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Abstract. Theoretical developments for the analysis and modeling
of extreme value data have tended to focus on limiting cases and
assumptions of independence. However, massive datasets from
models and sensors, space-time dimensionality, complex
dependence structures, long-memory, long-range and low
frequency processes all motivate the need for sophisticated
methods for correlated and finite data that follow complex
processes. The importance of extremes has been rapidly growing in
areas ranging from climate change and critical infrastructures to
insurance and financial markets. Here we briefly discuss the state-
of-the-art and key gaps, through the case of rainfall extremes under
climate change. Preliminary analysis suggests new directions and
points to research areas that deserve further attention.

1 INTRODUCTION

Extreme events are growing in importance across disciplines like
finance, insurance, hydrology [1] and climate [2-3]. Rare events
mining in artificial intelligence (AI), which includes classification
of imbalanced datasets through synthetic over-sampling [4], are
typically not concerned with extremely high or low values. In the
latter case, Gaussian assumptions do not hold, the extremes may
not even be present in the data, and the generation processes may
be continuous. Extreme value theory (EVT) is among the few
statistical methods doing true extrapolation; parametric relations
are developed to infer about tails of the distribution (e.g., a 100-
year, or a one in a thousand, event) with values that are adequately
large but not necessarily at the extreme tails [5]. The selection of
adequately large values may be based either on the block maxima
over a time window (e.g., annual) or as a peak over threshold,
which in turn may be fixed or variable (e.g., a percentile).

Despite decades of development, EVT remains an area with open
challenges, many of which may be resolved through statistics, data
mining and Al. The growing importance of extremes, for example
in the context of climate change and severe rainfall, motivates
urgent solutions. The open challenges [6] include the selection and
justification of EVT approaches, exploring parameter uncertainties,
modeling space-time dependence as well as the use of covariates to
reduce uncertainty, relating to space-time outliers or change, and
blending multiple information sources. Climate change is selected
as an exemplar both because of the societal importance [7] and to
validate the methods with massive data from sensors and models.

2 PROBLEM DESCRIPTION

Rainfall extremes are typically characterized by their intensity,
duration and frequency (IDF) for applications from water resources
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management, flood hazards, and dam design [8]. Recent research
has explored changes in the IDF curves under climate change [9].
The n-year return level, (RL,), defined as the level that is reached
or exceeded once every n-years on the average (alternatively, the
probability of exceedance on any given year is 1/n). The three [5,
8] ways to describe extreme values are the Generalized Extreme
Value (GEV) distribution fitted to block maxima (BM) or blocks of
time windows like an annual maxima time series, the Poisson
arrival of extremes followed by the Generalized Pareto distribution
(GPD) fitted to the excesses above a threshold, leading to the Peak-
over-Threshold (PoT) as well as the Point Process (PP) approach.
From a pragmatic standpoint, the approaches generate estimates of
the return levels along with associated uncertainties per time series,
but require either the selection of a block size or a threshold. The
distributions (GEV or GPD) arise from limiting cases for large
sample sizes as well as when the maxima or excess data are
independent and identically distributed. Thus, the tradeoffs during
the choice of a block size or a threshold may be expressed as a bias
versus variance issue: larger block sizes or higher thresholds may
imply lower bias but larger variance while smaller block sizes and
lower thresholds may imply larger variance. For most practical
applications in climate and rainfall, the typical choice of the annual
maxima for BM-GEV minimizes correlation but wastes data, while
the use of PoT-GPD typically results in correlated excesses but can
use more data. Thus, research in rainfall extremes has typically
used the GEV for annual maxima (e.g., [9-10]) as well as the GPD
for excesses above user-selected percentile-based thresholds after
temporal aggregation (e.g., [11] used weekly extremes). One data
mining challenge is whether the applicability of EVT may be
automated to an extent where they can scale to massive data, for
example, simulated data from the current generation of global
climate models, which in turn is rapidly approaching the petabyte
scale. However, this scalability needs to be achieved without
compromising accuracy or precision. Our preliminary results
explore the tradeoffs between data size and correlation for BM-
GEV and PoT-GPD respectively as well as the computational
issues in parameter and uncertainty estimation.

3 PRELIMINARY RESULTS

First, we evaluate the effects of sample size and temporal
correlation - present among the samples of an observed time-series
- on the precision of the estimated return levels with the GEV and
the GPD. Let us designate RLy as the true (n-year) return level and
RLgy and RLp,; as estimated return levels from BM and PoT
approaches, respectively. Let us assume for simplicity, without loss
of generality, that these are unbiased Gaussian estimators:

RLgy ~N(RLy, Agap), (1a)
RLpor~N (RLz, Apar). (1b)



We used daily precipitation time-series observed over 200 different
locations across India [10] between 1951-2003 to explore the
comparative precision (inverse variance) of our estimators, Agy
and Ap,r, as they vary functionally with sample size L, and
temporal correlation, p, among chosen samples respectively (L is
primarily expected to affect Agy and p is expected to influence
Agm). For BM, we varied L by changing the block-size and
computedAg,, and sample correlation, which is plotted in Figure
la; for PoT, we varied p by varying the threshold from 80 to 99
percentile (sample correlation decreases with increasing threshold)
and computedAp,r, which is plotted in Figure 1b. In both cases,
average over 200 locations is plotted. For BM, uncertainty is less
for smaller block size, but correlation fluctuates. This suggests the
need for balancing the dual concerns. Further tests are needed to
determine if the uncertainty versus correlation plot shown (Fig. 1)
for the PoT may generalize.

15 0.2
—5— Uncertainty

1) —&— Correlation B/a/@ 0.15

0.5 0.1
0 v*”{**”%)”@—@ 0.05
-0.5 0
0 500 1000 005 01 015 02 025
Block size --> Correlation -->

(a) (b)
Figure 1: (a) BM with GEV- plot of parameter uncertainty and correlation
vs block size (days), and (b) PoT with GPD — parameter uncertainty vs
correlation.

Second, we show the increase in computation time for MLE-based
parameter estimation of the PoT-GPD as a function of the number
of time series. Figure 2 shows a linear dependence and therefore
leaves scope for improvement. The time for parameter and
uncertainty estimation, including the use of the bootstrap [10],
typically relies on the MLE hence this is critical to address.

Time
o

0 20 40 60 80 100 120 140
Number of locations considered

Figure 2: Computation time (sec) for parameter estimation vs. number of
locations considered

4 FUTURE WORK

Applications to massive data as well as precise and accurate
predictive insights on extremes, for example in the context of
heavy rainfall events under climate change, require automated
declustering to reduce temporal correlations in extremes [12],
downscaling of extremes [13], as well as quantifying tail
dependence [14]. Model parameter estimation, whether via
maximum likelihood (ML), L-moments estimation, or the bootstrap
for either of the two, may impact accuracy [15] and computation.

A key concern in future research is to relate to the statistical
insights from the data and the physical or process understanding of
the domain (hydro-climate in our case) to each other. In addition, a
relation needs to be drawn to the expected sources of uncertainty
[16] for understanding the accuracy as well as for enhanced
predictions. The complexity grows when multisource and multi-
resolution data [17], some of which are sparse, need to be fused.

Covariates such as temperature or humidity may hold information
content for enhancing predictions of rainfall extremes [18] at
multiple space-time scales. The data-mining community is well
positioned to make a difference in the theory and algorithms of
extremes as well as their applications to climate extremes and
generalizations to multiple domains.
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