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ABSTRACT 

Increasing demand for digitalization of Electronic Health Records 

results in increased demand for effective data mining solutions. In 

this study we enhance the classical Support Vector Machine - 

Recursive Feature Elimination (SVM-RFE) approach to optimally 

estimate disease risk from hospital discharge record data. Our 

approach is based on incorporating prior knowledge from human 

disease networks extracted from hospital discharge historical data 

and lowering the burden of building classifiers from huge 

amounts of data. To predict future risk of hospitalization based on 

highly imbalanced and 11,170 dimensional hospital discharge data 

consisting of nearly 7 million records collected in year 2008, we 

adopt a knowledge representation from complex systems and a 

feature selection technique used in bioinformatics. Our out of 

sample results on year 2009 dataset of similar size provide 

evidence that the proposed method is beneficial in cases where the 

classical SVM-RFE model is unstable. When using the new 

method we demonstrate that stability is improved in cases where 

one aims to remove large batches of features in a single iteration.   

Categories and Subject Descriptors 

H.2.8 [Database Applications]: Data mining 

General Terms 

Algorithms 

Keywords 

Feature Selection, Classification, Risk Estimation, Disease 

Networks, Support Vector Machines. 

 

1. INTRODUCTION 
Much work has been done in the past years by healthcare 

organizations to bring health data into digital form. With the 

increased acceptance of electronic health records, we can observe 

the increased interest in the application of data mining approaches 

in this field. Large datasets containing patient information are 

becoming available and physicians are able to compare their 

current patients to patients with similar diagnoses to decide on 

appropriate treatments. In recent years we have witnessed an 

increased amount of studies focusing on complexity of relations 

and co-occurrence of multiple diseases.  

A recent study by Steinhaeuser and Chawla [16] points out that 

our health care system is mostly reactive, meaning that we have 

become proficient at diagnosing diseases and developing 

treatments to cure them or prolong the life of a patient. However, 

we should now put more focus on proactive care, aiming 

especially at prediction of disease-related risks before they 

actually happen, and guiding the patient to avoid them, instead of 

just curing them. Large amounts of available clinical data can be 

used to achieve this goal. 

One of the first approaches using a large number of patients to 

construct disease related networks was a study by Hidalgo et al. 

[7] where authors demonstrated the usefulness of human disease 

networks in studying the properties of co-occurring diseases. The 

study also demonstrates the potential of phenotypic data in the 

form of a human disease network to complement genotypic and 

proteomic datasets that were extensively studied and analyzed in 

the past. The main contribution of the mentioned study that is also 

used in our research is the introduction of the metric for 

quantification of comorbidity relationships.     

The integration of networks in improving diagnostic and 

prognostic methods has recently been very popular in 

bioinformatics, where gene and protein networks have been used 

in feature selection problems. Integration of biological prior 

knowledge (e.g. protein-protein interaction (PPI) networks) has 

been used to improve the performance of the predictive 

algorithms and to increase the stability of biomarker signatures 

[4]. Taking into account the high dimensionality of data in 

medical record datasets, especially in patient records containing 

more than ten thousand diagnosis and procedure codes, the 

problems in bioinformatics and healthcare informatics seem to 

have a lot of similarities. 

An approach that exploits the information obtained by 

constructing an interconnected network of human diseases in 

order to improve the performance of a classification algorithm for 

disease risk based on comorbidity information is presented in this 

paper. The following section presents the basics of using prior 

knowledge for classification tasks in the bioinformatics domain. 

The idea from bioinformatics is applied to hospital discharge data 

and the disease risk estimation problem with our experimental 

setup presented in Section 3. Section 4 describes the results of the 

experiments and is followed by the last section with conclusions 

and future work. 
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2. BACKGROUND 
Predictive modeling based on hospital discharge data has only 

recently attracted the attention of medical informatics and 

knowledge discovery communities. Moturu et al. [11] use hospital 

discharge data for early identification of high cost patients. Their 

study compared five different classification models to classify 

patient records where the total cost of a hospital stay exceeded a 

predefined threshold that defined a record as “high-cost”. They 

tested a variety of popular classification algorithms and selected 

the five most appropriate classifiers for the task: AdaBoost (with 

250 iterations of a Decision Stump classifier), Logit-Boost (also 

with 250 iterations of a Decision Stump classifier), Logistic 

Regression, Logistic Model Trees, and the Support Vector 

Machine (SVM). 

Another study that used International Classification of Diseases, 

Ninth Revision, Clinical Modification (ICD9-CM) codes to 

predict disease risks was presented by Davis et al. [5]. Their 

approach is based on collaborative filtering and uses temporal 

dimension of discharge data to predict future risks. The data used 

by Davis et al. comprises of more than 13 million patient records, 

but is limited to populations older than 65 years. A similar risk 

prediction study was conducted by Khalilia et al. [9] where the 

NIS datasets from 2005 were used to classify records based on 

grouped diagnosis codes. This study compared four different 

classifiers and found out that the Random Forest classifier 

produced the best results in disease classification.   

In our study, we focus on the feature selection problem for high-

dimensional hospital discharge classification problems. The next 

section reviews the related work that was done on high-

dimensional datasets in bioinformatics. 

2.1 Related Work 
Various methods from machine learning have been used for 

identification of gene expression signatures in the past [20, 21]. 

However, different studies demonstrate [15, 17] that current 

feature selection methods usually lack stability and biological 

interpretability in high-dimensional data. To solve this problem, 

one may note a growing interest in methods that try to integrate 

the prior knowledge from biological networks to improve the 

stability, interpretability, and, consequently, classification 

performance of the previously proposed feature selection 

methods. 

In general, there are two groups of methods integrating network 

knowledge – i.e. network centric and data centric [4]. The first 

group focuses on mapping gene expression data onto a network 

and uses techniques from network analysis to select the important 

genes. On the other hand, the second group focuses on machine 

learning techniques where prior knowledge from biological 

networks is used to bias the feature selection process toward 

strongly connected genes. The approach used in this study, called 

SVM-RRFE (Reweighted Recursive Feature Elimination), was 

proposed by Johannes et al. [8] and belongs to the group of data 

centric methods. 

A well-known GeneRank algorithm [10] was used by Johannes et 

al. to couple SVM-RFE feature selection method with a network 

of connected features (e.g. PPI network). Inspired by Google’s 

PageRank [12], GeneRank calculates importance of genes in 

supervised learning problems as a combination of their fold-

change (simple univariate feature selection technique) and their 

centrality measure in the network. They use the GeneRank 

measure of gene importance in each iteration of SVM-RFE to re-

adjust the SVM decision hyperplane. In this way, authors try to 

integrate three different feature importance measures (SVM, fold-

change and network) into a single feature selection method 

(SVM-RRFE), thus significantly improving the stability and 

interpretability of selected features.   

2.2   Classification and Class-imbalanced 

Data 
The problem of class-imbalance occurs when a classification 

algorithm is confronted with a dataset containing a small number 

of positive (i.e. predicted diagnosis code) samples and a much 

larger number of other samples. For example, E.Coli bacterial 

infection is present in less than 0.5% of hospitalization records. 

Most classification algorithms tend to ignore the samples of the 

rare class and focus on correctly predicting the majority class. 

This problem is prevalent in most fields of applied machine 

learning and is also one of the important issues in medical data 

mining [3]. The problem of imbalanced data can be addressed at 

the data or algorithmic level. In the first case, one can use 

different variants of undersampling the majority or oversampling 

the minority class. On the algorithmic level, the class imbalance 

problem is addressed by using different variants of cost-sensitive 

learning or learning from one class rather than two [2]. Most of 

the studies that use hospital discharge data for classification are 

using a variant of undersampling the majority class. Usually the 

ratio of the small to other classes in hospital discharge data varies 

significantly. Khalilia et al. [9] report the imbalance rates ranging 

from almost 30% to under 0.1% in disease risk classification on 

NIS dataset. 

Additionally to the problem of building the classifier in 

unbalanced settings, it is also important to properly measure the 

classification performance in such settings. The classical 

classification accuracy should be replaced with a measure that 

will put more focus on the classification performance for rare 

positive samples. Tang et al. [18] identified four metrics that are 

most suitable for evaluation of classifiers on unbalanced data: 

geometric mean of sensitivity and specificity, area under ROC 

curve, F-measure and area under precision-recall curve. Similar to 

other experiments in this field, our study uses the area under ROC 

curve (AUC) metric.     

2.3 Human Disease Networks 
There are two basic concepts that are usually used when 

constructing human disease networks: morbidity, representing the 

support for a single diagnosis in the given population; and co-

morbidity, the support for co-occurrence of two diseases. In our 

experiments we compare the efficiency of three co-morbidity 

measures: weight (by Steinhaeuser and Chawla [16]), relative risk, 

and phi (both by Hidalgo et al. [7]). The weight of the edge, 

connecting diseases i and j can be calculated as follows: 

    
   

     
 

where     is co-morbidity of two compared diseases and   is 

morbidity or prevalence of a single disease. Weight measure aims 

to balance the high values for more frequent co-morbidities by 

dividing their number by a sum of single disease prevalence.  

The relative risk measure is similar to weight, but also includes 

the total number of patients in the population ( ) and is defined 

as: 

     
    

    
 



Relative risk measure is intrinsically biased towards 

overestimation of relationships between rare diseases and 

underestimates the co-morbidity of more frequent diseases. This 

bias can be reduced by introduction of a -correlation measure, 

defined as: 

   
         

√                
 

To focus on relationships between rare diseases that can often be 

left out by classical feature selection approaches, RR measure was 

used throughout this study. The implementation and role of the 

human disease network used in our study is explained in the next 

section.   

3. EXPERIMENTAL SETUP 
The proposed classification approach was applied to the 

Nationwide Inpatient Sample (NIS), Healthcare Cost and 

Utilization Project (HCUP), Agency for Healthcare Research and 

Quality [1]. NIS dataset contains hospital discharge records for a 

stratified sample of approximately 20% of US hospitals. In our 

study, we used data for the adult population from year 2009 for 

model evaluation and 2008 for disease network construction, in 

order to avoid bias in feature selection. Altogether, there are 

6,546,273 discharge records in the 2009 dataset and 6,840,196 in 

2008.  

Each record contains the personal characteristics of the patient, 

including age, gender, race; administrative information, including 

length of stay, and discharge status; medical information, 

including diagnoses, surgical and nonsurgical procedures. Each 

patient can have up to 15 (2008 dataset) or 25 (2009 dataset) 

diagnoses. Age group frequencies for both years are compared in 

Figure 1. The International Classification of Diseases, 9th 

Revision, Clinical Modification, or ICD-9-CM was used for 

coding diagnoses. ICD-9-CM coding uses taxonomy of five-digit 

codes, where the first three digits represent the general diagnosis 

and are followed by two additional digits describing a more 

detailed subgroup of the general diagnosis. Using very detailed 

five-digit codes results in a very complex classification problem 

due to an extremely high number of samples and features. 

Altogether, there are 14,315 possible diagnosis codes in our 

datasets. After removing the codes that were not used in data from 

year 2009, we could reduce the dimensionality of our datasets to 

11,170 features, representing different diagnosis codes that were 

used at least once. 

 

Figure 1. Number of records in datasets by age groups 

The NIS dataset used in this study contains 126 clinical and 

nonclinical features for each hospital discharge record. In addition 

to demographic information, each record also contains ICD9-CM 

diagnosis codes and Clinical Classification Software (CSS) codes. 

CCS is used to collapse ICD9-CM diagnosis codes into more 

general categories. There are 259 CCS disease categories that 

could also be used for classification, similar to a study by Khalilia 

et al. [9]. However, even the authors of the study themselves 

admitted that classifying diseases using only CCS features may 

not lead to a valid disease prediction. Therefore, we use the whole 

feature space of ICD9-CM diagnosis codes for classification in 

this study. This allows for a broad range of possible classification 

problems, by selecting any of more than 14,000 diagnosis codes 

as a target class. More realistically, some very rare diagnosis 

categories cannot be used due to their extremely low support. 

Therefore, we focused on prediction of disease categories with 

prevalence close to 1% and above. We selected 5 diseases in a 

way that would allow comparison of unbalanced datasets with 

different ratios of target versus non-target class samples. To 

obtain the most appropriate target class candidates, we initially 

ranked all diagnosis codes by their prevalence. The most prevalent 

disease, with a prevalence of over 36%, is “Essential 

Hypertension – Unspecified” (diagnosis code 401.9). In our study 

we compare classification performance for 5 different diagnosis 

codes obtained by selecting the diagnosis codes closest to a 

prevalence of 20, 10, 5, 2 and 1%. Table 1 presents some basic 

information on the selected diagnosis codes. 

 

Table 1. Diagnosis codes used for classification performance 

estimation with corresponding prevalence for 2009 dataset 

Diagnosis 

code 

Description Prevalence 

(%) 

272.4 Other and unspecified 

hyperlipidemia 

18.42 

285.9 Anemia, unspecified 9.29 

278.00 Obesity, unspecified 4.95 

280.9 Iron deficiency anemia, 

unspecified 

2.00 

578.9 Hemorrhage of gastrointestinal 

tract, unspecified 

1.00 

 

To evaluate the performance of the proposed method, we 

compared the classical SVM-RFE to SVM-RRFE (referred to as 

RRFE in this paper) proposed by Johannes et al. [8]. The original 

RRFE integrates GeneRank algorithm into SVM-RFE feature 

selection approach to reduce the instability of selected features by 

incorporating prior knowledge. The SVM in combination with 

RFE was introduced for gene selection in bioinformatics by 

Guyon et al. [6]. The SVM-RFE feature selection method is based 

on linear SVM used for feature ranking. Each feature is ranked by 

its impact on the weight vector, based on the Lagrange multipliers 

in the SVM optimization problem [14]. In the final step of each 

iteration, all the genes are ranked and a pre-selected number of the 

lowest-ranked genes is eliminated. By default, a single gene is 

eliminated in each round. However, it is more common to 

eliminate a certain percentage of features per iteration in high-

dimensional settings. 

Not only high dimensionality, but also an extremely high number 

of samples can be met in hospital discharge data. Therefore, it is 



usually not possible to use all samples when building the 

classification model. One solution of this problem is the inclusion 

of prior knowledge in the form of disease networks, as described 

in Section 2.3. RRFE uses GeneRank algorithm to obtain 

additional feature weighting information based on network and 

learning data and integrates it directly in the SVM. The new 

feature weights are computed as  

 (     )  
  

     
 

combining feature weights from SVM (  ) and rank of GeneRank 

weight      . This way the feature ranking considers the impact of 

the SVM weights and the connectivity of a feature in the prior 

knowledge network. Due to computational reasons the 

misclassification penalty parameter C in SVM was set to 0.1 in all 

experiments described in this paper. However, there are some 

important differences between the application of the original 

RRFE and our application to hospital discharge data that are 

described in the following section.  

To cope with the problem of high imbalance in the target class, 

we use repeated random subsampling with target class balancing. 

In each iteration of classification performance evaluation, we 

randomly select 10,000 samples, where the distribution of classes 

is not manipulated. This set of instances is used for testing, as it 

resembles the original class distribution. In the second step of 

each evaluation cycle, we randomly sample prN positive and N-

prN negative samples, where pr represents a ratio of positive 

samples and N represents a number of all samples used for 

training the classification model. In the first experiment, we used 

equally balanced classes (pr=0.5) trained using 1000 samples. 

According to a study by Moturu et al. [11], where a similar dataset 

was used, the optimal classification performance should be 

achieved with pr=0.75, and we therefore conducted a second 

experiment where 75% of samples in the training set were 

sampled from all available target class samples. Each random 

subsampling evaluation was repeated 10 times for all target 

diagnosis codes. 

As already mentioned in Section 2.3, we used relative risk (RR) 

based networks in all experiments. To avoid bias, we built the 

disease network on a dataset containing hospital discharge records 

for 2008, while all classification evaluations were done on data 

from 2009. A sparse matrix with 14,315 ICD9-CM diagnosis 

codes and 8,921,946 interactions among them was constructed 

from 2008 data. To test the impact of data availability in the 

network construction process, we constructed another disease 

network where we used all available data from 2000-2008 NIS 

datasets. Altogether, we used 58,761,912 records to construct a 

disease network containing 18,288,394 relative risk values for 

different pairs of diagnoses. All experiments were implemented in 

R [13], using pathClass package [8].  

4. RESULTS 

4.1 Classification 
In the first experiment we compared classical SVM-RFE to the 

RRFE with 50% and 75% of positive class samples used in 

random subsampling step. The network for the RRFE method was 

constructed from all available samples for 2008. As in [8] we use 

an elimination rate of 10% in each iteration of RFE. The results 

are displayed in Table 2. One can observe minimal differences 

between two compared methods. In case of Hyperlipidemia 

(272.4) the best performance shifted from SVM-RFE to RRFE, 

while in case of Iron deficiency anemia (280.9) the shift in the 

opposite direction occurred. Overall, based on our experiments, 

we cannot confirm the improvement of the results when the 

percentage of target class is increased as in [11].     

 

Table 2. Comparison of AUC for RRFE and SVM-RFE with 

10% removal rate. 

Positive Ratio  

Disease Code RRFE SVM-RFE 

0.5 (average) 0.726 ± 0.068 0.723 ± 0.071 

272.4 0.745 ± 0.014 0.757 ± 0.010 

278.00 0.723 ± 0.024 0.706 ± 0.020 

280.9 0.668 ± 0.021 0.667 ± 0.023 

285.9 0.657 ± 0.021 0.649 ± 0.014 

578.9 0.837 ± 0.019 0.838 ± 0.011 

0.75 (average) 0.728 ± 0.072 0.726 ± 0.074 

272.4 0.767 ± 0.006 0.765 ± 0.005 

278.00 0.707 ± 0.016 0.690 ± 0.017 

280.9 0.670 ± 0.020 0.676 ± 0.025 

285.9 0.652 ± 0.024 0.651 ± 0.021 

578.9 0.843 ± 0.010 0.846 ± 0.019 

 

In the second experiment, we repeated the first experiment with 

the only difference being in the rate of feature removal. Here, we 

removed 50% of features in each iteration of RFE. The results 

displayed in Table 3 confirm our expectations that RRFE might 

prove more effective when larger sets of features are removed. 

This could be due to the fact that SVM-RFE is a very unstable 

feature selection method which intensifies when the removal rate 

is increased [18].  

 

Table 3. Comparison of AUC for RRFE and SVM-RFE with 

50% removal rate. 

Positive Ratio  

Disease Code RRFE SVM-RFE 

0.5 (average) 0.743 ± 0.067 0.732 ± 0.069 

272.4 0.769 ± 0.008 0.761 ± 0.009 

278.00 0.731 ± 0.016 0.718 ± 0.019 

280.9 0.694 ± 0.033 0.678 ± 0.020 

285.9 0.668 ± 0.016 0.659 ± 0.009 

578.9 0.850 ± 0.016 0.844 ± 0.018 

0.75 (average) 0.739 ± 0.072 0.719 ± 0.082 

272.4 0.777 ± 0.006 0.765 ± 0.011 

278.00 0.717 ± 0.014 0.698 ± 0.028 

280.9 0.687 ± 0.029 0.648 ± 0.040 

285.9 0.662 ± 0.017 0.640 ± 0.020 

578.9 0.855 ± 0.020 0.844 ± 0.019 



 

Figure 2. Comparison of AUC for RRFE and SVM-RFE with 10% removal rate (subsampling with 75% positive class). 

 

In the case of hospital discharge classification problems, it is 

extremely important if we can afford a less complex and faster 

method, which is the case in the 50% removal rate example. 

Comparing the results from both experiments, one can notice 

that the less complex 50% removal approach actually improved 

the performance of the classification in almost all cases.  

To further analyze the performance of the compared methods, 

we conducted Wilcoxon’s signed-rank test and compared results 

from both experiments for 5 disease classification problems 

together (n=50). In the case of a 10% removal rate, the 

difference in AUC is not statistically significant (p = 0.060). On 

the other hand, the difference in AUCs between SVM-RFE and 

RRFE for 50% removal rate is statistically significant (p < 

0.001). 

In our final experiment, we wanted to test how the availability of 

data influences the effectiveness of the disease network-based 

feature selection approach in RRFE. Therefore, we constructed 

an additional network from 9 years of data (2000-2008) and ran 

the first two experiments for RRFE again. To our knowledge, 

this is the largest disease network created to date. 

However, our results demonstrate that a larger network does not 

produce significantly better results in classification performance 

(Figure 2). Wilcoxon’s signed-ranks test confirms our 

observations from Figure 2 with p=0.5867. Based on the results 

of this experiment, we can conclude that using more recent and 

less complex disease networks does not significantly impact the 

classification performance. One of the reasons for weak 

performance of the large network may also lay in the fact that 

some disease codes change from year to year. Therefore, it does 

not make sense to store disease interactions that no longer exist 

in the newer versions of ICD9-CM coding.  

4.2 Stability 
To compare the stability of the selected features over multiple 

random subsamples and different experimental settings for both 

SVM-RFE and RRFE, we measured the frequency of 

occurrences when a specific disease code was included in an 

optimal set of features (Table 4). The optimal set of features is a 

feature set obtained after all RFE iterations have been executed 

and a set with the highest performance is chosen. Altogether we 

compare optimal sets from different experimental settings done 

during the comparison of performance, described in Section 4.1. 

 

Table 4. Frequency of disease code selection in the optimal 

feature sets for Hyperlipidemia (272.4) classification. 

SVM-RFE RRFE 

ICD9-CM 

Code 

Freq. ICD9-CM 

Code 

Freq. 

401.9 80 250.00 80 

414.01 78 401.9 80 

V27.0 78 414.01 80 

250.00 70 V27.0 80 

272.0 70 403.90 79 

403.90 64 530.81 78 

401.1 44 244.9 75 

434.91 44 272.0 74 

477.9 44 428.0 74 

244.9 42 V45.82 74 

 



Table 4 compares consistency of selection for the most 

frequently selected codes in the first classification problem – i.e. 

Hyperlipidemia classification. The compared optimal sets are 

very similar in their mean number of features in an optimal set 

(151.85 for SVM-RFE and 151.26 for RRFE). As expected, the 

consistency of selected features in RRFE selection is much 

higher as compared to SVM-RFE. There is only one disease 

code (401.9 - Unspecified essential hypertension) that was 

chosen in all experiments by both feature selection methods. 

On the other hand, there are some codes that were not 

represented in a significant number of SVM-RFE based optimal 

feature sets. For example, diagnosis code 250.00 (Diabetes 

mellitus without mention of complication, type II or unspecified 

type, not stated as uncontrolled), was missing in 10 out of 80 

optimal sets when SVM-RFE was used. RRFE included this 

feature in all random subsampling datasets with different 

experimental settings.   

5. CONCLUSIONS AND FUTURE 

RESEARCH DIRECTIONS 
This paper presents an adaptation of the RRFE method for 

feature selection, originally used in bioinformatics, as well as 

application of this method to feature selection in imbalanced 

high-dimensional hospital discharge data. The results confirm 

the advantages of the method that were successfully used in the 

bioinformatics domain by demonstrating the increased stability 

of selected features. Furthermore, we observe significant 

improvements of classification performance when large batches 

of features are eliminated. Due to an extremely large number of 

samples in hospital discharge datasets, this is especially 

important. In our case, a dataset consisting of nearly 7 million 

samples collected in one year was used for learning. Since this 

dataset represents hospital discharge data for approximately 

20% of discharges from U.S. hospitals, we can estimate the 

number of hospitalizations approaches 100,000 per day. In such 

large data settings it is important to effectively select the 

important features for classification.  

Although we evaluated the classification performance of the 

proposed feature selection solution using SVM classifier, it 

would be possible to use it in combination with another, 

preferably simpler, classification model. Use of a simple 

classifier makes the proposed method more appropriate for 

scalability to large data settings.  
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