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Abstract: Early classification of time series has been receiving a lot of
attention recently. In this paper we present a model, which we call the Early
Classification Model (ECM), that allows for early, accurate and patient-specific
classification of multivariate observations. ECM is comprised of an integration
of the widely used Hidden Markov Model (HMM) and Support Vector
Machine (SVM) models. It attained very promising results on the datasets we
tested it on: in one set of experiments based on a published dataset of response
to drug therapy in Multiple Sclerosis patients, ECM used only an average of
40% of a time series and was able to outperform some of the baseline models,
which needed the full time series for classification. In the set of experiments
tested on a sepsis therapy dataset, ECM was able to surpass the standard
threshold-based method and the state-of-the-art method for early classification
of multivariate time series.
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1 Introduction

A time series of several classes can be created by observing various patient attributes
over time. Such data can be used for experiments involving feature selection and
clinically relevant temporal pattern identification, among other uses. Since many clinical
applications tend to be very time sensitive, being able to use a shorter time interval for
classification is often more favorable than having a slightly more accurate result. For
example, observing only the first portion of a patient’s data may allow doctors to identify
a deadly condition before it has time to fully manifest or to be able to safely stop
treatment after it has cured the patient and before it can do unnecessary damage. Early
classification techniques are therefore beneficial for this realm, as they offer the very
favorable tradeoff of using less of a time series at the cost of some accuracy of the result.
The challenge of adapting early classification for biomedical purposes is ensuring that
the result is obtained early enough to make a difference and also accurate enough for the
doctor to be confident in the model’s result. The goal of this paper is to introduce
an Early Classification Model (ECM) that, by training on a full time series, offers
classification at a very early time point during the testing phase, while staying
competitive in terms of accuracy with other models that use full time series both in
training and testing.

In an early classification context (see Figure 1), the objective is to provide patient
specific classification of unknown time series as early as possible. Therefore, instead of
utilising the whole time series, the early classification method looks into a portion
(current stream) of the unknown time series and determines whether it is able to predict
the label of the whole time series without looking at the rest of the time series. If the
method is able to predict at the time point which is at the end of the current stream, the
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label is predicted. Otherwise, the method requires more data for the unknown time series
and looks at a larger segment and does so until it is able to predict the label of the time
series.

Figure 1 Early classification framework (see online version for colours)
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Notes:  Early Classification (EC) method looks into a portion 7(1...7) of length 7 of the
unknown time series 7. The early classification Model is then applied to the
portion 7(1...7) and the process is repeated (adding new time points) until the
label is predicted or the end of the time series is reached without obtaining a
prediction.

Analysis of biomedical data has been a popular topic for many years, although using this
kind of data for early classification is a far less explored field. Models that are naturally
able to leverage temporal information, such as HMM, have been shown to be particularly
effective for biomedical data since the temporal aspect plays a vital part in describing the
data. Furthermore, since HMMs are resilient to having missing values in the data, they
seem like a natural fit for biomedical applications, which often contain a significant
number of missing values due to the various human and technological factors involved in
obtaining the data. Lin et al. (2008) adapt HMMSs to classify instances based on time
series gene expression data and their results reinforce the effectiveness of HMMs in a
biomedical context.

Another important issue often encountered when dealing with gene expression time
series data is the varied response rates problem. Due to the differences in internal
chemistries of each patient, the same condition can take different amounts of time to
manifest in different individuals. Thus, while the overall pattern of the expression profile
for a particular condition may be very similar in each patient, it can show up as stretched
or compressed in time, making it much harder to detect accurately. By building a hybrid
model we were able to not only provide early classification for multivariate time series,
but also address this problem of detection.
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Although attaining accurate classification is often the primary goal of machine
learning task, in many applications it is important to attain decisions that are not only
accurate, but can also be easily interpreted and obtained early. For example, diseases like
sepsis, a systemic inflammatory response syndrome triggered by infection, are often
diagnosed too late. The sepsis therapy problem is compounded by the fact that therapy is
delayed until the patient is transported to an intensive care unit. Delay in treatment after
sepsis is diagnosed is a serious problem, as it may have dire consequences for the patient.
It is reported that for every seven hours that the administration of appropriate therapy is
delayed, the mortality rate increases by about 7% (Dellinger et al., 2008). Detecting the
patient’s condition as early as possible can save his or her life. Early classification
provides the opportunity to administer an appropriate therapy early enough for therapy to
have a strong effect. As a result, early classification is highly desirable in this context.

In this paper, we introduce a hybrid model specifically designed for early and
accurate classification of multivariate biomedical time series data. In addition to offering
good performance and outperforming several baseline methods applied to a number of
datasets, we successfully address the early classification requirement of sepsis therapy.

The remainder of the paper is organised as follows. Section 1.1 discusses some of the
related work pertinent to this paper, including works discussing the potency of HMMs
and their applications to gene expression data. In Section 2 we provide an explanation of
our hybrid model as well as an in-depth description of how the hybrid model is trained
and used for early classification. Section 3 includes a description of the various datasets
we used, an explanation of our experimental setup and the results we obtained in our
experiments. Finally, Section 4 includes concluding remarks and possible avenues for
future research.

1.1 Related work

Due to their flexibility and popularity in the field of statistics, HMMs have long been the
model of choice for a variety of applications, including speech recognition, natural
language processing and, more recently, gene expression analysis. In his timeless tutorial
on HMMs, Rabiner (1989) provided the first in-depth examination of the mathematics
behind these models in less abstract environments, offering insights into how these
models could be used to effectively model real world systems. His analysis of the
application of HMM s for speech recognition spurred researchers to adapt HMMs for this
purpose, generating a vast number of papers on the topic. In his survey, Jiang (2010)
summarises a number of these papers, focusing on methods that utilise discriminative
training techniques to provide significant improvements in the field of speech
recognition. However, in our experiments it required more computational time, without
an improvement in performance.

As the aforementioned survey shows, the notion of combining generative and
discriminative techniques into a single model has been around for some time. One paper
that offers a very intuitive and adaptable approach to creating such a model, which was
not included in the survey, was written by Huang et al. (2006). Although Huang’s model
was designed for the task of online handwriting symbol recognition, we found that the
underlying approach used to build this model could easily be adapted to the realm of
early classification of gene expression time series. Despite the very different natures of
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the handwriting symbol and gene expression time series datasets, we were able to create
an ECM using the same general approach. The method inherits the practical and
dynamical modeling abilities from HMMSs and its robust discriminating ability derived
from Support Vector Machines (SVMs) is vital for classification tasks. However, we are
exploring every relevant segment length at every possible starting point in a manner
which will be explained in the next section and that was not done in previous work.

The application of HMMs to the field of gene expression time series classification is
much more recent than their uses in speech recognition, but there has already been a
significant amount of research performed in this area. Among the earliest efforts of
utilising the potency of HMMs for gene expression analysis was Schliep et al. (2003)
paper. Although focused on clustering the gene expression time series, rather than on
classifying them, the authors nonetheless managed to show the utility of HMMs in the
context of gene expression. This utility was attained primarily due to the fact that HMMs
leverage the temporal dependencies of the data, whereas methods that ignore these
dependencies lose a lot of information, as evidenced by the difference in the quality of
the clusters generated by both kinds of methods.

The work of Lin et al. (2008) is also noteworthy, as they were one of the forerunners
of using HMMs for classification of gene expression time series. However, despite the
novelty and efficiency of Lin’s model, it was incapable of performing early classification
of the time series. In their paper, several experiments were done to perform classification
at each time point using shorter time series. Their model was not patient-specific since
the length of segments considered was very inflexible; that is, if the model is trained on
time series of length 3, the prediction is always done at the third time point. Our ECM
model addresses this issue directly and was, to the best of our knowledge, one of the
first models that is capable of patient-specific early classification of multivariate gene
expression time series.

Borgwardt et al. (2006) borrowed tools from system identification to capture the
‘essence’ of time series of gene expression profiles, on top of which they build an SVM
kernel to discriminate between time series. Their method also takes into account the
dynamic evolution over time as well as the temporal characteristics of the data. More
specifically, they model the evolution of the gene expression profiles as an LTI
dynamical system (Kalman filter) and estimate its model parameters. Based on those
model parameters, they generate infinite sequences out of relatively short input time
series. An SVM kernel out of infinite sequences is then used to classify these time series.
Basic differences between our methods, besides using Kalman Filter instead of HMM,
include the fact that Borgwardt et al. used transformed full time series as input into SVM,
while we are using shorter segments. The other more important issue is that our
algorithms are designed for early classification, while Borgwardt et al. similarly to Lin
et al. model was very inflexible, i.e. for the model trained on time series of length 3, the
prediction is always done at the 3rd time point.

While the task of early classification is by no means new, its application to
multivariate time series is an extremely unexplored field. In fact, to the best of our
knowledge, the only other research in this area was performed by Ghalwash and
Obradovic (2012).

Ghalwash and Obradovic (2012), in their method MSD (Multivariate Shapelet
Detection) adapt the use of time series segments called shapelets, which were originally
developed for univariate time series by Xing et al. (2011, 2012), for early classification
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of multivariate data. Time series patterns were extracted from all dimensions of the time
series that distinctly manifest the target class locally. The time series were classified by
searching for the earliest closest patterns. While this shapelet-based approach was able to
outperform a number of baseline models, it had several limitations: the components of
the multivariate time-series shapelet needed to have the same starting positions and the
MSD method could not handle missing values. Moreover, MSD was unable to address
the varied response rate problem that is often encountered in clinical data.

Our ECM model uses HMMs to transform short segments of time series into their log
likelihoods, which are then used as input to SVM, in order to obtain predictions
optimised for early classification. In our preliminary work which was published in BIBM
conference, ECM model was tested on a published dataset of response to drug therapy
in Multiple Sclerosis patients, used only an average of 40% of a time series and was able
to outperform some of the baseline models, which needed the full time series for
classification (Ghalwash et al., 2012).

2  Model description

In this study, we propose using a hybrid model that combines a generative model (HMM)
with a discriminative model (SVM) for early classification of a multivariate time series.
We first give a brief introduction to HMM and SVM and then introduce our hybrid
model in the following sections.

2.1 HMM

Hidden Markov Models (HMMs) are powerful statistical models for modeling time-
series data that can be characterised by an underlying process generating an observable
time series (Rabiner and Juang, 1986; Rabiner, 1989). The HMM, referred to as A, is
defined as tuple A = (S, I1, 4, B) where

e Sis a finite set of states.
e [II= {m} are the initial state probabilities.

e A= {a;} are the state transition probabilities, where a;; is the probability of transition
from state i to state .

e B ={b;} is the emission probabilities, where b; is the probability of generating a real-
value at state i.

Lin et al. (2008) showed that using two states allows for efficient alignment of patients
with different response rate, as the two states represent two phases of the response (phase
or disease in our context). Therefore, in our context we assume that the cardinality of the
set of states S is 2, see Figure 2. The emission probability is assumed to be drawn from a
multivariate Gaussian distribution whose dimension equals the number of genes. In other
words, b ~N(u,0,) where 1 and o; are the mean and standard deviation of the

multivariate Gaussian distribution of the state i. Hence, the covariance matrix is assumed
to be diagonal to avoid overfitting and to allow for fast computation of the model.
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Figure 2 HMM architecture (see online version for colours)
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Notes:  7; is the initial state probability. a; is the transition probability from state i to
state j. b; is the emission state probability which is drawn from a mulitvariate
Gaussian distribution of the state i.

2.2 SVYM

SVMs belong to the family of kernel-based techniques that have proven to be extremely
effective for machine learning purposes. They are a popular tool as they have a number
of useful features, such as having theoretical guarantees of performance and not being
affected by the curse of dimensionality. In instances where the data is not linearly
separable, SVMs can be used to transform the dataset by mapping it to a high-
dimensional feature space via the kernel trick (Boser et al., 1992). After this
transformation has been performed, the SVM finds the maximal margin hyper-plane,
expressed as a linear combination of support vectors of the training set, which is then
used to classify the data:

A (X)=Sgn(Zy,~0!,¢(XiX+5)) (M

The set of parameters ¢; is computed by solving a convex quadratic programming
problem with linear constraints (Burges, 1998). Several kinds of kernel functions are
often used with SVMs, including polynomial kernels, Radial Basis Function (hereinafter
RBF) kernels and sigmoid kernels. & can be obtained using the Karush-Kuhn-Tucker
condition (Burges, 1998).

2.3 Hybrid model for early classification

The HMM A is used to learn the distribution of the patterns in a time series gene
expression training dataset. The SVM takes the outputs of the HMM models as input: log
likelihoods of segments in the time series gene expression training dataset. The role of
SVM is to determine the combination of HMM models that could be trusted when
classifying the time series based on the current stream.
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The reasoning behind using a hybrid model is that if a generative model encounters a
short segment that is repeated often in both classes (which can be a fairly common
occurrence in gene expression data), it will likely not be able to distinguish between the
two classes effectively. By applying a discriminative model on top of the generative model’s
output, we are able to overcome this problem and improve overall performance. The
details of how the hybrid model is trained and applied to the test data are provided next.

2.3.1 Data preparation

The dataset is first divided into training and test data. The test data remains untouched
until the very end and all of the following procedures are applied to only the training data
(see Figure 3 (a)). When we mention test time series in the Training Phase, we are
referring to the portion of the training data held out for testing for a particular fold of the
internal cross-validation.

Figure 3 ECM training process: (a) the dataset is divided into ten partitions for ten cross-
validation process. For each fold, ECM is trained on nine partitions and then tested on
one partition; (b) for each training data, the data is divided into five partitions where
HMM is trained on four partitions and applied on one partition to generate log
likelihood data for SVM; (c) the log likelihood data is divided (same partitions as in
HMM) into five partitions where SVM is trained on four partitions and applied on one
partition to generate the posterior probabilties; (d) the ROC curve approach is applied
to the posterior probabilities data to identify the best discriminative margin threshold
for SVM (see online version for colours)
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2.3.2 Training phase

In general, several HMMs are trained on short time series segments and their log
likelihoods on validation data are generated as features for the SVM. We opted for using
an RBF kernel SVM.

STEPI: Train HMMs of specific length

Given a time series of length L from one class, we extract all disjoint segments of
length /, starting from position 0 and an HMM is trained on those segments. We refer to

that HMM as A]. We then shift the starting position by one time point, extract all
disjoint segments of length / starting from position 1 and train another HMM on those
segments. We call it A}. If / < L/2, we generate / HMM models. We vary the length and

the appropriate shifts in order to capture every possible pattern, as in Figure 4, since these
patterns can have different lengths and start at different positions.

Figure 4 Step 1 of the algorithm is explained on the time series of length L = 24 and for HMM
trained on all segments of length / = 6 (see online version for colours)
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Ag segments of length I = 6
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Therefore, the number N; of the HMM models, Aﬁ wherei={1,...,N,} , trained on all
segments of length / at every starting position is
/ ifl<L/2,
N,=qL-I+1 otherwise.

STEP2: Train HMMs for different lengths

We repeat the above procedure for different segment lengths / up to / + £. k is a user-
defined parameter, set small enough to be able to capture all possible patterns, but / + k
should not exceed 50% of the time series to still be able to identify the pattern as early as
possible. Hence, the maximum number of models to be generated is

N, +N, +.. +N, =l+(+D)+. A k)= +1)(k/24]).
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The same technique is applied to the time series of the other class, resulting in a
maximum of N models where:

N=2(k+1)(k/2+I).

STEP3: Generate features for SVM

We apply all trained HMMs on the test data as follows: first, we take the shortest time
series segment O extracted from the training data. If the length of that segment is /, we
then read / time points from the test time series (O)). Next, we ask all N HMMs to
generate their log likelihoods on the test time series we are currently examining. In
general, an HMM is able to generate a log likelihood on the test time series if the model
is trained on segments of length shorter than or equal to the length of the test time series.
If the length of the current test time series is greater than /, then the A! model uses only

the last portion / time points of the current time series, such that the length of this portion
has the same length as the segments used for training the HMMs. The log likelihoods
generated in this fashion, log P(O,[A); j={1,..., N}, are then considered as features for

an SVM (see Figure 3 (b)).

The next part of this step is to read one more time point from the time series, so that
the current test time series length is incremented by one. All models are asked to provide
their log likelihoods on this time series to be another row for the SVM. This process is
repeated until we have read all of the time points of the test time series. After this stage,
we will have generated N, instances with dimensionality N for the SVM, all of which
have the class label of the test time series. Finally, we repeat this procedure for all test
time series.

We repeat steps 1-3 five times to obtain five-cross validations. Here we reinforce the
fact that the HMMs are not used for prediction of the class of the time series, but rather
their likelihoods are used as data for the SVM, which is made aware of the class labels
independent of the HMMs.

After the cross validation is done, the log likelihoods generated by HMMs are ready
to be used as features for the SVM. The parameters of the SVM are optimised using cross
validation on the log likelihoods generated by the HMMs. Then another five-cross
validation is conducted for SVM to generate a score for each example. We use the
same partitions of the five-cross validations used for the HMM training phase to avoid
any bias (see Figure 3 (c)). When testing the SVM, the model computes a posterior
probability estimate P(y|0,) of the class y for each example O, Namely, in a binary

classification context, an SVM gives two probabilities: P(y,|0,) and P(y,|O,) (note
that P(y,|0,)=1-P(»,|0,) ). The scores for all examples are computed as the difference
between the two probabilities P(y,|0,)—P(y,|0,). Using the scores of all examples and

their labels, we identify (using a standard ROC curve approach) the best threshold &
that maximises the balanced accuracy (average between sensitivity and specificity)
(see Figure 3 (d)). Finally, both HMM and SVM are trained on training data which
although being the same is essentially different — HMMs have time series as input, while
SVM has log likelihoods, the output of HMMs, as input.
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2.3.3 Testing phase

We note here that the test data allocated in the very beginning of the procedure is never
used for training either the SVM nor HMM models (see Figure 3 (a)).

The sketch for the test phase is illustrated in Figure 5. For a given time series with an
unknown label, we read / time points (the current stream) from the test time series. We
then ask all N HMM models to provide log likelihoods. We use their outputs as inputs to
the SVM, as described above. The score of the current time series is then computed using
the probabilities generated by the SVM as P(y,|0,)-P(»,]0,). If the score is greater

than the threshold 6, then the current time series is most likely from class y;, otherwise, it
is from class y,. We then ask if the probability estimate for the selected class is high
enough to be confident about the prediction. A user-defined parameter Conf is used to
measure this level of confidence. If the probability estimate is higher than the confidence
level Conf, we stop at the current time point and predict the time series. Otherwise, we
read one more time point from the current time series and repeat the procedure. If we
reach the end of the time series and are not able to classify the time series, we mark that
test time series as ‘not covered time series’.

Figure 5 ECM Test phase

N HMM N log
models likelihoods
/,

All > ll]

Alz P 1o

Posterior
Probabilities

. . P, = P(y1|01)
. SVM —-P,>4
Ay, |- P = Psl0)] R

4k
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H+k
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Hk
ANl+k > U~

time series N

Read one more time point and add to the current stream

Notes: Each HMM model A! reads the last / time points from the current stream and

generates log likelihood /I. The log likelihoods are then passed to SVM to
generate the poseterior probabilities of the time series being generated from
each class. The margin between the two probabilities is compared to the
threshold 6 to determine the class membership. If the probability of the
predicted class is greater than the confidence level Conf then the process is
stopped. Otherwise, we read one more time point and then the process is
repeated until the prediction is obtained or we reach the end of the time series.
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2.3.4 Whole process

The above training and testing phases are repeated 10 times using 10 different partitions
(10 cross validations). The average accuracy, as well as the coverage rate (how many
time series out of the test time series data were classified) and the fraction of the time
series used for classification, are reported.

3 Experiments

3.1 Experimental setup

All of the procedures have been implemented in C++. We used 1ibSVM, which provides
probability estimates (Chang and Lin, 2011). The code is publically available at
www.dabi.temple.edu/~mohamed/ECM. All experiments are conducted on a PC Intel
Core 17 2.8 GHz with 8GB RAM.

3.2 Dataset description and results

Time series gene expression experiments have been used in a variety of biomedical
applications (Tchagang et al., 2009). These experiments consist of building expression
profiles, which are essentially functions that model the changes in the expression levels
of various genes. Such changes are collected by performing multiple microarray
experiments over a period of time (Spellman et al., 1998). Each experiment usually
measures the expression level of multiple genes at a given time point. In this context, the
gene expression time series classification problem is the process of determining the class
of a previously unseen time series, based on the expression levels recorded for the time
series in the training dataset. These classes can be defined in a variety of ways to help
answer different kinds of questions. For example, as noted by Borgwardt et al. (2006),
‘Will patient X respond well to a certain therapy or drug treatment? Is patient X going to
develop sepsis in the next few hours? Is patient X recovering from a disease?’

A clinical dataset, which we will refer to as MS70, was generated to study the
changes in cellular functions in multiple sclerosis patients in response to drug therapy
with IFNS (Baranzini et al., 2005). The dataset contains time series gene expression
values for 52 patients. The patients were classified as good responders (33 patients) or
bad responders (19 patients) to the drug. Blood samples were taken every three months in
the first year and every six months in the second year. Some patients miss certain
measurements, especially at the seventh time point. Thus, the gene expression values
were measured an average of five—seven times for each subject. In order to adhere to the
limitations of clinical settings (in which only a small, pre-specified number of genes is
provided) and to be able to effectively compare ECM results with those attained in other
studies, several datasets comprised of a fairly small number of genes were generated.

The identification of triplets of genes for a Bayes classifier of time series gene
expression data of multiple sclerosis patients’ response to a drug was performed by
Baranzini et al. (2005). Previous research identified 12 genes in terms of triplets. Hence,
we generated four datasets: Baranzini3A and Baranzini3B, which consist of one triplet
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of the best two triplets of genes; Baranzini6, which has the top two triplets; and
Baranzinil2, which has all 12 genes identified by all triplets. A discriminative HMM has
been developed and applied to the MS70 dataset to reveal the genes that are associated
with the good or bad responders to the therapy (Lin et al., 2008). A total of nine genes
were found that are associated with the therapy, seven of which are identified using the
last time stamp. Hence, we constructed two datasets, called Lin9 and Lin7, consisting of
nine and seven genes, respectively. The entire MS70 dataset, containing all 70 genes, was
also used for our experiments. A mixture of HMMs has been developed to identify the
genes that are associated with patient response to the treatment (Costa et al., 2009). A
total of 17 relevant genes were found, so we constructed a dataset called Costal7 that is
comprised of the 17 genes. Table 1 contains the list of the genes used in our experiments
for the drug response datasets.

Table 1 The list of the genes used in our experiments for the drug response datasets

Dataset Genes

Baranzini3A Caspase 2, Caspase 10, FLIP

Baranzini3B Caspase 2, Caspase 3 , IRF4

Baranzini6 Caspase 7, Caspase 10, IRF2, IRF4, IRF6, IL-4Ra
Caspase 2, Caspase 3, Caspase 7, Caspase 10

Baranzinil2 Flip, IRF2, IRF4, IRF6, IL-4Ra, IL12Rb1, STAT4, MAP3K 1
Lin9 Caspase 2, Caspase 3, Caspase 10, [L-4Ra

IL12Rb2, MAP3K1, IRFS, Jak2, RAIDD
Lin7 Caspase 2, Caspase 3, Caspase 10

IL-4Ra, MAP3K 1, Jak2, RAIDD

Caspase 2, Caspase 3, Caspase 10, Caspase 5
Costal? MAP3K1, STAT4, IRF2, IRF4, IRFS, IRF8, BAX, Tyk2
IL-4Ra, IL-2Rg, IFN-gRb, IFNaR2, Jak2

In order to have a possibility of effectively comparing our method with other methods
proposed in literature, we first created 8 datasets that posses the same characteristics as
those presented by Baranzini et al. (2005), Lin et al. (2008) and Costa et al. (2009). Three
of these datasets were used to determine the best confidence value to be used by our
model, since it was the user-defined parameter in our method. In this set of experiments,
we trained our model with a distinct value for the confidence parameter (0.4, 0.5 and 0.6)
on Baranzini6, Baranzinil2 and Lin9, respectively. Note that although the possible
values of the confidence parameter are in the [0, 1] range, we noticed that accuracy drops
for values of confidence parameter smaller than 0.4 and coverage suddenly drops when
we choose values greater than 0.6. Both trends could be easily explained: if we allow
decisions when we are not confident, our model will decide early, but the accuracy will
not be sufficient. On the other hand, if our requests for confidence are too high, we have
generally higher relative accuracy scores, at the expense of coverage and earliness and
we might end up without decisions until the last time stamp. Therefore, we omitted
values below 0.4 and above 0.6, for the set of experiments dealing with gene expression
classification. Finally, we opted to use a value of 0.5 for the confidence parameter, as this
value seemed to offer the best middle-ground of the various tradeoffs evident in Table 2.
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Table 2 Classification accuracy, coverage and earliness in prediction at different levels of
confidence (Conf) on various datasets

Baranzinié Baranzinil2 Lin9
Conf=0.4 62 85 87
Relative accuracy Conf =0.5 66 85 85
Conf=0.6 71 83 86

Conf=0.4 96 100 100

Coverage Conf=0.5 92 100 100
Conf=0.6 86 98 94
Conf=0.4 44 43 43
Earliness Conf=0.5 49 43 44
Conf=0.6 51 46 50

To further explain the effectiveness of our approach we show a real case from the
Baranzini3A dataset. Figure 6 illustrates a 3-dimensional gene expression time series
(genes Caspase 2, Caspase 10 and FLIP) observed at six time steps. In the top panel, a
patient who is a poor responder to the drug is correctly classified by our hybrid approach
at the third time point. In the bottom panel, a patient who is good responder to the drug is
correctly classified at the fourth time point. Although the patterns of both patients look
similar to each other such that it is hard to distinguish between them by eye, our hybrid
model was able to classify them correctly and early.

Figure 6 Time series for three gene expression for a patient who is a poor responder (top panel)
and good responder (bottom panel) to the drug are represented (see online version
for colours)
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Gene Expression
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Notes:  The subjects have been correctly classified at the third and fourth time point,
respectively.
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Figure 7 compares different values for the user parameter confidence, which measures
the confidence level the user expects from the model. Since the relative accuracy is
barely affected by the value of confidence (in the specified 0.4—0.6 range) over the eight
datasets, it is clear that the model is insentitive to the parameter and the results are fairly
robust. The same comparison has been conducted to see the effect of different values of
the confidence parameter on the earliness measure, as shown in Figure 8.

Figure 7 Measuring the sensitivity of the user parameter confidence on the relative accuracy for
different datasets (see online version for colours)
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Figure 8 Measuring the sensitivity of the user parameter confidence on the earliness for different
datasets (see online version for colours)
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The outcome of applying our model to the remaining 5 datasets (out of the 8 that we
initially created) is shown in Table 3. The relative accuracy of our model on each of the
datasets is reported, along with the performance of the best models presented in literature
when applied to the same datasets. Note that the accuracy of the ‘best’ models is based
on using the entire time series, while the accuracy of our model is based on using,
on average, only 3/7 of the testing time series and obtaining patient-specific decisions.
This important fact emphasises the effectiveness of our method: even though the best
models on average outperform our model in terms of accuracy, we are able to provide
competitive accuracy scores while using a significantly smaller portion of the full time
series. In two of the datasets we were actually able to outperform the best models on
accuracy, in spite of utilising less than a full time-series when testing, reinforcing our
model’s efficiency. The performance of MSD on all of these datasets is also reported,
although it performed rather poorly across the board and could not even handle the MS70
dataset. This was most likely due to the high amount of missing values in these datasets,
since MSD applies cut and glue strategy in the case of missing values.

Table 3 Classification accuracy and earliness in prediction (in parentheses) for MSD, the best
model in literature and our approach on various datasets

Dataset MSD Best ECM Better?
Baranzini3A 72.7 (~3/7) 87.8 (7/7) 86.2 (~3/7) x
Baranzini3B 65.2 (~3/7) 87.5 (7/7) 88.5 (~3/7) \/
Lin7 70.8 (~4/7) 85.0 (7/7) 88.7(~3/7) N
Costal7 66.7(~3/7) 92.7(7/7) 79.7 (~3/7) x
MS70 81.4 (7/7) 72.0 (~3/7) x
Notes:  ~ means on average. Wherever our approach achieved higher accuracy column

Better? has a \ mark, otherwise there is a x mark.

Figure 9, which provides the accuracy of the model developed by Lin et al. (2008) when
using a shorter time series of fixed length in training and testing, further displays
the strength of our model, considering that the only other method capable of early
classification in a multivariate context was noticeably less accurate.

3.3 Sepsis therapy dataset results

To test the performance of ECM on a sepsis-related dataset we opted for a sepsis model
of the acute inflammatory response dataset, which consists of four variables varying over
time (Day et al., 2010). The authors adopted a subsystem approach to ensure that the
interactions of the model variables are consistent with biological observations. Therefore,
the model is able to capture a variety of clinically relevant scenarios associated with the
inflammatory response to infection. The model displays three physiologically relevant
equilibrium points, which correspond to biological states of health, aseptic death and
septic death. We chose to use this model since, to the best of our knowledge, there is
currently no publically available clinical dataset possessing the characteristics necessary
for our experiments and we used this model to generate a small number (50) of patients
to further adhere to the restrictions of a real-world scenario.
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Figure 9 Comparison of the accuracy when using a shorter time series of fixed length in training
and testing (Lin’s model) and ECM (different segment lengths and different shifts) on
Lin7 dataset (see online version for colours)
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Notes: ECM accuracy at the average earliness, consisting of three time points, is
shown. Lin’s results on all time stamps were worse than ECM results.

We first obtained the relevant statistics of the threshold-based approach that is used for
examining patients in hospitals. This approach relies on monitoring the value of one
characteristic variable and labelling the patient as non-healthy as soon as it passes the
threshold of 0.05. Although this is a fairly simple approach, it is currently considered to
be the state-of-the-art and is used in hospitals. However, the approach of this model is too
aggressive and even patients who do not need therapy are treated. To test this model in
comparison to ECM, a population of 50 virtual patients is generated by the mathematical
model (Day et al., 2010) on the simulation time of 24 hours (one day) with hourly
observations of all 4 given variables. Virtual patient state was determined from the values
of the variables at the end of the total simulated time spent in the hospital. The population
consisted of 29 virtual patients classified as healthy and 21 classified as septic or aseptic
(needed treatment). We also use this generated data to test the performance of MSD,
which was able to perform much better on this dataset than on the drug response datasets
since there were no missing values. The results are shown in Table 4 and it is evident
that:

e  The threshold and MSD methods appropriately treat unhealthy patients in the second
or third hour.

e  Our approach appropriately treats the unhealthy patients in exactly the second hour.

e At the same time, healthy patients are not treated at all until the model confirms that
they do not need treatment (which occurs by the fourth hour at the latest), at which
point the remainder of the time series no longer needs to be considered.
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e Both the threshold and our method do not generate any false negatives, which is a
vital statistic in the medical field (every false negative is essentially a patient that
ends up dying due to misclassification).

e  Although MSD offers very similar results to our approach, it did result in one false
negative, which is a major limitation in clinical applications.

Table 4 Classification results of threshold-based method, ECMTS and ECM on virtual patient

data
Model FN FP P TN Earliness
Threshold 0 7 21 22 2-3
MSD 1 3 20 26 2.12
ECM 0 3 21 26 2

The effectiveness of our method becomes clear when examining the false positive
and earliness scores: using our method, four virtual patients were spared an incorrect
diagnosis of sepsis. In reality that would effectively save real patients money on
treatment and preserve their health (since unnecessary treatment can cause damage and
eventually death). Furthermore, both the threshold-based method and MSD predicted all
of the unhealthy patients at either the second or the third time step, whereas our method
was able to do so without needing the third time step. Finally, while the performance of
MSD was very similar to our approach, the false negative it produced suggests that our
method is better.

4 Conclusion

In this paper we proposed a novel application of a hybrid HMM and SVM model in the
realm of biomedical data. Our ECM is able to handle multivariate gene expression time
series data and is capable of performing patient-specific early classification on this kind
of data with unprecedented results. On datasets gathered from real-world scenarios, our
method achieved relative accuracy scores that were on average slightly lower than the
best results presented in literature when models were tested on the same datasets
(although on two of these datasets, our model had a higher accuracy score). However,
while the models from literature attained their best results after observing the full time
series, our model was able to keep up by utilising only 40% of the whole time series, thus
displaying its early classification potential. Our approach was also able to significantly
outperform the only other method designed specifically for early classification of
multivariate time series. The performance of our model on a set of virtual patients was
even more impressive: when compared to results obtained by applying the decision
criteria used in the vast majority of hospitals, our model was able to correctly classify a
larger proportion of patients, without misclassifying (and thus killing) any patients.
Furthermore, it was able to do so as ecarly or even earlier than both the standard
threshold-based approach and MSD, without generating any false negatives, suggesting
that there are no downsides in using our method over the threshold-based approach or
MSD for this purpose.
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In closing, one of the assumptions of using HMMs is that there are enough examples
available for the model to accomplish a sufficient amount of learning. Because medical
data is often noisy and expensive to obtain, this assumption cannot always be met
when real data is involved (in some real-life scenarios, the data contains only 10 or 15
examples), rendering our ECM approach useless. We intend to address this issue in the
future, while still allowing for multivariate time series to be classified early.
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