of the fault analysis is highly desirable even if no immediate action
is taken, and is absolutely necessary if any real-time action is warranted [5].

The next section discussed the analysis solutions that meet different aspect of the of the protective
relaying performance assessment, the spatiotemporal scales, and the need for timely results.



2. LEGACY FAULT DETECTION AND CLASSIFICATION APPROACHES

Typically, utilities use three types of systems to perform fault analysis as shown in Figure 1. They are
differentiated by the equipment involved in the recording of data during faults. Such solutions are
distinctively different when it comes to the level of details the analysis can offer, the spatiotemporal
scales it can cover, and the ability to offer a remedial action, all tied to the inherent design constraints
of each system. Next, we cover basic characterises of such systems and their performance limits and
benefits. We use the example from Figure 1 to illustrate the options when the voltage is monitored.

Figure 1Various substation recording systems for voltage monitoring

Fault Analysis Using Data Captured by Digital Fault Recorders and Protective Relays

Most of the time fault analysis is performed using recording from Digital Protective Relays (DPRs)
and Digital Fault Recorders (DFRs) shown at the bottom of Figure 1. Since such an analysis requires
determination of phase relationship between three-phase voltages and currents, the sampling on the
related recording channels has to be synchronized to the same sampling clock. This is performed at a
relatively high sampling rate in the order of 1kHz for DPRs and 5kHz for DFRs. To facilitate an
understanding of pre-fault events, a short time window of the pre-fault waveforms is captured.
Typically, the sampled values are sent to the centralized place, most often the Protection Engineer’s
office for off-line analysis. In recent years, automated systems for fault data analysis have been
developed and allow such non-operational data to be turned into the operational data that may be used
by the operators for mitigating fault impacts within seconds to minutes of the fault occurrence [5].

Several advantages and disadvantages of such analysis systems have been well understood over time.
The key advantage is that such systems are capable of tracking transients caused by the faults in all
three phases rather accurately, which leads to thorough understanding of the correlation between
different faulted phase of voltages and currents. The disadvantage of the DPRs is that they can only
capture synchronized recording on the transmission line where they are located, and the files from



multiple relays cannot be easily merged for a system-wide analysis unless their sampling clock is
controlled by an accurate timing signal received from the Global Position System (GPS) of satellites,
which requires each substation to be equipped with a GPS receiver. The DFRs typically have higher
sampling rates than DPRs and can represent transients even better, and their sampling clock is
synchronized for all the recording channels across the entire substation. However, merging the files
from multiple substations with no synchronized clocks requires elaborate time-alignment techniques
or the use of a clock from the GPS receiver. Last but not least, both types of IEDs are triggered
instruments, which means that they can only capture waveform samples once an event is detected, so
slowly evolving events such as gradual frequency change or voltage sags or swells may not be
captured. The reason for their limited recording capability is the design constraint of relatively small
local memory for storing the high sampling-rate data.

Fault Analysis Using SCADA Systems

The Supervisory Control and Data Acquisition (SCADA) systems have been developed to collect data
from substations using Remote Terminal Units (RTUs) as shown at the top of Figure 1. The data is
scanned typically every few seconds, and the sampling of the waveforms by RTUs is not time-
synchronized. Hence, the analogue waveforms cannot be used for analysis of fault types because of
the low time-fidelity and because the angle between the faulted phases cannot be determined [6].

The key advantage of the SCADA systems is in their ability to collect statuses of circuit breakers,
which helps in determining which element of the power system was disconnected due to a fault.
However, the RTUs/SCADA may not time-stamp accurately the fast subsequent circuit breaker
operations such as the ones involved in the autoreclosing sequences, which may limit the ability of the
operators to analyse faults based on the SCADA RTU recordings unless an advanced SCADA with
Sequence of Events (SoE) feature is deployed. Also, due to a large number of RTU measurements
captured across all the substations, the SCADA systems tend to be designed to only record the
channels that experience a large deviation form a pre-set threshold in each scan, so not all the
measurements are reported continuously. Since SCADA collects thousands of measurement points,
and brings them to the centralized location where the SCADA database resides, measurement errors
due to missing or altered data are a common problem. To make such measurement useful for the
Energy Management Systems (EMS) applications, a state estimation approach is commonly used for
the topology and measurement error detection and mitigation [7].

Fault Analysis Using Synchrophasor Systems

To alleviate shortcoming of the SCADA systems, the synchrophasor systems (shown in the middle of
Figure 1) were developed in the USA over 30 years ago, but applied widely only since 2009 when the
American Recovery and Reinvestment Act (ARRA) subsidized utilities to deploy PMUs at large scale
[8]. Today, synchrophasor systems are widely used to supplement SCADA system by reporting
measurements at a high resolution of 30 or 60 frames per second (FPS), which are time-synchronized
to a common clock such as UTC (coordinated universal time) derived from the GPS timing source
through GPS receivers placed in the substations.

The obvious advantage of the synchrophasor systems is in their ability to provide high-resolution time-
synchronized measurements, but at the same time there are multiple disadvantages when it comes to
the fault analysis using PMU recordings. First, such systems calculate an estimate of a phasor, which
is not a very detailed representation of a transient waveform needed to fully analyse faults. Second, the
FPS reporting, while relatively high in comparison to SCADA, it is still not sufficient to capture fast
fault transients that may die out in less than 100 milliseconds. Last, due to a relatively high cost of
adding PMUs and GPS receivers and communication facilities to transfer streaming PMU data, the
PMUs are still sparsely located in limited number of substations not capturing accurately faulted
waveforms in the case the event occurs further away from the substations where PMUs are located.
Their key advantage still remains the ability to capture evolving events continuously over a wide area,
also being a critical information in understanding the fault impacts.



3. SYNCHROPHASOR-BASED APPROACH AND ASSOCIATED DATA ISSUES

In the USA, over 3000 PMUs are installed in the three Interconnections, with over 500 buses in
ERCOT, over 20,000 buses in the Western interconnection, and over 75,000 buses in the Eastern
Interconnection [8]. It is rather obvious that the sparsity of the PMUs with the respect to the number of
substations where PMUs may be installed is significant. Besides, the experiences from the analysis of
two-years’ worth of recordings from 450 PMUs placed in the three interconnections reveal substantial
data quality issues [9]. Last but not least, the natural occurrence of faults results in an uneven
distribution of the fault recordings related to different faulty types [10]. All three issues may
dramatically affect the ability to build and train ML models to detect and classify faults based on
synchrophasor measurements alone. We discuss what we learned about those issues through the
analysis of actual field recordings.

Data Recording Limitations for Fault Analysis Caused by PMU Locational Sparsity

The existing PMUs sparsely located across the power systems are often placed near particular power
system equipment for certain purposes, such as at large generation stations for generator dynamic
performance monitoring and model validation/calibration or at critical substations for situational
awareness about the impact of fault clearing topology switching. As a result, sparsely placed PMUs
are often far from the locations of various types of faults which makes the recorded data less useful for
fault analysis because the voltage drop and current jump due to a fault are the highest at the fault
location and they will diminish at the PMUs located further away. In addition, as more PMUs are
currently placed at the substations with high voltage levels such as 500kV and 230kV than with lower
voltage levels of 130 kV and 69kV, recorded PMU data in voltage levels different from the voltage
level of the fault location may not be able to “see” fault correctly if transformers between different
voltage levels are wye-delta connected. This may only be an issue for the current situation. As the
number of PMUs increases, this will become less of an issue in the future.

PMUs, with a typical 30 or 60 frame per second (FPS) data reporting rate for a 60 Hz system, generate
orders of magnitude higher volume of data comparing to SCADA’s RTU data scan rate of once
several seconds. To reduce the demand for communication network bandwidth and data storage space,
often only positive sequence voltage and current phasors from PMUs are transmitted and archived
despite the fact that all PMUs are capable of generating and sending the three-phase phasors, which
are extremely useful for fault analysis. A non-three-phase type of fault may look less severe in positive
sequence than in three-phase phasors (e.g. one phase voltage drops from nominal value down to close
zero due to a single-phase-to-ground fault may only show as a 33% voltage drop in the positive
sequence voltage phasor). In the dataset we examined, majority of Western interconnection PMUs
provide three phase phasors, while less so in the other two interconnections.

Bad Data Impact on Fault Analysis

Two key data quality issues, i.e. missing data and unreasonable data, identified through our analysis
have direct impact on fault analysis. Based on the dataset we examined, the results of the analysis are
shown in Figure 2 and Figure 3. As it may be observed from Figure 2, several PMUs are missing
upwards of 60% of key measurement data while the best PMUs only missing ~2% of the data. From
Figure 2, it appears that the PMU scaling was off in many instances, which also affects the fault
analysis due to misinterpretation of the scale of voltage and current during faults. No meaningful fault
analysis can be performed where a PMU is missing large blocks of data. This issue could not be
remedied by performing some types of data pre-processing since that would have to be addressed in
the field by identifying the root causes of the issue and taking actions to mitigate them appropriately.

Different types of unreasonable data have been identified in the dataset. Some are outliers, such as
phasor angle values have gone beyond the +/- 180 degree range, phasor magnitude has negative values
that are supposed to be always positive, and extremely large values beyond the reasonable values (e.g.,
voltage magnitude value is several orders of magnitude higher than the nominal value). Others do not



appear to be actual measurement values, such as flat 60Hz as the measured frequency values while
real power system frequency never stays at 60Hz but fluctuate around the 60Hz all the time during
normal system operations. Those outliers, if not removed, would not affect the fault analysis.
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Modelling and Simulation to Alleviate Limitations Caused by an Uneven Recorded Fault Types

Fault events are rare occurrences in power systems, which are typically caused by equipment failures,
severe weather conditions, and sometimes human errors. Among eleven types of the faults (i.e. three
types of single-phase-to-ground as A-G, B-G, and C-G, three types of phase-to-phase faults as AB,
BC, and CA, three types of phase-to-phase-to ground as AB-G, BC-G, and CA-G, and the three-phase
faults, ABC and ABC-Q), the occurrence of the faults for each type is uneven in the recorded data. A
majority of recorded faults are single-phase-to-ground faults, followed by faults involving any two
phases, and very few are three-phase faults, which presented a real challenge to train ML models
effectively, and to test the trained models properly.
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inception, clearing and reclosing sequences. Following the fast fault clearing, automatic line reclosing
is simulated for all single-phase-to-ground faults, and manual line closing by human operators was
simulated for all multi-phase faults. The simulated dataset has a separate event log file in which
detailed information for each simulated fault event (i.e., time, location, fault resistance, and fault type)
is provided. The dataset has been used to train different types of ML models with good results.



4. CHALLENGES IN IMPLEMENTING MACHINE LEARNING APPROACHES

As mentioned earlier, there are many approaches to implementing automated fault detection and
classification, and such approaches have been used for the analysis of power system events in the past
[5]. ML methods aim to develop a model that discovers patterns in observed temporal data to
automatically identify and categorize faults. The ML process consists of (1) choosing an appropriate
knowledge representation; (2) selecting an objective or loss function for evaluation of possible
models; and (3) using an optimization method to minimize the error on training data by adjusting the
parameters of the model.

To capture temporal dynamics for fault detection and classification, ML approaches typically
represent data as feature vectors over a sliding time-window, where features could be carefully
engineered or extracted more automatically from raw signal. Commonly used objective functions for
ML-based detection and classification include maximum likelihood for estimating the parameters of
the true probability distribution based on observed training data, and cross entropy that measures how
closely the true probability distribution is represented by an approximation obtained by the model with
specific parameters. Typically, continuous function optimization algorithms are used to find the model
parameters that result in minimal loss. They are based on using derivative information, but there are
also alternatives used for non-differential objective functions.

Common ML modelling assumptions are that (a) training and test instances are drawn independently
from the same unknown distribution; (b) function mapping explanatory variables (inputs/features) to
response variables (outputs) is smooth almost everywhere; (c) signal to noise ratio is large; (d) ignored
information has negligible effects; and (e) labels are precise and the set of labelled events is
sufficiently large. When it comes to faults detection and classification, some of these assumptions are
often violated resulting in various challenges. In particular, we are facing several challenges associated
with labelling of faulted events, selecting appropriate data and time-windows for the analysis, and
selecting the most suitable ML models. Our choices and implementation constraints discussed next are
based on the specific PMU data sets that were available for the implementation of the automated ML
solution.

Pre-processing Imprecise and Inaccurate Data Labels

The fault dataset labels are often scarce, inaccurate, or imprecise. Faults that occur far from PMUs
might not be assigned labels while labels entered manually are subject to human error, and those
obtained from SCADA are imprecise due to lower accuracy of the time-tag information.

To reduce some of these limitations, additional cleansing of faults labels could include rapid, partial,
and full visual inspection. Towards this objective we analyzed ML benefits of using (a) handpicked
normal operation data; (b) narrower time intervals; (c) reduced time intervals to capture single events;
(d) precise centering of events in time-window intervals; and (e) visual inspection of reported events.
Our results provide evidence that ML-based faults detection is more accurate when using more
preprocessed data. However, data preprocessing requires domain expert’s time, which in practice is
often extremely limited. Therefore, we analyzed ML cost-benefits of label preprocessing aimed to
reduce imprecise and inaccurate annotations. Our extensive experiments conducted on data from the
U.S. Western interconnection include recording from 38 PMUs over two years. The most cost-
accuracy benefits were obtained when integrating a small fraction of expert-inspected data labels with
additional labels that were not manually inspected by a domain expert [11]. When learning fault
detection using 12-month data, major accuracy improvements were obtained by full inspection of 2-
month data combined with remaining automatically preprocessed data (F1 score 0.86 vs 0.82).

Selecting Knowledge Representation for PMU Time-Windows

Raw PMU recordings require significant transformation to make them suitable for ML training. In our
study, PMU signal is down sampled to 30FPS as some PMUs raw recordings are at 60FPS while



others are at 30FPS. Then, each minute of a single PMU recording we represent as a sequence of 180
non-overlapping windows covering 10-frames. Such sequences are concatenated to a high-
dimensional tensor over all PMUs. When integrating data from 38 PMUs, N-minute of signal we
represent as N x 38 x 180 x 10 tensor. We reduce data size by focusing time-window around reported
faults as these are considered the most informative for ML training, while the remaining parts of the
data are discarded. This representation requires additional transformations to address large data
dimensionality, causing a curse-of dimensionality challenge for ML training and inference. In
addition, the fault’s signature characteristics are not necessarily evident on all PMUs due to their
geographical and topological distance of PMUs to the event site.

We addressed both challenges by transforming high-dimensional PMU recordings data tensors to a
simplified representation that maintains the essential temporal information, but automatically reduces
the data size and noise [12]. This is achieved by adopting Soft Dynamic Time Warping technique to
summarize all time windows observed during a single 1-minute interval at all PMUs. The summary
time series is a low-dimensional representation of the corresponding group of time series, and it
preserves the distortions and sudden jumps, which are essential properties for ML-based fault
detection. We found significant benefits of using information observed by several PMUs (e.g. average
AUC 0.81 based on 3 PMUs vs 0.77 when relaying on a single PMU) but the variation of performance
measured as the standard deviation of AUC decreases as the number of PMUSs increases.

5. ML SOLUTION FOR AUTOMATED FAULT DETECTION AND CLASSIFICATION

In this section we discuss our ML automated solutions for fault detection and classification based on
the PMU recordings pre-processing and knowledge representation we discussed earlier. We focus on
the most important methodological steps that we have pursued as we defined, implemented, and tested
the solution.

ML Models for Fault Detection

Traditional 2-class ML approaches can be leveraged for fault detection by learning from positive
sequence voltage and current phasors recordings captured by multiple PMUs. Using PMU data pre-
processing discussed in the previous section we developed fault detection methods that employ
Decision Tree (DT), Multiple Logistic Regression (MLR), Multilayer Neural Networks (MNN), and
Multi-Class Support Vector Machine (mcSVM)[11]. We also developed Convolutional Neural
Network (CNN) based models where automated de-nosing techniques and knowledge representation
discussed in the previous section are applied to the measurements and then parallel and concatenation-
based convolutional neural networks that include multiple layers performing convolution operations
are utilized for fault detection [11].

Our experiments using 2-years PMU recordings at the U.S. Western interconnection provide evidence
that CNN-based ML fault detection was more accurate that traditional models. We found that for fault
detection voltage was more relevant than current and frequency. However, multi-channel CNN that
learn from joint voltage, current and frequency information observed at multiple PMUs were more
accurate than alternative ML models [11]. In particular, in our experiments such a model achieved
AUPRC of 0.9 and F1 score 0.86, outperforming four traditional machine learning models (DT, MLR,
MNN and mcSVM) that achieved AUPRC of 0.62 to 0.82 and F1 score 0.72 to 0.77.

ML for Faults Classification

Once a transmission line fault is detected, another ML method could be applied to classify the fault
type to one of 11 categories defined in one of previous sections, which can be generalized as P-G, PP,
PP-G, 3P, and 3P-G. A challenge for ML-based fault classification from PMU data is that field
recorded data might not be able to distinguish PP from PP-G faults or 3P from 3P-G faults when all
PMUs are distant from the fault location. This challenge we addressed by merging AB with AB-G, BC
with BC-G, CA with CA-G and ABC with ABC-G fault types. Consequently, the fault classification



problem is reduced from 11 to 7 categories that are easier to separate automatically from three-phase
PMU data.

Another challenge for ML-based fault classification is that certain types of line faults are less frequent,
causing severe training data imbalance. This is a major problem for many ML algorithms that assume
a similar number of cases for each class. ML models trained on such data could have poor sensitivity
for infrequence classes. A straightforward solution of subsampling larges classes of faults to obtain a
balanced training dataset is inappropriate since even more common fault types are quite infrequent as
compared to normal operation, and therefore a very long observation time would be required to collect
a sufficiently large training data for accurate ML.

To address class imbalance and class size problems, we questioned if these data limitations could be
reduced by learning from integrated three-phase filed-recorded measurements and line fault
simulations [10]. The aim of simulations conducted in our study was to combat class imbalance and to
enlarge the size of training dataset needed for more accurate ML. The result of such training data
enhancement obtained in our study is shown at Figure 5. Blue bars show the number of recorded line
faults for each of 7 categories in year 2016 at the U.S. Western interconnection while red bars show
the number of faults simulated at al4-bus power system model described at Figure 4. Integrated
training data is balanced and is five times larger than field-recordings alone. Enhancement is
particularly large for three line and three lines to ground faults where a single fault is extended to 86
cases.
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Figure 5 121 field recorded faults (blue) are extended by 481 Table 1. Fault classification performance
simulated faults (red) resulting in 86 cases for each of 7 classes across multiple evaluation metrics

ML using integrated field-recorded data that include information from 38 PMUs and simulated data
from 12 PMUs (4 actual and 8 emulated) required for unifying extracted features to the same
dimensionality. In our experiments a unified knowledge representation is achieved by measuring the
range of voltage of each PMU individually over a data window and computing an aggregated sum
normalized by the number of PMUs in each system. Such aggregated range information is computed
between each two phases for a data window and finally the ratio between the differences in the voltage
range is determined.

In our experiments shown at Table 1 fault classification obtained by SVM, Random Forest (RF) and
Extreme Gradient Boosting (XGBoost) models on unseen year 2017 field-recorded PMU data was
significantly improved by learning from integrated field-recorded and simulated data [10]. In
particular, precision and recall of SVM were 83% and 91% respectively when learning from field-
recorded data and both scores improved to 99% when learning from integrated data. F1-score also
improved from 87% to 99%, providing additional evidence that it is beneficial to train ML models
using integrated field-recorded PMU data and simulations vs. relying on filed-recorded data alone
when certain types of events are insufficiently represented in field-recorded data in the training period.

6. CONCLUSION



The performed analysis and results lead to the following conclusions:

e ML is an effective approach to detecting and classifying faults if using three-phase recordings
of voltage and current, but using only positive sequence voltage makes it challenging.

e Data cleansing and curation to get rid of the bad data and label ambiguities is time well spent
since such an additional effort can lead to much better ML algorithm performance.

e If the recordings contain an uneven representation of various fault types, the simulations using
a synthetic power system model can generate new fault waveforms to balance the training set.

e Wide-area synchrophasor recordings offers an advantage of capturing a slow change of system
voltage, current and frequency that cannot be captured by recording of local IEDs.

e To make a business case for the use of automated ML algorithms for fault analysis, one has to
perform an evaluation how much to invest in PMUs to obtain the full system-wide coverage.
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