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Abstract 

Background: Regulations and privacy concerns often hinder exchange of healthcare data between hospitals or 

other healthcare providers. Sharing predictive models built on original data and averaging their results offers an 

alternative to more efficient prediction of outcomes on new cases. Although one can choose from many techniques to 

combine outputs from different predictive models, it is difficult to find studies that try to interpret the results 

obtained from ensemble-learning methods. 

Methods: We propose a novel approach to classification based on models from different hospitals that allows a high 

level of performance along with comprehensibility of obtained results. Our approach is based on regularized sparse 

regression models in two hierarchical levels and exploits the interpretability of obtained regression coefficients to 

rank the contribution of hospitals in terms of outcome prediction.  

Results: The proposed approach was used to predict the 30-days all-cause readmissions for pediatric patients in 54 

Californian hospitals. Using repeated holdout evaluation, including more than 60,000 hospital discharge records, 

we compared the proposed approach to alternative approaches. The performance of two-level classification model 

was measured using the Area Under the ROC Curve (AUC) with an additional evaluation that uncovered the 

importance and contribution of each single data source (i.e. hospital) to the final result. The results for the best 

distributed model (AUC=0.787, 95% CI: 0.780-0.794) demonstrate no significant difference in terms of AUC 

performance when compared to a single elastic net model built on all available data (AUC=0.789, 95% CI:0.781-

0.796).      

Conclusions: This paper presents a novel approach to improved classification with shared predictive models for 

environments where centralized collection of data is not possible. The significant improvements in classification 

performance and interpretability of results demonstrate the effectiveness of our approach. 

 

Introduction 

The widespread use and availability of Electronic Health Record (EHR) data are responsible for numerous studies 

and should result in measurable improvements of the healthcare quality level in the coming years. However, most of 

the available data from healthcare repositories nowadays are still very limited in terms of heterogeneity and most 

studies use local data repositories [1, 2]. The Health Information Technology for Economic and Clinical Health 

HITECH act of 2009 was one of the most recent incentives of the US government to establish healthcare data 

exchange systems. However, in many cases legal and privacy concerns is still the main reason against data exchange 

between hospitals or healthcare providers [3]. On the other hand, researchers are often faced with a complex task of 

data integration even in cases where an agreement for data integration is reached [4]. On the other hand, one can 

observe a growing number of studies that use millions of records to build predictive models that will be used on the 

future repositories of EHRs [5-7]. 

Multiple privacy-preserving distributed classification models with applications in healthcare were proposed recently. 

Mathew and Obradovic [8] proposed a distributed knowledge-mining framework based on a decision tree classifier. 

Their approach allows heterogeneous data schemas to build a decision tree using locally abstracted data – i.e. no raw 

data needs to leave the hospital. Another distributed approach was proposed in [9] where distributed distance metric 

learning was used to assess patient similarity. A recent approach by Wang et al. [10] used a Bayesian approach to 

online learning based on logistic regression. High-level privacy preserving was ensured by encrypted posterior 

distribution of coefficients during the exchange between the server and the client. Additionally, the proposed model 

supports asynchronous communication between hospitals and allows dynamic model updating – i.e. there is no need 

to rebuild the model for each new patient. However, the complexity of the proposed approach rises with the number 

of included hospitals and [10] only presents results with up to 8 hospitals contributing to the global logistic 



  

regression model. Rider and Chawla [11] use probabilistic graphical models to facilitate transfer learning between 

distinct healthcare data sets by parameter sharing while simultaneously constructing a disease network for 

interpretation by domain experts. Their approach is primarily used to rank the patient disease risk for multiple 

diseases simultaneously. A recent study by Wiens et al. [12] presents a more empirical evaluation of a transfer-

learning approach using data from multiple hospitals to enhance local hospital predictions. A large sample of 

132,853 admissions from three hospitals was used to test different scenarios on sharing the data or using models 

built on data from a specific hospital to predict on data from other participating hospitals. Although the study does 

not address privacy directly, it offers interesting results demonstrating high performance gains when data from all 

hospitals can be used in the final prediction.  

Our study utilizes a large dataset of hospital discharge data to propose a novel approach in distributed predictive 

modeling that allows asynchronous exchange of models in a peer-to-peer or centralized environment. The proposed 

predictive model consists of two levels and is based on deep learning architectures [13, 14] that originate from a 

stacked generalization approach [15]. It was evaluated using data from 54 hospitals in California to demonstrate the 

large-scale deployment possibilities of the proposed approach. Compared to similar frameworks, we allow an 

additional high-level interpretability of results to obtain additional hospital level information. In contrast to most 

related work our approach allows combinations of different predictive models. 

 

Background 

Beginning October 1, 2012 under section 3025 of the Affordable Care Act, hospital reimbursements became tied to 

performance relative to preventable 30-day Medicare hospital readmission rates compared with hospitals having 

similar predicted risk profiles. Initially, readmission rates are tracked for three specific adult diagnoses: acute 

myocardial infarction (MI), congestive heart failure (HF), and pneumonia (PN). This change in the structure of 

Medicare reimbursements places increasing importance on the ability of health care providers to identify predictors 

of 30-day hospital readmissions as well as to identify characteristics of individuals and providers associated with 

above-average levels of readmission risk. Under-performing hospitals will see reduction of up to 1% in Medicare 

base reimbursements for services related to all diagnostic-related groups (DRGs). In 2010, these targets would have 

placed half of all hospitals in the under-performing group. 

There are now plans to expand this approach to consider pediatric populations and growing interest in considering 

the value of pediatric readmissions rates as hospital quality indicators [16-18]. Research on pediatric readmission 

rates suggests that a small number of cases account for a disproportionate number of hospital readmissions [19]. 

Similarly, wide hospital-level variation is also seen. Considering sickle-cell anemia readmissions in a sample of 

more than 12,000 hospitalizations of some 4,762 children from 33 hospitals, Sobota et al. [20] found that even after 

adjusting for individual-level characteristics such as age, treatment, and complications, there was 4.2-fold variation 

in readmission rates between hospitals. Considering only admissions for appendicitis, Rice-Townsend et al. [21] 

found 3.8-fold variation between hospitals in readmissions rates after adjusting for disease severity and insurance 

status. In a larger study including 568,845 all-cause admissions at 72 children's hospitals, Berry et al. [22] found 

28.6% greater adjusted readmission rates in hospitals with high versus low readmission rates. Overall, these findings 

point to the importance of considering differences between hospitals. 

Despite considerable interest in this topic, the accuracy of predictive models for 30-day hospital readmission is not 

particularly strong. Horwitz et al. [23], for example, found in-sample prediction by area under the curve (AUC) of 

0.61, 0.63, and 0.61 for MI, HF, and PN, respectively using Medicare claims data. More recently, focusing only on 

MI readmissions, Krumholz et al. [24] used 2006 Medicare claims data to compare models relying on claims data 

versus the combination of claims data and medical record data. These authors found high agreement (r=.98), but 

their overall model had an AUC of just 0.63. 

 

Methods 

Combining outputs of different predictive models to improve the performance of classification has been widely 

addressed in the research literature for the past two decades. The simplest approach to combining predictions from 

different models is majority voting, also called bagging [25] when combined with bootstrap sampling from the 

training dataset. In cases where classifiers are built from disjoint sets of data, Ting and Witten [26] name the 



  

approach “dagging.” In the same paper they propose an approach called dag-stacking, where an additional model is 

built to combine the outputs of low-level models instead of majority voting.  

Stacked generalization approach inspired many novel, so-called deep learning frameworks [13, 14]. This paper 

introduces a stacked generalization based classification approach, inspired by dag-stacking, with a few important 

modifications from the original implementation by Wolpert [15] and Ting and Witten [26]. As described above, 

stacked generalization was originally proposed to leverage different types of classifiers that are used on the lower 

level of the stacking framework using a high-level classifier. Our approach aims to combine different classifiers of 

the same type built on disjoint sets of data (i.e. each classifier is built on data from a specific hospital). Ting and 

Witten [27] already noticed that it is possible to improve the results of the originally proposed stacking framework 

by combining confidence levels in contrast to predicted class labels. In our case, we use predicted risk of 

readmission obtained from regularized logistic regression models to prepare a high-level dataset (Figure 1). 

Additionally, we use a high level classifier (i.e. sparse logistic regression) that allows us to interpret the results of 

the high level classifier. 
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can be obtained by iterative optimization methods such as gradient descent, Newtown method, or coordinate 

descent. For a detailed comparison of those methods one can refer to [28]. 

Generally there are many factors involved in every patient during the predictive modeling procedure, which makes d 

fairly large. In most of the cases only a small portion of factors would play important roles. It is highly desirable if 

the prediction model can also identify the set of important factors. Therefore Sparse Logistic Regression model is 

proposed, which aims to get the optimal )b,(w kk  by minimizing the following objective 
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where 0>λ  is the parameter trading off model sparsity and accuracy, and 
1

  is the vector 1ℓ  norm. The 

objective can be minimized by accelerated gradient descent as described in [29]. However, simple 1ℓ  regression has 

some limitations in small sample high dimensional case, as well as in the case when there are a group of highly 

correlated variables. 

To overcome these limitations, Zou et al. [30] proposed elastic net regularization, which solves the optimal 

)b,(w kk  by minimizing the following objective 
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where 02 >λ  is a regularization parameter and 
2

  is the 2ℓ  norm of a vector. 

 

Figure 1. Two-level classification framework for distributed hospital based predictive modeling. 

 

With this formulation, we can get the objective of original logistic regression with 021 =λ=λ , sparse logistic 
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After we got the optimal prediction model K)k(fk  1  for each site k, we collect all those models and form a 

set  
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Those models will be used as the low-level models. Then for each patient vector 
dRx , we can form a K-

dimensional vector 
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We can train another prediction model RRg K :  on those K-dimensional vectors, which will be used as the 

decision function on the higher level. Finally, we stack F and g together to make a classification decision. 

 

Results 

This section introduces the experimental settings of all experiments, followed by experimental results and 

interpretation of the high-level model to demonstrate the effectiveness of the proposed approach. 

Experimental Settings 

Hospital discharge data from California, State Inpatient Databases (SID), Healthcare Cost and Utilization Project 

(HCUP), Agency for Healthcare Research and Quality [32] was used in all experiments. The SID is a component of 

the HCUP, a partnership between federal and state governments and industry, tracking all hospital admissions at the 

individual level. We used all data from January 2009 through December 2011 in the pre-processing phase. Pediatric 

patients up to 10 years of age were used in this study due to specific regulations that allow age reporting in months 

instead of years only for patients younger than 132 months. Patients were excluded from the analysis if they died 

prior to discharge, were discharged on the same day as admission, were transferred to another institution, or were 

missing data on the unique patient identifier, age or sex. After pre-processing, we obtained the final dataset 

containing 66,994 discharge records with 11,184 positive (readmitted within 30 days) and 55,810 negative records. 

The bottom 80% of all ICD-9-CM diagnosis codes, ranked by observed frequency, were removed from the dataset, 

leaving the top 122 diagnosis codes as binary diagnosis features. An additional 21 features (e.g., sex, age, month of 

admission, length of stay, total charges in USD, etc.) were also included (Table 1). Log transformed values for three 

numerical features (age, length of stay and total charges in USD) were also included. By recoding nominal features 

to binary values, we obtained 185 features that were used to build the models presented below.  

Each experimental run included randomized training and test dataset where 2/3 of samples were used for training 

and 1/3 for testing. The holdout testing could cause extremely low number of positive cases in smaller hospitals. 

Therefore, we removed all records belonging to hospitals with less than 150 records. After removal of records from 

smaller hospitals, we obtained a final dataset with 61,111 records (10,675 positive and 50,436 negative). Due to a 

large number non-pediatric hospitals, only 54 out of the initial 205 hospitals were retained for the experiments. The 

test dataset was not used at all during the process of stacking or model development. 

Classification Performance 

To evaluate the performance of the built classifiers, we used Area under ROC Curve (AUC) metric. Holdout testing 

was repeated 1000 times to obtain more robust comparison of the AUC scores. In each run, we calculated the results 

for the following classification approaches: 

- Best performing local model (BLM),  

- Simple averaging of the local model outputs (AVG),  

- Two-level deep learning architecture (DLA),  

- Advanced two-level deep learning architecture with two different local models per hospital - i.e. elastic net 

and generalized boosted regression models [33] (DLA2) and  



  

- Global sparse logistic regression model (elastic net) built on data from all hospitals. Figure 2 presents the 

distribution of AUC results for the three compared approaches (SLRA).  

It can be observed that plain deep learning approach (AUC=0.781, 95% CI: 0.773-0.789) with a single elastic net 

classifier on hospital level does not significantly outperform a simple averaging approach (AUC=0.762, 95% CI: 

0.746-0.775). However, it does perform much better on average. The proposed approach is also better in comparison 

to the best performing model from a single hospital (AUC=0.768, 95% CI: 0.758-0.777). We also observed the 

performance of the weakest local classifiers with an average AUC of 0.416 (95% CI: 0.355-0.481). These results 

point out that there are hospitals with models that cannot be used for practical application and would gain 

significantly if they can evaluate the risk for their patients with the proposed approach. When we added an 

additional, conceptually different model (i.e. generalized boosted models), for each hospital, in DLA2 (AUC=0.787, 

95% CI: 0.780-0.794) we were able to significantly outperform AVG and BLM. 

We were also interested in how much performance is lost when we compare our approach to a global model that 

would use all available data (simulating a scenario with no data exchange restrictions between hospitals). It turns out 

that neither DLA nor DLA2 significantly differ in terms of AUC performance when compared to single elastic net 

model built on all available data (AUC=0.789, 95% CI:0.781-0.796). On the other hand, both DLA2 and SLRA 

significantly outperformed averaged and best single models from hospitals. 

 

Table 1. List of 143 features used for building and testing the proposed predictive models. 

Feature name Description  Feature name Description 

DSHOSPID Unique hospital identifier  PAY1 Primary payer 

TOTCHG Total charge in USD  MEDINCSTQ Quartile classification of the 

patient’s estimated median 

household income 

AGEMONTH Age in months (12 - 131)  ASCHED Scheduled hospitalization 

LOS Length of stay in days  PL_UR_CAT4 Four category urban-rural 

designation for the patient's 

county of residence 

TOTCHG_LOG Log transformed total charge 

in USD 

 Race Race and ethnicity (White, 

Black, Hispanic, Asian or 

Pacific Islander, Native 

American, Other) 

NPR Number of procedures on 

hospital discharge record 

 MDC Major Diagnostic Category 

NCHRONIC Number of chronic conditions  ORPROC Operating room procedures 

LOS_LOG Log transformed length of stay  NECODE Number of ICD9 E codes 

ASOURCE Source of admission  TRAN_IN Type of admission 

HCUP_ED Presence of emergency 

department codes 

 HospitalUnit Six hospital unit categories 

FEMALE Identification of gender  D1 – D122 Binary variables for presence 

of the most frequent diagnoses 

 



  

 

Figure 2. Distribution of AUC results on 1000 hold-out runs for averaged local models (AVG), best local model 

(BLM), deep learning approach (DLA), deep learning approach with two classifiers (DLA2) and single sparse 

logistic regression on all samples (SLRA) with mean AUC (red dotted line) and 95% CI (blue dotted line). 

 

Interpretation of the High-level Classifier Results 

In contrast to proposed approaches in distributed learning for medical applications [8-12], our approach additionally 

allows healthcare experts to interpret the results of the high-level classifier. The only constraint is the 

comprehensibility of the high-level classifier. In case of sparse logistic regression, we can obtain important 

information on inclusion of the local hospital models in the global model. Nevertheless, this is not the only 

information we can obtain – one can observe the relative influence of the specific local models in the global 

solution. For further interpretation of the global regression model, we calculated relative influence of all 54 local 

models based on their inclusion in the global model in 1000 holdout runs. Relative Hospital Influence (RHI) was 

calculated as a percentage of holdout runs when the specific hospital was included in the high-level sparse logistic 



  

regression model (i.e. hospital’s coefficient was non-zero). Table 2 demonstrates high level of heterogeneity among 

hospitals. 

 

Table 1. Descriptive overview for 54 hospitals included in the study. 

 Min Max Median Mean SD 

Number of records 151 7,884 346.5 1,130.82 1,747.32 

Average length of stay 1.90 12.68 3.42 3.95 1.79 

Average number of chronic diseases 0.32 3.88 1.50 1.60 0.85 

Average total charge (in USD)* 6,615 123,700 32,410 38,230 28,333 

Average age of children (in months) 34.76 115.50 55.56 56.97 16.12 

*12 hospitals with missing total charge data were excluded 
 

Figure 3 presents correlation of RHI with the most interesting patient characteristics averaged for each of 54 

hospitals that were selected based on their increasing or decreasing temporal trend. It can be observed that hospitals 

with higher cost per patient (TOTCHG) on average contribute more influential models to the final solution. There 

could be multiple reasons for correlation of influence and cost per patient (larger sample size in such hospitals, 

specialization of hospitals treating complex conditions, etc.). Therefore, some further analysis would be needed to 

explain this correlation. Likewise, average number of procedures on patient’s discharge records correlates with RHI. 

This correlation is not difficult to explain as more procedures on the discharge records also means more details for 

the classification algorithm that can be used. Another positive correlation – i.e. with the average percentage of 

scheduled patients can be observed in the left lower chart of Figure 3. One should conduct further research into 

characteristics of hospitals where a large proportion of admission are scheduled to explain this correlation. The only 

negative correlation presented is the one relating RHI with percentage of children with pneumonia. It turns out that 

the high-level classifier rarely used outputs from hospitals with lower percentage of pneumonia. It is known from 

previous studies [34] that prediction of 30-day readmission represents a difficult problem with AUC performance of 

0.63. Therefore, it might be possible that models from hospitals with high percentage of pneumonia perform 

relatively weak and are therefore rarely selected for inclusion in the final model. Readmission rates for hospitals also 

correlate with the RHI, pointing out that models built on data with stronger class imbalance will have a lower 

probability of inclusion. The last chart in lower right corner of Figure 3 presents another positive correlation 

between percentage of patients with gastrostomy (one of the most prevalent diagnoses in the observed population) 

and RHI. Berry et al. [22] found a similar relation in a study on recurrent readmission within children hospitals, 

where they confirmed a correlation between readmission frequency and the percentage of technology assistance. The 

most prevalent technologies among the patients with four or more readmissions were digestive related (30.7%), 

including gastrostomy tube. 

 

Conclusions 

In this study, we present a novel approach to distributed predictive modeling with application to 30-day all-cause 

readmission in children hospitals. Our approach is based on stacked generalization, dag-stacking and recently 

proposed deep-learning architectures. Using the proposed approach it is possible to significantly outperform a 

simple averaging as well as the best performing models from single hospitals. The results demonstrate that there is 

no significant difference in terms of AUC performance between the global model where data from all hospitals can 

be used and our approach to distributed predictive modeling. Additionally, our proposed models can be interpreted 

on high-level, offering an additional insight into the characteristics of specific hospitals. As such, the additional 

information can be used on policy-making levels to observe hospital quality on a more global level.  

 



  

 
Figure 3. Trends of Relative Hospital Influence (RHI) in relation to average total charge per hospital (TOTCHG), 

percentage of records with diagnosed pneumonia (Pneumonia), average number of procedure codes on the record 

(NPR), rate of 30-day readmissions (readmit), percentage of scheduled admissions (ASCHED) and percentage of 

records with gastrostomy (Gastrostomy). 
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