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ABSTRACT

Increasing demand for digitalization of Electronic Health Records
results in increased demand for effective data mining solutions. In
this study we enhance the classical Support Vector Machine -
Recursive Feature Elimination (SVM-RFE) approach to optimally
estimate disease risk from hospital discharge record data. Our
approach is based on incorporating prior knowledge from human
disease networks extracted from hospital discharge historical data
and lowering the burden of building classifiers from huge
amounts of data. To predict future risk of hospitalization based on
highly imbalanced and 11,170 dimensional hospital discharge data
consisting of nearly 7 million records collected in year 2008, we
adopt a knowledge representation from complex systems and a
feature selection technique used in bioinformatics. Our out of
sample results on year 2009 dataset of similar size provide
evidence that the proposed method is beneficial in cases where the
classical SVM-RFE model is unstable. When using the new
method we demonstrate that stability is improved in cases where
one aims to remove large batches of features in a single iteration.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data mining

General Terms
Algorithms

Keywords
Feature Selection, Classification, Risk Estimation, Disease
Networks, Support Vector Machines.

1. INTRODUCTION

Much work has been done in the past years by healthcare
organizations to bring health data into digital form. With the
increased acceptance of electronic health records, we can observe
the increased interest in the application of data mining approaches
in this field. Large datasets containing patient information are
becoming available and physicians are able to compare their
current patients to patients with similar diagnoses to decide on
appropriate treatments. In recent years we have witnessed an
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increased amount of studies focusing on complexity of relations
and co-occurrence of multiple diseases.

A recent study by Steinhaeuser and Chawla [16] points out that
our health care system is mostly reactive, meaning that we have
become proficient at diagnosing diseases and developing
treatments to cure them or prolong the life of a patient. However,
we should now put more focus on proactive care, aiming
especially at prediction of disease-related risks before they
actually happen, and guiding the patient to avoid them, instead of
just curing them. Large amounts of available clinical data can be
used to achieve this goal.

One of the first approaches using a large number of patients to
construct disease related networks was a study by Hidalgo et al.
[7] where authors demonstrated the usefulness of human discase
networks in studying the properties of co-occurring diseases. The
study also demonstrates the potential of phenotypic data in the
form of a human disease network to complement genotypic and
proteomic datasets that were extensively studied and analyzed in
the past. The main contribution of the mentioned study that is also
used in our research is the introduction of the metric for
quantification of comorbidity relationships.

The integration of networks in improving diagnostic and
prognostic methods has recently been very popular in
bioinformatics, where gene and protein networks have been used
in feature selection problems. Integration of biological prior
knowledge (e.g. protein-protein interaction (PPI) networks) has
been used to improve the performance of the predictive
algorithms and to increase the stability of biomarker signatures
[4]. Taking into account the high dimensionality of data in
medical record datasets, especially in patient records containing
more than ten thousand diagnosis and procedure codes, the
problems in bioinformatics and healthcare informatics seem to
have a lot of similarities.

An approach that exploits the information obtained by
constructing an interconnected network of human diseases in
order to improve the performance of a classification algorithm for
disease risk based on comorbidity information is presented in this
paper. The following section presents the basics of using prior
knowledge for classification tasks in the bioinformatics domain.
The idea from bioinformatics is applied to hospital discharge data
and the disease risk estimation problem with our experimental
setup presented in Section 3. Section 4 describes the results of the
experiments and is followed by the last section with conclusions
and future work.



2. BACKGROUND

Predictive modeling based on hospital discharge data has only
recently attracted the attention of medical informatics and
knowledge discovery communities. Moturu et al. [11] use hospital
discharge data for early identification of high cost patients. Their
study compared five different classification models to classify
patient records where the total cost of a hospital stay exceeded a
predefined threshold that defined a record as “high-cost”. They
tested a variety of popular classification algorithms and selected
the five most appropriate classifiers for the task: AdaBoost (with
250 iterations of a Decision Stump classifier), Logit-Boost (also
with 250 iterations of a Decision Stump classifier), Logistic
Regression, Logistic Model Trees, and the Support Vector
Machine (SVM).

Another study that used International Classification of Diseases,
Ninth Revision, Clinical Modification (ICD9-CM) codes to
predict disease risks was presented by Davis et al. [5]. Their
approach is based on collaborative filtering and uses temporal
dimension of discharge data to predict future risks. The data used
by Davis et al. comprises of more than 13 million patient records,
but is limited to populations older than 65 years. A similar risk
prediction study was conducted by Khalilia et al. [9] where the
NIS datasets from 2005 were used to classify records based on
grouped diagnosis codes. This study compared four different
classifiers and found out that the Random Forest classifier
produced the best results in disease classification.

In our study, we focus on the feature selection problem for high-
dimensional hospital discharge classification problems. The next
section reviews the related work that was done on high-
dimensional datasets in bioinformatics.

2.1 Related Work

Various methods from machine learning have been used for
identification of gene expression signatures in the past [20, 21].
However, different studies demonstrate [15, 17] that current
feature selection methods usually lack stability and biological
interpretability in high-dimensional data. To solve this problem,
one may note a growing interest in methods that try to integrate
the prior knowledge from biological networks to improve the
stability, interpretability, and, consequently, classification
performance of the previously proposed feature selection
methods.

In general, there are two groups of methods integrating network
knowledge — i.e. network centric and data centric [4]. The first
group focuses on mapping gene expression data onto a network
and uses techniques from network analysis to select the important
genes. On the other hand, the second group focuses on machine
learning techniques where prior knowledge from biological
networks is used to bias the feature selection process toward
strongly connected genes. The approach used in this study, called
SVM-RRFE (Reweighted Recursive Feature Elimination), was
proposed by Johannes et al. [8] and belongs to the group of data
centric methods.

A well-known GeneRank algorithm [10] was used by Johannes et
al. to couple SVM-RFE feature selection method with a network
of connected features (e.g. PPI network). Inspired by Google’s
PageRank [12], GeneRank calculates importance of genes in
supervised learning problems as a combination of their fold-
change (simple univariate feature selection technique) and their
centrality measure in the network. They use the GeneRank
measure of gene importance in each iteration of SVM-RFE to re-

adjust the SVM decision hyperplane. In this way, authors try to
integrate three different feature importance measures (SVM, fold-
change and network) into a single feature selection method
(SVM-RRFE), thus significantly improving the stability and
interpretability of selected features.

2.2 Classification and Class-imbalanced
Data

The problem of class-imbalance occurs when a classification
algorithm is confronted with a dataset containing a small number
of positive (i.e. predicted diagnosis code) samples and a much
larger number of other samples. For example, E.Coli bacterial
infection is present in less than 0.5% of hospitalization records.
Most classification algorithms tend to ignore the samples of the
rare class and focus on correctly predicting the majority class.
This problem is prevalent in most fields of applied machine
learning and is also one of the important issues in medical data
mining [3]. The problem of imbalanced data can be addressed at
the data or algorithmic level. In the first case, one can use
different variants of undersampling the majority or oversampling
the minority class. On the algorithmic level, the class imbalance
problem is addressed by using different variants of cost-sensitive
learning or learning from one class rather than two [2]. Most of
the studies that use hospital discharge data for classification are
using a variant of undersampling the majority class. Usually the
ratio of the small to other classes in hospital discharge data varies
significantly. Khalilia et al. [9] report the imbalance rates ranging
from almost 30% to under 0.1% in disease risk classification on
NIS dataset.

Additionally to the problem of building the classifier in
unbalanced settings, it is also important to properly measure the
classification performance in such settings. The classical
classification accuracy should be replaced with a measure that
will put more focus on the classification performance for rare
positive samples. Tang et al. [18] identified four metrics that are
most suitable for evaluation of classifiers on unbalanced data:
geometric mean of sensitivity and specificity, area under ROC
curve, F-measure and area under precision-recall curve. Similar to
other experiments in this field, our study uses the area under ROC
curve (AUC) metric.

2.3 Human Disease Networks

There are two basic concepts that are usually used when
constructing human disease networks: morbidity, representing the
support for a single diagnosis in the given population; and co-
morbidity, the support for co-occurrence of two diseases. In our
experiments we compare the efficiency of three co-morbidity
measures: weight (by Steinhaeuser and Chawla [16]), relative risk,
and phi (both by Hidalgo et al. [7]). The weight of the edge,
connecting diseases i and j can be calculated as follows:

W, = ————
YM+ M

where C;; is co-morbidity of two compared diseases and M is
morbidity or prevalence of a single disease. Weight measure aims

to balance the high values for more frequent co-morbidities by
dividing their number by a sum of single disease prevalence.

The relative risk measure is similar to weight, but also includes
the total number of patients in the population (N) and is defined
as:

CijN
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Relative risk measure is intrinsically biased towards
overestimation of relationships between rare diseases and
underestimates the co-morbidity of more frequent diseases. This
bias can be reduced by introduction of a ¢-correlation measure,
defined as:
CijN — M;M;
JMM;(N — M)(N — M;)

%

To focus on relationships between rare diseases that can often be
left out by classical feature selection approaches, RR measure was
used throughout this study. The implementation and role of the
human disease network used in our study is explained in the next
section.

3. EXPERIMENTAL SETUP

The proposed classification approach was applied to the
Nationwide Inpatient Sample (NIS), Healthcare Cost and
Utilization Project (HCUP), Agency for Healthcare Research and
Quality [1]. NIS dataset contains hospital discharge records for a
stratified sample of approximately 20% of US hospitals. In our
study, we used data for the adult population from year 2009 for
model evaluation and 2008 for disease network construction, in
order to avoid bias in feature selection. Altogether, there are
6,546,273 discharge records in the 2009 dataset and 6,840,196 in
2008.

Each record contains the personal characteristics of the patient,
including age, gender, race; administrative information, including
length of stay, and discharge status; medical information,
including diagnoses, surgical and nonsurgical procedures. Each
patient can have up to 15 (2008 dataset) or 25 (2009 dataset)
diagnoses. Age group frequencies for both years are compared in
Figure 1. The International Classification of Diseases, 9th
Revision, Clinical Modification, or ICD-9-CM was used for
coding diagnoses. ICD-9-CM coding uses taxonomy of five-digit
codes, where the first three digits represent the general diagnosis
and are followed by two additional digits describing a more
detailed subgroup of the general diagnosis. Using very detailed
five-digit codes results in a very complex classification problem
due to an extremely high number of samples and features.
Altogether, there are 14,315 possible diagnosis codes in our
datasets. After removing the codes that were not used in data from
year 2009, we could reduce the dimensionality of our datasets to
11,170 features, representing different diagnosis codes that were
used at least once.
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Figure 1. Number of records in datasets by age groups

The NIS dataset used in this study contains 126 clinical and
nonclinical features for each hospital discharge record. In addition
to demographic information, each record also contains ICD9-CM
diagnosis codes and Clinical Classification Software (CSS) codes.
CCS is used to collapse ICD9-CM diagnosis codes into more
general categories. There are 259 CCS disease categories that
could also be used for classification, similar to a study by Khalilia
et al. [9]. However, even the authors of the study themselves
admitted that classifying diseases using only CCS features may
not lead to a valid disease prediction. Therefore, we use the whole
feature space of ICD9-CM diagnosis codes for classification in
this study. This allows for a broad range of possible classification
problems, by selecting any of more than 14,000 diagnosis codes
as a target class. More realistically, some very rare diagnosis
categories cannot be used due to their extremely low support.
Therefore, we focused on prediction of disease categories with
prevalence close to 1% and above. We selected 5 diseases in a
way that would allow comparison of unbalanced datasets with
different ratios of target versus non-target class samples. To
obtain the most appropriate target class candidates, we initially
ranked all diagnosis codes by their prevalence. The most prevalent
disease, with a prevalence of over 36%, is “Essential
Hypertension — Unspecified” (diagnosis code 401.9). In our study
we compare classification performance for 5 different diagnosis
codes obtained by selecting the diagnosis codes closest to a
prevalence of 20, 10, 5, 2 and 1%. Table 1 presents some basic
information on the selected diagnosis codes.

Table 1. Diagnosis codes used for classification performance
estimation with corresponding prevalence for 2009 dataset

Diagnosis | Description Prevalence

code (%)

272.4 Other and unspecified | 18.42
hyperlipidemia

285.9 Anemia, unspecified 9.29

278.00 Obesity, unspecified 4.95

280.9 Iron deficiency anemia, | 2.00
unspecified

578.9 Hemorrhage of gastrointestinal | 1.00
tract, unspecified

To evaluate the performance of the proposed method, we
compared the classical SVM-RFE to SVM-RRFE (referred to as
RRFE in this paper) proposed by Johannes et al. [8]. The original
RRFE integrates GeneRank algorithm into SVM-RFE feature
selection approach to reduce the instability of selected features by
incorporating prior knowledge. The SVM in combination with
RFE was introduced for gene selection in bioinformatics by
Guyon et al. [6]. The SVM-RFE feature selection method is based
on linear SVM used for feature ranking. Each feature is ranked by
its impact on the weight vector, based on the Lagrange multipliers
in the SVM optimization problem [14]. In the final step of each
iteration, all the genes are ranked and a pre-selected number of the
lowest-ranked genes is eliminated. By default, a single gene is
eliminated in each round. However, it is more common to
eliminate a certain percentage of features per iteration in high-
dimensional settings.

Not only high dimensionality, but also an extremely high number
of samples can be met in hospital discharge data. Therefore, it is



usually not possible to use all samples when building the
classification model. One solution of this problem is the inclusion
of prior knowledge in the form of disease networks, as described
in Section 2.3. RRFE uses GeneRank algorithm to obtain
additional feature weighting information based on network and
learning data and integrates it directly in the SVM. The new
feature weights are computed as
Wi
o(w;y) p()

combining feature weights from SVM (w;) and rank of GeneRank
weight p(7;). This way the feature ranking considers the impact of
the SVM weights and the connectivity of a feature in the prior
knowledge network. Due to computational reasons the
misclassification penalty parameter C in SVM was set to 0.1 in all
experiments described in this paper. However, there are some
important differences between the application of the original
RRFE and our application to hospital discharge data that are
described in the following section.

To cope with the problem of high imbalance in the target class,
we use repeated random subsampling with target class balancing.
In each iteration of classification performance evaluation, we
randomly select 10,000 samples, where the distribution of classes
is not manipulated. This set of instances is used for testing, as it
resembles the original class distribution. In the second step of
each evaluation cycle, we randomly sample p,N positive and N-
p.N negative samples, where p, represents a ratio of positive
samples and N represents a number of all samples used for
training the classification model. In the first experiment, we used
equally balanced classes (p,=0.5) trained using 1000 samples.
According to a study by Moturu et al. [11], where a similar dataset
was used, the optimal classification performance should be
achieved with p,=0.75, and we therefore conducted a second
experiment where 75% of samples in the training set were
sampled from all available target class samples. Each random
subsampling evaluation was repeated 10 times for all target
diagnosis codes.

As already mentioned in Section 2.3, we used relative risk (RR)
based networks in all experiments. To avoid bias, we built the
disease network on a dataset containing hospital discharge records
for 2008, while all classification evaluations were done on data
from 2009. A sparse matrix with 14,315 ICD9-CM diagnosis
codes and 8,921,946 interactions among them was constructed
from 2008 data. To test the impact of data availability in the
network construction process, we constructed another disease
network where we used all available data from 2000-2008 NIS
datasets. Altogether, we used 58,761,912 records to construct a
disease network containing 18,288,394 relative risk values for
different pairs of diagnoses. All experiments were implemented in
R [13], using pathClass package [8].

4. RESULTS

4.1 Classification

In the first experiment we compared classical SVM-RFE to the
RRFE with 50% and 75% of positive class samples used in
random subsampling step. The network for the RRFE method was
constructed from all available samples for 2008. As in [8] we use
an elimination rate of 10% in each iteration of RFE. The results
are displayed in Table 2. One can observe minimal differences
between two compared methods. In case of Hyperlipidemia
(272.4) the best performance shifted from SVM-RFE to RRFE,
while in case of Iron deficiency anemia (280.9) the shift in the
opposite direction occurred. Overall, based on our experiments,

Table 2. Comparison of AUC for RRFE and SVM-RFE with

Positive Ratio

we cannot confirm the improvement of the results when the
percentage of target class is increased as in [11].

10% removal rate.

Disease Code RRFE SVM-RFE

0.5 (average) 0.726 = 0.068 0.723 +0.071
272.4 0.745+0.014 0.757 £0.010
278.00 0.723 +0.024 0.706 = 0.020
280.9 0.668 = 0.021 0.667 +£0.023
285.9 0.657 +0.021 0.649 +£0.014
578.9 0.837+0.019 0.838 +0.011

0.75 (average) 0.728 £ 0.072 0.726 + 0.074
272.4 0.767 = 0.006 0.765 £ 0.005
278.00 0.707 £ 0.016 0.690 +£0.017
280.9 0.670 £ 0.020 0.676 = 0.025
285.9 0.652 + 0.024 0.651 +£0.021
578.9 0.843+£0.010 0.846 = 0.019

In the second experiment, we repeated the first experiment with
the only difference being in the rate of feature removal. Here, we
removed 50% of features in each iteration of RFE. The results
displayed in Table 3 confirm our expectations that RRFE might
prove more effective when larger sets of features are removed.
This could be due to the fact that SVM-RFE is a very unstable
feature selection method which intensifies when the removal rate
is increased [18].

Table 3. Comparison of AUC for RRFE and SVM-RFE with

Positive Ratio

50% removal rate.

Disease Code RRFE SVM-RFE

0.5 (average) 0.743 £ 0.067 0.732 £0.069
272.4 0.769 = 0.008 0.761 £ 0.009
278.00 0.731 £ 0.016 0.718 £0.019
280.9 0.694 £+ 0.033 0.678 = 0.020
285.9 0.668 = 0.016 0.659 +0.009
578.9 0.850 = 0.016 0.844 £0.018

0.75 (average) 0.739 £0.072 0.719 £0.082
272.4 0.777 £ 0.006 0.765+0.011
278.00 0.717 £ 0.014 0.698 +0.028
280.9 0.687 = 0.029 0.648 = 0.040
285.9 0.662 = 0.017 0.640 = 0.020
578.9 0.855 +0.020 0.844 £0.019
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Figure 2. Comparison of AUC for RRFE and SVM-RFE with 10% removal rate (subsampling with 75% positive class).

In the case of hospital discharge classification problems, it is
extremely important if we can afford a less complex and faster
method, which is the case in the 50% removal rate example.
Comparing the results from both experiments, one can notice
that the less complex 50% removal approach actually improved
the performance of the classification in almost all cases.

To further analyze the performance of the compared methods,
we conducted Wilcoxon’s signed-rank test and compared results
from both experiments for 5 disease classification problems
together (n=50). In the case of a 10% removal rate, the
difference in AUC is not statistically significant (p = 0.060). On
the other hand, the difference in AUCs between SVM-RFE and
RRFE for 50% removal rate is statistically significant (p <
0.001).

In our final experiment, we wanted to test how the availability of
data influences the effectiveness of the disease network-based
feature selection approach in RRFE. Therefore, we constructed
an additional network from 9 years of data (2000-2008) and ran
the first two experiments for RRFE again. To our knowledge,
this is the largest disease network created to date.

However, our results demonstrate that a larger network does not
produce significantly better results in classification performance
(Figure 2). Wilcoxon’s signed-ranks test confirms our
observations from Figure 2 with p=0.5867. Based on the results
of this experiment, we can conclude that using more recent and
less complex disease networks does not significantly impact the
classification performance. One of the reasons for weak
performance of the large network may also lay in the fact that
some disease codes change from year to year. Therefore, it does
not make sense to store disease interactions that no longer exist
in the newer versions of ICD9-CM coding.

4.2 Stability

To compare the stability of the selected features over multiple
random subsamples and different experimental settings for both
SVM-RFE and RRFE, we measured the frequency of
occurrences when a specific disease code was included in an
optimal set of features (Table 4). The optimal set of features is a
feature set obtained after all RFE iterations have been executed
and a set with the highest performance is chosen. Altogether we
compare optimal sets from different experimental settings done
during the comparison of performance, described in Section 4.1.

Table 4. Frequency of disease code selection in the optimal
feature sets for Hyperlipidemia (272.4) classification.

SVM-RFE RRFE
ICD9-CM Freq. ICD9-CM Freq.
Code Code
401.9 80 250.00 80
414.01 78 401.9 80
V27.0 78 414.01 80
250.00 70 V27.0 80
272.0 70 403.90 79
403.90 64 530.81 78
401.1 44 244.9 75
43491 44 272.0 74
477.9 44 428.0 74
2449 42 V45.82 74




Table 4 compares consistency of selection for the most
frequently selected codes in the first classification problem — i.e.
Hyperlipidemia classification. The compared optimal sets are
very similar in their mean number of features in an optimal set
(151.85 for SVM-RFE and 151.26 for RRFE). As expected, the
consistency of selected features in RRFE selection is much
higher as compared to SVM-RFE. There is only one disease
code (401.9 - Unspecified essential hypertension) that was
chosen in all experiments by both feature selection methods.

On the other hand, there are some codes that were not
represented in a significant number of SVM-RFE based optimal
feature sets. For example, diagnosis code 250.00 (Diabetes
mellitus without mention of complication, type II or unspecified
type, not stated as uncontrolled), was missing in 10 out of 80
optimal sets when SVM-RFE was used. RRFE included this
feature in all random subsampling datasets with different
experimental settings.

S. CONCLUSIONS AND FUTURE

RESEARCH DIRECTIONS

This paper presents an adaptation of the RRFE method for
feature selection, originally used in bioinformatics, as well as
application of this method to feature selection in imbalanced
high-dimensional hospital discharge data. The results confirm
the advantages of the method that were successfully used in the
bioinformatics domain by demonstrating the increased stability
of selected features. Furthermore, we observe significant
improvements of classification performance when large batches
of features are eliminated. Due to an extremely large number of
samples in hospital discharge datasets, this is especially
important. In our case, a dataset consisting of nearly 7 million
samples collected in one year was used for learning. Since this
dataset represents hospital discharge data for approximately
20% of discharges from U.S. hospitals, we can estimate the
number of hospitalizations approaches 100,000 per day. In such
large data settings it is important to effectively select the
important features for classification.

Although we evaluated the classification performance of the
proposed feature selection solution using SVM classifier, it
would be possible to use it in combination with another,
preferably simpler, classification model. Use of a simple
classifier makes the proposed method more appropriate for
scalability to large data settings.
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