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Abstract 

Background: The Hospital Readmissions Reduction Program (HRRP) introduced in October 2012 as part of the 
Affordable Care Act (ACA), ties hospital reimbursement rates to adjusted 30-day readmissions and mortality 
performance for a small set of target diagnoses. There is growing concern and emerging evidence that use of a 
small set of target diagnoses to establish reimbursement rates can lead to unstable results that are susceptible to 
manipulation (gaming) by hospitals.

Methods: We propose a novel approach to identifying co-occurring diagnoses and procedures that can themselves 
serve as a proxy indicator of the target diagnosis. The proposed approach constructs a Markov Blanket that allows 
a high level of performance, in terms of predictive accuracy and scalability, along with interpretability of obtained 
results. In order to scale to a large number of co-occuring diagnoses (features) and hospital discharge records 
(samples), our approach begins with PageRank algorithm and exploits the stability of obtained results to 
rank the contribution of each diagnosis/procedure in terms of presence in a Markov Blanket for outcome prediction. 

Results: Presence of target diagnoses acute myocardial infarction (AMI), congestive heart failure (CHF),
pneumonia (PN), and Sepsis in hospital discharge records for Medicare and Medicaid patients in California and 
New York state hospitals (2009-2011), were predicted using models trained on a subset of California state hospitals 
(2003-2008). Using repeated holdout evaluation, we used ~30,000,000 hospital discharge records and analyzed the 
stability of the proposed approach. Model performance was measured using the Area Under the ROC Curve (AUC) 
metric, and importance and contribution of single features to the final result. The results varied from AUC=0.68
(with SE<1e-4) for PN on cross validation datasets to AUC=0.94, with (SE<1e-7) for Sepsis on California hospitals 
(2009  2011), while the stability of features was consistently better with more training data for each target 
diagnosis. Prediction accuracy for considered target diagnoses approaches or exceeds accuracy estimates for 
discharge record data. 

Conclusions: This paper presents a novel approach to identifying a small subset of relevant diagnoses and 
procedures that approximate the Markov Blanket for target diagnoses. Accuracy and interpretability of results 
demonstrate the potential of our approach. 

Objective

Identify a small subset of diagnoses (Markov Blanket) that can serve as highly accurate proxies for the set of target 
diagnoses used to establish reimbursement rates under the Hospital Readmissions Reduction Program (HRRP). 
Identification of these subsets has applications to problems such as providing more stable hospital quality estimates,

upc or fraudulent claims, and fuller 
understanding networks of diseases and medical procedures. 

Introduction 

As of October 1, 2012, §3025 of the Affordable Care Act (ACA) dictates that hospital reimbursements have to be 
based on performance relative to preventable 30-day Medicare hospital readmission rates observed in hospitals with 
similar predicted risk profiles. Three specific diagnoses in particular are used to track reimbursement rates: acute 
myocardial infarction (AMI), congestive heart failure (CHF), and pneumonia (PN). In October 2014 chronic 
obstructive pulmonary disease (COPD) was added to the list of diagnoses with two additional procedures, but we 
did not include it in our experiments since its value in this context has been criticized29. This policy change may 
have introduced an incentive for hospitals to under-diagnose these illnesses by substituting related diagnoses for 
which they will not be held accountable. Burgess and Hockenberry (2014)31 provide a historical perspective on 
current attention to hospital readmissions and consider the potential for gaming of readmissions, but not via subtle 
changes in diagnoses themselves. In addition to the three diagnoses we decided to analyze (AMI, CHF, and PN), we 
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included sepsis as a diagnosis for studying in our experiments, given that it is one of the most prevalent diagnoses, 
and is currently the diagnosis with the highest mortality rate in the US.  

Our method is aimed at approximating Markov Blankets consisting of small subsets of diagnoses and procedures 
that frequently co-occur with, and can shield, each of our four target diagnoses from the rest of the 
disease/procedure network (in other words, the Markov Blankets for each target diagnosis node consist of diagnosis 
and procedure nodes that contain the only information required to accurately predict the behavior of the target 
diagnosis in question). We chose to use a Markov Blanket for this task since several studies have already shown that 
using only a small set of features that constitute the Markov Blanket for a dependent variable is sufficient to 
accurately predict the value of the variable6,7,8. Hence, each target diagnosis can be accurately identified and inferred 
from a small subset of related diagnoses and procedures, which can then be used to identify true cases with target 
diagnoses, estimate the extent of gaming via substitute diagnoses/procedures, and also suggest related sets of 
diagnoses and procedures which, in combination, may provide more stable methods for setting reimbursement rates. 
We have observed that the most frequent co-occurrence by itself is necessary, but not sufficient, to establish an 
accurate approximation of a Markov Blanket.  

We built a directed weighted network of diagnoses and procedures from the hospital records that contain our target 
diagnoses, and adjusted the weights in that network according to co-occurrences of diagnoses and procedures in the 
records that don't contain our target diagnoses. We use the PageRank value 
as a criterion to identify important nodes which will belong to the Markov Blanket, and set the number of the 

based on the distribution of the number of diagnoses and procedures in the records. 

We attained preliminary results that were accepted for presentation at SDM-DMMH 2015 Workshop24 which were 
tested on a very small subset of CA data. We have since then refined our approach to make it more scalable, and 
evaluated its validity on a much larger set of data, spanning two states (CA and NY) and several years. We found 
that our approach is both accurate and stable in both states, even when trained on a relatively small sample of CA 
dataset. Given its simplicity and interpretability, we are confident that it can be used effectively for any target 
diagnosis, not just the four that we focus on in our experiments. 

Background 

As a direct result of the change in the structure of Medicare reimbursements, there is now more focus on problems 
such as the ability of health care providers to identify changing predictors of 30-day hospital readmissions1,2,3,  as 
well as to identify characteristics of individuals and providers associated with above-average levels of readmission 
risk. Hospitals that perform below expectations will see a reduction of up to 1% in Medicare-based reimbursements 
for services related to all diagnostic-related groups (DRGs). Based on performance levels in 2010, these targets 
would have placed half of all hospitals in the under-performing group. In coming years, additional diagnoses will be 
added to the list used to determine reimbursement rates. A focus on 30-day readmission rates has been criticized for 
a variety of reasons, including concerns about the validity of diagnoses, sparse evidence that decreased readmissions 
translate into improved health outcomes, an assumption that most readmissions are preventable, and 

- 29. Joynt and Jha (2013)32 found evidence 
that large teaching hospitals and safety-net hospitals are more likely to be penalized under the HRRP. Kansagara et 
al. (2011)4 performed a systematic review of readmission risk models. They found that specific medical diagnoses 
were the most universally used predictors appearing in 24 of 26 prediction models they considered. This same study 
also found that the range of the Area Under the ROC Curve (hereinafter AUC) metric for predicting readmission 
ranged from 0.50 (nurse/case manager predicted risk of readmission) to 0.83 (administrative model plus self-report). 

g the population admitted with a 

to receive hospital care without being readmitted, and selectively coding target diagnoses among patients with 
expected low readmission risk. Such gaming strikes us as particularly likely given the narrow range of criteria that 
factor into reimbursement rates under the HRRP29. Because hospitals cannot be penalized for diagnoses they do not 
make, physicians are incentivized to choose similar, but distinct, diagnoses for criterion diagnoses. For example, a 
patient who is admitted to a hospital with AMI may initially be diagnosed as having chest pains or coronary 
atherosclerosis. If this patient was subsequently readmitted within the following 30 days, this diagnosis could not be 
used to penalize the hospital for poor performance. Similarly, PN may initially be diagnosed as acute bronchitis or 
an upper respiratory infection, and CHF may instead be diagnosed at first as chronic obstructive pulmonary disease. 
In addition to studying the three aforementioned diagnoses used by the ACA, we also study Sepsis using our 
approach, since it is one of the most prevalent diagnoses, and is currently the diagnosis with the highest mortality 
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rate in the US. It can be diagnosed initially as a bacterial infection, pneumonia, urinary tract infection, peritonitis, or 
a skin ulcer. In practice, only those assessed as having the lowest risk of 30-day readmission may be likely to 
receive the target diagnosis. 

However, several specific diagnoses are likely to co-occur with the target diagnosis, and some procedures (e.g., 
angioplasty) may be strongly indicative of a specific underlying true diagnoses (e.g., AMI), serving as good proxy 
indicators of the true diagnosis. Evidence for changes to clinical practice, diagnoses, and associated procedures in 
response to changes in reimbursement has been well-documented for more than 30 years5 and there is reason to 
suspect that similar changes are already occurring due to the most recent changes enacted under the ACA. Rothberg 
et al. (2014)19 suggested that, by more liberally applying diagnoses of sepsis and respiratory failure, hospitals might 
improve their reported performance under the HRRP. Another way of estimating the extent of these changes, and 
identifying cases that represent the true diagnoses of criterion diagnoses, is considering diagnoses as a set of 
connected nodes in a graph (connected by aspects such as co-occurrence). The Markov Blanket (MB) for a node is 
the set of nodes that shield it from the rest of the network. Previous studies have shown that knowing the Markov 
Blanket of a diagnosis node is all that is required in order to predict the value of the criterion, either by classification 
or regression6,7,8. If the MB of a specific diagnosis can be identified prior to a policy change, it may be used to more 
accurately identify the set of criterion diagnoses following the policy change, which can in turn be used to estimate 
true cases, as well as the extent of gaming of diagnoses which will occur due to the policy change. 

Our experiments used discharge data from the California and New York State Inpatient Databases (SID), obtained 
from the Healthcare Cost and Utilization Project (HCUP) provided by the Agency for Healthcare Research and 
Quality26. The SID is a component of the HCUP, a partnership between federal and state governments and industry, 
which tracks all hospital admissions at the individual level. We included all data from January 2003 through 
December 2011. Patients were excluded from the analysis if they did not have Medicare or Medicaid as the primary 
payer and if they were younger than 19 years of age. The final dataset included 16,736,927 discharge records for CA 
and 12,717,787 discharge records for NY, with the primary set of features used in our experiences being the Clinical 
Classifications Software (CCS) diagnoses for ICD9-CM. CCS codes, developed as part of the HCUP, are designed 
to cluster patient diagnoses (hereinafter DX) and procedures (hereinafter PX) into a manageable number of clinically 
meaningful categories (272 diagnoses and 231 procedure codes). 

Some prior research has examined the role of comorbid conditions with the aim of identifying longer-term effects 
and mortality risk with a single target diagnosis in mind. Each of our target diagnoses has been considered in this 
fashion: AMI9, CHF11, PN14, and sepsis15. To the best of our knowledge, ours is the first study concerned with 
identifying co-occurring diagnoses and procedures that can serve as a proxy indicator of the target diagnosis, 
something necessary to identify potential instances of hospitals gaming the system to reduce risk exposure. 

Methods 

Our goal was to find a minimum subset of the most informative DX and PX (accurately predict the presence of 
Target DX in the records) associated with the Target DX. We decided to build a directed weighted ego-centric 
network for each Target DX where weights are calculated from counts of co-occurrences of DX and PX. We 
calculated the PageRank for each DX, PX to obtain ranked list. We used the PageRank value as a criterion to rank 
the importance of DX, PX in the above defined Target DX ego-centric network. Number of features for PageRank 
approximation of MB identified as the maximum number of DX, PX in the records. This way obtained PageRank 
approximation of MB then serves as feature set for logistic regression with a default setup22,23,25. Generated software 
will be available at https://github.com/dusanramljak  

Target Diagnosis Ego-centric Network of Diagnoses and Procedures 

We started with identifying DXs and PRs that most frequently co-occur with the Target DXs. The most frequent co-
occurrence by itself is necessary, but not sufficient, to establish an appropriate approximation of the Markov 
Blanket. For example, some diagnoses might co-occur with a Target DX simply because they are frequently 
diagnosed. Meanwhile, other frequent diagnoses might co-occur with our Target DX and also contribute 
significantly in discriminating between the classes when viewed in combination with other diagnoses or procedures. 
Making that distinction is not possible by looking only at the frequencies of co-occurrences with a Target DX.  

To that end we have built directed weighted networks of DX and PR from the hospital records that contained each of 
our Target DX. The starting weights in this network were counts of co-occurrences of the nodes.  In order to build 

another node (destination) should be scaled by the counts of occurrences of the source in the network  the source 
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count of the occurrence of 
the link between them and its own count of occurrence. Since we also have the counts of occurrences of the nodes in 

Target DX, we adjusted the weights in the network according to occurrences of 
destination in the records that don't contain our Target DX.
scaled with the count of occurrences of Target DX. The formula 
for setting the weights is where cl is the count of co-occurrences for the source and destination nodes, cs is 

the count of occurrences of the source node in the network, and cd is the count of occurrence of the destination node 
in the records that do not contain Target DX.

PageRank Approximation of Markov Blanket 

Since we defined weights by co-occurrences, as well as by additional information from the structure of the network 
of DXs and PXs that co-occur with our Target DX, we could use the PageRank value as a criterion to identify 
important nodes. For a subset of highly important nodes, we could say that the nodes with highest PageRank 
represent an approximate Markov Blanket for our Target DXs. 

PageRank gives us a ranked list of important DX and PX, but we are not able to determine if there are any 
redundancies. Redundancies in this context mean that several DX and PX might not provide information to 
discriminate between classes. In our earlier experiments we used a feature selection method to help us decide the 
number of DX and PX that will be provided by our PageRank approximation of MB, but our more recent 
experiments follow a different path. Because our goal is to have all the important DX and PX that could represent 
our Target DX in our MB, we determined the maximum number of DX and PX that could be present in individual 
records. That number is then used to determine the number of nodes with the highest PageRank included in the MB. 

Results 

The data we used in our experiments comes from the HCUP family of databases, and the raw data consists of patient 
hospital visit records from California s SID in the period from January 2003 up to December 2011. 
Each record consists of a number of attributes, which are explained in detail on the HCUP website26 . The California 
and New York database contain more than 50 million inpatient discharge records over the specified 9 years. The 
information is not specific to a group of hospitals, but rather represents the data for the entire state. 

The database also includes demographic information for each patient (such as age, birth year, sex, race), DX
(primary and up to 24 secondary for CA, primary and up to 14 secondary for NY), PX (up to 21 for CA, and up to 
15 for NY), information about hospital stays, and other information (including length of stay, total charges, type of 
payment and payer, discharge month, and survival information). For the purposes of our experiments, we used only 
the procedure and diagnosis information since our earlier work showed its potential, and since one of our primary 
concerns is preserving privacy (which could be breached if we used the more specific demographic and hospital stay 
information). Each of the 4 Target DXs we examined in this study was fairly prevalent. As shown in Table 1, CHF 
was most common (17.37% CA, 16.51% NY), followed by PN (9.43% CA, 7.77% NY), Sepsis (6.13% CA, 4.91% 
NY), and AMI (3.25% CA, 3.14% NY). There were also considerable seasonal and secular trends (similar in both 
datasets) in these Target DXs. For example, the prevalence of sepsis increased steadily across the study period. The 
three other Target DXs showed gradual decreases in prevalence over time, but also very strong seasonal trends. 

Table 1. Target DX frequency in CA and NY state databases 

Target DX 

Sepsis AMI CHF PN

CA 1,027,088 544,228 2,907,625 1,577,822 

NY 625,310 399,371 2,100,602 988,475 

We chose to use 20 combined DX and PX in this study, since this covered 95% of California and 98% of New York 
state data. We divided the data into two parts in order to show that the model generalizes well over both space and 
time. We used the first part, containing data from California in the years 2003  2008, for training and validating our 
models, and report the results of using 5-fold cross-validation. The second part consists of 2009  2011 records for 
both NY and CA data, and is used exclusively for testing. Since a previous study27 suggests that accuracy is 
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maximized when both training and test sets are balanced, used the same number of positive (Target DX present in 
the record) and negative (Target DX not present in the record) examples during training and testing. Since the four 
Target DXs appear at different rates (as shown in Table 1), the sample sizes we chose were different for each Target 
DX, but in each case we chose sizes with a roughly logarithmic progression such that the largest sample size 
covered the majority of the available cases. We used three sample sizes of different scale for each Target DX, and 
refer to these sample sizes using the general terms small, moderate, and large (for example, for CHF (2003-2008) in 
California, these sample sizes were 100k, 300k, and 1million, respectively). We gathered 10 random samples for 
each sample size, and used 5-fold cross-validation for training and validation, resulting in 180 distinct training 
datasets per Target DX. When testing, we used the maximum possible size of the positive class for each Target DX, 
and performed 10 replications for each of the two states we have available, resulting in 20 distinct testing datasets 
for each Target DX. We opted to use 10 random samples that, when taken together, covered the entire dataset, rather 
than using the entire dataset as one big sample to increase the number of replications. To this end, we sampled cases 
with replacement with no overlaps within samples, and minimal to nonexistent overlap between samples.  

For each of our Target DX, 150 out of 180 models were included in 5-fold cross-validation and tested once on an 
appropriate 5th fold holdout. 30 models were tested on all of the 20 test sets, and the results indicate high out of
sample accuracy, scalability, and stability of the method. The fact that adding more features always increases the 
accuracy supports the idea that we are dealing with a challenging problem, though the diminishing returns on 
accuracy improvements suggest that using a smaller set of features can be sufficient. Furthermore, although 
diagnoses are the most commonly used features across different hospital readmission models4, many other 
individual characteristics are also important but either not considered here (e.g., age, sex, race) or not available in 
the data we used (medications, laboratory tests ordered, laboratory test results). We include results using all 
diagnoses and procedures as features, rather than using only the significantly smaller subset of diagnoses and 
procedures selected by our method, to show that we attained comparable accuracy using only the subset of features 
that are strongly relevant to the Target DXs. Furthermore, experiments showed the somewhat surprising fact that 

achieved accuracy and the chosen features.  

r method by examining how often each one appears in each 
of our training models. That is, after acquiring the ranked list of PageRank values for each of the features during 
each experiment, we selected the 20 highest-ranked features in each experiment (giving us 60 potentially 
overlapping sets of 20 features for each sample size), and then took the intersection of those feature sets to find 
features that appear in all experiments. We labeled these features as stable, since they were shown to be in the top 20
PageRank lists over the course of all experiments.  

This procedure was repeated for each of the three sample sizes for each of the four target diagnoses, yielding the 
results summarized in Tables 2 and 3. These tables portray the features that were selected as the most influential by 
PageRank over each set of experiments, for each of the Target DX, as well as the sample size for which each feature 
was stable. In other words, features that are stable in all three sample sizes are the most frequently occurring and 
therefore are the best candidates for the MB approximation, while those that only appear during the experiments in 
the largest sample size are less frequent.  

While accuracy is an important criterion for our task, interpretability and relevance of the selected features also play 
key roles in the utility and acceptability of the approach, and our results are very encouraging in this regard. For 
AMI (Table 2), the two selected diagnoses, cardiac arrest and shock, are two of the most common consequences of a 
heart attack. Similarly, the selected procedures all align directly with common clinical practice, representing a 
variety of cardiac imaging, diagnostic, and surgical procedures.  CHF (Table 2) is a complex condition reflecting the 
intersection of cardiac and pulmonary systems. These are well represented among the selected diagnoses and 
procedures, as is the overlap (in terms of cardiovascular disease) with AMI. For PN (Table 3), one recent study19

found that readmissions rates for PN could be made more accurately and stably when sepsis and respiratory failure 
were also included. Both of these diagnoses are selected for PN, along with a range of respiratory procedures. 
Finally, the expected overlap between Sepsis (Table 3) and PN emerges for diagnoses and procedures when the 
former is considered as the target diagnosis. Additionally, there are more serious diagnoses relating to injuries and 
abscesses along with various stoma. 

In addition to validating the relevance of the small subset of features we selected for each diagnosis, we also tested 
their representative power by comparing the predictive accuracy (measured in AUC) obtained using only this small 
subset of features against the accuracy obtained when using all (approximately 500) features for the same task. 

1051



These results are presented in Figure 3 as boxplots for each Target DX at each sample size, with variance obtained 
from the 10 repetitions of each experiment. Several observations can be made from these plots, the first being that 
while using all 500 features offers the best accuracy, we can attain very competitive predictive accuracy using a 
significantly smaller number (20) of features which have the added benefit of being relevant to the Target DX in 
addition to being useful for discriminating between the two classes. The gap between accuracies using the subset vs 
using all features varies among the four Target DX, but even in the case of the most difficult to predict diagnosis, 
PN, the AUC we attained using only 20 features was very respectable (in the 0.68-0.75 range). In the case of the 
easiest to predict diagnosis, Sepsis, we were able to attain a nearly perfect level of prediction using a very small 
number of features, which we believe to be particularly important given the frequency and deadliness of this 
diagnosis. A somewhat more surprising finding was that varying the sample size did not have as big of an impact as 
expected. Although a general trend of AUC being higher when the sample sizes are larger can be seen, there is a 
noticeable variability in the results, while the mean values of AUC are quite close between sample sizes. While we 
expected sample size to play a bigger role in increasing accuracy, these findings suggest that the features we chose 
were representationally powerful enough to offer good performance even when the sample size is limited, further 
proving their relevance to the target DXs. 

Table 2. Table showing the diagnoses and procedures that were used in all experiments for appropriate sample sizes 
(marked by x in appropriate raw) to form the PageRank approximated MB for AMI and CHF 

Size 

Acute Myocardial Infarction I II III

Diagnoses 

Cardiac arrest and ventricular fibrillation x x x 

Shock x x x 

Procedures 

Contrast aortogram x x x 
Contrast arteriogram of femoral and lower 
extremity arteries 

x 

Conversion of cardiac rhythm x x x 

Coronary artery bypass graft (CABG) x x x 

Coronary thrombolysis x x x 
Diagnostic cardiac catheterization; coronary 
arteriography 

x x x 

Diagnostic ultrasound of heart (echocardiogram) x 
Extracorporeal circulation auxiliary to open 
heart procedures 

x x x 

Nuclear medicine imaging of pulmonary x 
Other non-OR therapeutic cardiovascular 
procedures 

x x x 

Other OR heart procedures x x x 
Other OR procedures on vessels other than 
head and neck 

x x x 

Other therapeutic procedures x x 
Percutaneous transluminal coronary 
angioplasty (PTCA) 

x x x 

Respiratory intubation and mechanical 
ventilation 

x x x 

Swan-Ganz catheterization for monitoring x x x 

Tracheostomy; temporary and permanent x x x 

Size 

Congestive Heart Failure I II III

Diagnoses 

Acute and unspecified renal failure x x 

Acute myocardial infarction x x x 

Cardiac arrest and ventricular fibrillation x x x 

Chronic kidney disease x 

Conduction disorders x x x 

Heart valve disorders x x x 
Hypertension with complications and secondary 
hypertension x x 

Peri-; endo-; and myocarditis; cardiomyopathy x x x 

Pulmonary heart disease x x x 

Respiratory failure; insufficiency; arrest (adult) x x x 

Shock x x x 

Procedures 

Conversion of cardiac rhythm x x 

Diagnostic ultrasound of heart (echocardiogram) x x 
Extracorporeal circulation auxiliary to open heart 
procedures x 

Heart valve procedures x x x 
Insertion; revision; replacement; removal of cardiac 
pacemaker or cardio x 

Nuclear medicine imaging of pulmonary x 

Other OR heart procedures x x x 

Respiratory intubation and mechanical ventilation x x x 

Swan-Ganz catheterization for monitoring x x x 

Tracheostomy; temporary and permanent x 
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Table 3. . Table showing the diagnoses and procedures that were used in all experiments for appropriate sample 
sizes (marked by x in appropriate raw) to form the PageRank approximated MB for AMI and CHF 

Size 

Pneumonia I II III

Diagnoses 

Cystic fibrosis x 

Other injuries and conditions due to external causes x 

Pleurisy; pneumothorax; pulmonary collapse x x 

Respiratory failure; insufficiency; arrest x x x 

Septicemia (except in labor) x x 

Shock x x x 

Procedures 

Arterial blood gases x 

CT scan chest x 
Diagnostic bronchoscopy and biopsy of 
bronchus x x x 

Enteral and parenteral nutrition x x 

Gastrostomy; temporary and permanent x x x 

Incision of pleura; thoracentesis; chest drainage x x x 
Other diagnostic procedures of respiratory tract 
and mediastinum x x 
Other non-OR therapeutic procedures on 
respiratory system x x x 

Other respiratory therapy x x 
Respiratory intubation and mechanical 
ventilation x x x 

Swan-Ganz catheterization for monitoring x x x 

Tracheostomy; temporary and permanent x x x 

Size 

Septicemia (except in labor) I II III

Diagnoses 

Aspiration pneumonitis; food/vomitus x 

Cardiac arrest and ventricular fibrillation x 
Other injuries and conditions due to 
external causes x x x 

Peritonitis and intestinal abscess x x x 

Respiratory failure; insufficiency; arrest x 

Shock x x x 

Procedures 

Bone marrow transplant x 

Colostomy; temporary and permanent x x x 

Conversion of cardiac rhythm x 

Enteral and parenteral nutrition x x x 

Gastrostomy; temporary and permanent x x x 

Ileostomy and other enterostomy x x x 

Myringotomy x 
Other non-OR therapeutic procedures on 
respiratory system x x x 
Other non-OR therapeutic procedures on skin 
and breast x 

Other vascular catheterization; not heart x x x 
Respiratory intubation and mechanical 
ventilation x x x 
Swan-Ganz catheterization for 
monitoring x x x 

Tracheostomy; temporary and permanent x x x 

Conclusion 

The US healthcare system is rife with opportunities for perverse incentives. The implementation of any new 
healthcare policy results in changes within the healthcare system in order to minimize the adverse consequences of 
the policy change for healthcare providers. Changes that began in 2012 under the Affordable Care Act can be 
expected to reduce the number of individuals receiving target diagnoses of AMI, CHF, and PN as healthcare 
providers move to reduce their exposure to adverse consequences of hospital readmissions. Beginning in October 
2014, the HRRP was extended to three additional conditions: acute exacerbation of chronic obstructive pulmonary 
disease (COPD), patients admitted for elective total hip arthroplasty (THA), and total knee arthroplasty (TKA).
Early models of readmissions are being presented for COPD30, but they suffer from the same low predictive value 
(AUC=0.65) as earlier work with AMI, CHF, and PN, and the value of COPD as a criterion measure has received 
some criticism. 

In this paper, we propose a novel approach to the problem of under-diagnosing, specifically, approximating Markov 
Blankets by PageRank. Performance using this subset of diagnoses shows performance that is generally quite high in 
terms of both accuracy and precision. Additionally, these diagnoses and procedures often point to clinically 
meaningful patterns. However, it is unclear which will ultimately prove most useful as the network of diagnoses and 
procedures surrounding a Target DX changes in response to policy. To some extent, this problem is likely to pose a 
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continuously moving target and so future research should more fully develop an understanding of the temporal 
forces to determine whether, for example, the indicators of PN depend on month of admission. 

Figure 1. AUC values of the model using the top 20 features selected by PageRank (blue boxes) and using all 
features (dotted red line). Each row represents one of the Target DX: AMI, CHF, PN and Sepsis. Each column 
represents a different subset of data that was used for testing purposes. Results obtained from the three sample sizes 
described above are shown for each setting. 

The approach used here is likely to be useful in the analysis of healthcare data in several ways. First, it provides a set 
of associated diag

in response to policy changes. Several authors consider the potential for gaming31. Multiple potential methods of 
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being readmitted, and selectively coding target diagnoses among patients with expected low readmission risk. Such 
gaming strikes us as particularly likely given the narrow range of criteria that factor into reimbursement rates under 
the HRRP. Enriching the pool of related diagnoses has been shown to provide more accurate and stable estimates in 
the case of PN19. 

Extending Rothberg et al. (2014)19, Sjoding et al. (2015)20 performed a Monte Carlo study using 2009 Medicare 
data. They found that hospitals could substantially improve their pneumonia readmission and mortality rates by 
converting pneumonia diagnoses to sepsis or respiratory failure. The improvements are often substantial. From a 
sample of 100 hospitals with pneumonia readmission rates above the 50th percentile, 66 improved their 
readmissions rate, and 15 dropped below the 50th percentile. Changes were even more dramatic when mortality was 
considered (90 and 41 hospitals, respectively). This suggests that our approach may also prove useful in order to 
adjust estimates for this kind of gaming and could also provide more robust methods to estimate true hospital 
readmission rates where intentional under-diagnosis of such diagnoses is likely. Historically, there are several 
precedents for this kind of under-reporting. The effects of the Omnibus Budget Reconciliation Act of 1987 
(OBRA87) was observed to have considerable impact on medical practice in nursing home settings21. Considerable 
decreases in the per capita diagnosis of AMI can already be seen leading up to implementation of the HRRP 
(Gerhardt, et al., 2012). 

Going forward, several areas of inquiry are likely to be fruitful. For example, future work should consider the 
conditions newly added in October 2014. Related to this, now that a reasonable amount of data are available 
following the implementation of the HRRP, researchers should evaluate evidence for shifting of diagnoses away 
from the targets. Another related area of critical importance has to do with the way in which individual hospital 
reimbursement rates are set and risk-adjusted. There is some evidence that building a larger network of related 
diagnoses may produce more stable and accurate performance estimates. Thus, a direct extension of this work is to 
consider the performance of a model trained on historical data, but used to predict performance of individual 
hospitals. Given how well our models generalize across time and state, we have reason to expect strong 
performance. Finally, models such as the ones we present here may have direct application to fraud detection and 
upcoding (Suresh et al., 2014)28.
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