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Abstract A prediction model built dynamically using
patient data from multiple hospitals can serve as a tool for

suggestive knowledge in clinical decision support. Such a

tool that accommodates queries based on attributes of
interest is helpful in building a targeted model from mul-

tiple hospitals when a local clinical data repository does not

have sufficient number of records to draw conclusions
from. However, because of privacy concerns and legal

ramifications, hospitals are reluctant to divulge raw medi-

cal records. Hence, mechanisms to build distributed pre-
diction models using just the statistics of patient data are

attractive. Distributed ID3-based decision tree (DIDT)

algorithm is such a prediction model builder. In this study,
we analyze National Inpatient Sample data for 3 years and

demonstrate that DIDT can be used to help collaboratively

build better predictive models when hospitals have insuf-
ficient number of records for good local models. Using 261

attributes for model building, we showed that collaborating

hospitals with less than 100 cases of hospitalizations for a
targeted disease were able to achieve good improvement in

accuracies for predicting hospitalization collectively using
a distributed model compared to local models. When

relying on local models for predicting risks for sample

diseases, more patients were misclassified and some local
patients could not be classified. Our collaborative model

effectively reduced misclassification providing accurate

early diagnostics to additional patients. The profile of

hospitals with sufficiently large number of patient records
was explored to identify local models with specific char-

acteristics that can serve the needs of hospitals with

insufficient data.

Keywords Distributed decision making  Privacy
preserving prediction model  Hospitalization risk
prediction

1 Introduction

Practices in medical domain are ‘‘characterized by much

judgmental knowledge’’ (van Melle 1978), and conse-

quently suggestive models that can help in decision making
are valuable to clinical practitioners. Survey results have

also confirmed that physicians are interested in such deci-

sion support systems (Sittig et al. 2006). First generation
clinical decision support systems (Buchanan and Shortliffe

1984; Bobrow et al. 1986) were rule-based and static in

nature. They could not learn from the body of new patient
data generated over periods of time. Building knowledge

from opportunistic data is the hallmark of data mining
techniques. Data mining algorithms have shown to be

helpful with building models in domain-specific applica-

tions. Identifying patients at risk for targeted communica-
tions (Khalilia et al. 2011) have been accomplished by

applying data mining methods. Other prediction models of

recent interest are related to emergency admissions (Li
et al. 2012) and hospital readmission costs (Kansagara

et al. 2011). Personalized medicine has also benefited from

data mining techniques (Wegener et al. 2013). In our study,
we target privacy-preserving classification models built

dynamically from distributed databases for predicting

hospitalization risk.
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Because of independent existence of hospitals under

different business administrations, the collection of patient
data is geographically distributed among various hospitals.

As a consequence of privacy concerns and regulatory

implications, collecting raw patient data from distributed
hospitals to a central location is not practical (Loukides

et al. 2010). Patterns of similar logistic issues in other

business domains have led to the emergence of privacy
preserving distributed data mining (PPDDM) (Xu 2011) as

a recent area of research interest. From a clinical practice
perspective, there is interest in building decision support

systems that can harness the power of collective intelli-

gence from multiple hospitals using the power of Internet
(Sittig et al. 2008). Data privacy can be accomplished in

distributed environments by employing cryptographic

protocols. Privacy preserving distributed clustering has
been demonstrated using Healthcare data (Elmisery 2010)

in this manner. A simpler privacy preserving distributed

model building mechanism can be based on algorithms
that use just the statistics of the patient data from multiple

hospitals. Such algorithms do not require sophisticated

cryptographic infrastructures. Prediction models built in a
distributed fashion are valuable tools in medical practice.

In certain clinical situations, the local patient database

may not have sufficient number of records of a certain
diagnosis to garner intelligence from. In these cases,

dynamically mining the collective distributed space of

similar hospitals in a collaborative fashion can possibly
lead to a quite useful decision making model. For exam-

ple, a particular patient may be an outlier in the physi-

cian’s practice and so it would help to obtain information
relevant to diagnosis and treatment from external hospi-

tals. Another scenario is the case of a patient with rare

disease. Since the information to be mined is seeded by
the attributes of the patients at hand, a mechanism to

query based on the ‘‘attributes of interest’’ (Khoshgoftaar

and Van Hulse 2005) will be helpful. The objective of our
study is to help draw conclusions on a certain diagnosis

using shared statistics from multiple hospitals when there

are not enough samples locally. A hypothesis explored in
this study is that mining the collective distributed data

space of similar hospitals in a collaborative fashion can

possibly lead to developing a better decision making
model when the collaborating hospitals do not have suf-

ficient number of instances to make good decisions on

their own. Based on this premise, we explored hospitals in
the Nationwide Inpatient Sample (NIS 2013) data sets for

the years 2007–2009, each of which had less than 100

patient records having a targeted disease. For those hos-
pitals, we built the local models and compared them to the

distributed model built using distributed ID3-based deci-

sion tree (DIDT) (Mathew and Obradovic 2011) algo-
rithm. The distributed model using just the statistics of

data provided noticeable improvement in accuracy over

average local model accuracies.
DIDT is a simple algorithm that produces a decision tree

identical to the one produced on an equivalent centralized

data aggregation. A decision tree (Moret 1982) is a data
structure that represents the paths of traversals in a deci-

sion-making process for classification problems. ID3

(Quinlan 1986) is a centralized decision tree building
algorithm and is used as the reference algorithm in DIDT.

One of the techniques from C4.5, where possible values are
allocated among different groups with one outcome for

each group, is used in this study. Other tests from C4.5 can

be incorporated, if need be. We deal only with categorical
attributes in this study and so ID3 base is sufficient. Since

DIDT uses only statistics of data from the distributed

hospital databases, it is a valuable tool in privacy pre-
serving distributed decision-making. DIDT has a built-in

mechanism to search the distributed databases using logical

constructs based on specified attributes of interest. This
search facility helps identify precisely the targeted data

instances from the distributed pool of databases. For

example, if a patient with a specific set of symptoms and
vital signs is an outlier in the local database, these attri-

butes of interest can be used to seed the initial distributed

search.
The equivalency of DIDT to centralized tree building is

theoretically provable. This means that the model built by

DIDT algorithm by learning from distributed data sets is
provably exact (Caragea et al. 2004) with respect to its

centralized counterpart. Thus, there is no loss of fidelity in

the results produced by our distributed algorithm DIDT.
This is attractive compared to privacy preserving algo-

rithms similar to differential privacy (Dwork 2006) that

introduces noise to the statistics and hence introduce dis-
tortion to the results.

It is a common practice for small hospitals to associate

with larger hospitals for better bargaining power in busi-
ness world and for leveraging access to additional medical

resources. In such instances, it is possible that the bigger

hospital may have sufficient number of patient records to
build a prediction model that the smaller hospital can use.

We explored this idea to understand the characteristics of

such data sets that can help predictions in smaller hospitals.

2 NIS data (2007–2009)

The Nationwide Inpatient Sample (NIS) databases for years

2007–2009 was created by Agency for Healthcare
Research and Quality (AHRQ) Healthcare Cost and Utili-

zation Project (HCUP). Published NIS databases contain

discharge level information of all inpatients from a 20 %
stratified sample of hospitals across USA. Each data

G. Mathew, Z. Obradovic

123



instance in these data sets represents an ‘‘inpatient stay

record’’. Because of local/state confidentiality laws, some
specific medical conditions or procedures (e.g., HIV/AIDS)

are not released by certain hospitals. Individual records in

the NIS data are de-identified. That is, they do not carry
personally identifiable information (e.g., name or home

address). Hence, they provide a vertical partition of attri-

butes that are ideal candidates for use in a privacy pre-
serving distributed decision support model. The variations

in instances between hospitals give a real world setting to

study distributed algorithms. The number of records and
hospitals as well as the distribution of male and female

patients among the NIS 2007–2009 data sets are given in

Table 1.
High-level disease codes in the NIS data are based on

HCUP Clinical Classifications Software (CCS), developed

by combining ICD-9-CM codes in a hierarchical fashion.
For example, CCS code for Multiple myeloma is 40. The

CCS for ICD-9-CM is a diagnosis and procedure catego-

rization scheme where closely related ICD-9-CM codes are
combined under a parent CCS code. There are 259 CCS

codes in all. There are up to 15 CCS codes for diseases per

data instance in the NIS 2007–2008 data sets, while the
NIS 2009 data set has up to 25 CCS codes per instance.

The parent–child relationship with CCS diagnosis 40

(Multiple myeloma) and its sibling ICD-9-CM codes is
shown in Fig. 1.

Only 3 of the 8 ICD-9-CM codes that make up CCS 40

are shown in Fig. 1. The complete list of ICD-9-CM sibling
codes is: 2030, 20300, 20301, 20302, 2038, 20380, 20381,

and 20382.

The distribution of patient records among the
2007–2009 NIS data sets based on age is given in Fig. 2.

The distribution of patient records based on race is given

in Fig. 3.
The distribution of race in Fig. 3 is based on the uniform

HCUP race code. The values corresponding to these codes

are:

1 - white
2 - black
3 - hispanic
4 - asian or pacific islander
5 - native american
6 - others

The distribution of the five most common specific
comorbidities among the patient records over the years

2007–2009 were as given in Table 2. Comorbidities have

been studied for valuable clues using prediction models
from data mining techniques (Himes et al. 2009) and

clustering models from statistical methods (Yang et al.

2013).
Our study was focused on patients with ‘‘Diabetes

mellitus without complications’’ (CCS code 49) in NIS

2009 data sets, on patients with ‘‘Chronic obstructive pul-
monary disease and bronchiectasis’’ (CCS code 127) in

NIS 2008 data set and on ‘‘Congestive heart failure;

nonhypertensive’’ (CCS Code 108) in NIS 2007 data set.

3 Related works

The NIS data sets have been used in various medical

studies with a statistical approach. Age-related cholecys-
tectomy (Kuy et al. 2011) analysis was done using NIS data

from 1996–2001. Factors affecting length of hospital stay

in connection with mouth cellulitis (Kim et al. 2012) were
analyzed using NIS 2008 data. Hospitalization costs and

post discharge follow-up care costs associated with

meningococcal disease were studied (Davis et al. 2011)
making use of 2005 NIS data. These studies were using

traditional statistical instruments with a centralized data

model. Studies using data mining techniques on public data
sets were also published. Support vector machine predic-

tion was used for diabetes-related hospitalization (Yu et al.

2010). A recent study provided an enhancement to the
support vector machine-recursive feature elimination

(SVM-RFE) mechanism to optimally estimate disease risk

based on 2008 and 2009 NIS data (Stiglic et al. 2012).
Random forest technique for predicting disease risks was

applied by Khalilia et al. (2011) on the NIS 2005 data. An

improved prediction model over this work, using fuzzy
membership based on ICD-9 codes later appeared in the

literature (Popescu and Khalilia 2011). All these data

mining techniques address classification problem and are

Table 1 Details of patient
records in the NIS 2007–2009
data sets

Years Total number of patient records Total number of hospitals Male (%) Female (%)

2007 8,043,415 1,044 41.26 58.74

2008 8,158,381 1,056 41.60 58.40

2009 7,810,762 1,050 41.92 58.08

Fig. 1 Parent-child relationship between CCS code 40 and ICD-9-
CM codes
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based on centralized data architecture. Centralized mech-
anisms require all data instances to be available at a central

site. Decision trees form a group of popular classification

algorithms because of their simplicity. The first serial
decision tree building algorithm was proposed by Quinlan.

Parallel decision tree building algorithms (Jin and Agrawal

2003) to speed up model building also appear in literature.
In real life, the patient records are distributed among

clinical databases in various hospitals. Because of this

natural distribution of patient data among hospitals, a dis-
tributed data mining technique (Park and Kargupta 2003)

would align well with the distributed data topology.

Distributed data mining can use existing distributed com-
puting infrastructure similar to grids (Luo et al. 2007).

Privacy preserving data mining is relevant in the context of

our work because of the privacy issues related to patient
data. Privacy preserving support vector machine (svm) (Yu

et al. 2006) can be trained in a distributed fashion. But this

work was based on vertically partitioned data. A recent
work in distributed privacy preserving model building is on

Logistic regression (Wu et al. 2012). Though these dis-

tributed algorithms preserve patient privacy, they require
identical data schema among the participating sites and

they do not have mechanisms to dynamically specify the

attributes of interest. Distributed hierarchical decision tree
(DHDT) (Bar-Or et al. 2005) is a distributed decision tree

building algorithm that focuses on high dimensional data
for reducing communication costs and takes advantage of

the correlations among attributes. Distributed ID3-based

decision tree (DIDT) is a distributed decision tree building
algorithm that builds a classification model and does not

assume any correlations between attributes. DHDT

assumes identical data schema among participating hospi-
tals, while DIDT can accommodate non-identical data

schema. In addition, DIDT has a built-in search mechanism

to initiate a query based on the attributes of interest.
We present theory and experimental results of two

methods of predictive model building that can be used by

Fig. 2 Distribution of patient
records for NIS 2007–2009 data
sets based on age

Fig. 3 Distribution of patient records for NIS 2007–2009 data sets
based on uniform HCUP race code

Table 2 Prevalence rates of comorbidities among NIS 2007–2009 data sets

CCS code Description 2007 (%) 2008 (%) 2009 (%)

98 Essential hypertension 29.11 30.60 31.20

101 Coronary atherosclerosis 27.90 29.59 31.18

55 Fluid and electrolyte disorders 21.05 21.80

53 Disorders of lipid metabolism 17.40 19.43

259 Residual codes 15.57 18.57

106 Cardiac dysrhythmias 16.80

108 Congestive heart failure 15.14

49 Diabetes mellitus without complications 14.88
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hospitals when they do not have sufficient number of

samples locally to build good prediction models for diag-
nosis. First method uses DIDT to build prediction models

collaboratively with other hospitals (Mathew and Obrado-

vic 2012) and preliminary empirical exploration of this
method was done on a single data set - NIS 2009. In this

study, we extend our empirical investigation to two addi-

tional NIS patient data sets from years 2007 and 2008. The
second method introduced here uses the prediction model

from a hospital with enough samples and having certain
signature. We characterize the profile of such hospitals

with large number of data instances whose prediction

models can help hospitals handicapped with insufficient
data. We show empirically that these models can provide

good accuracy compared to the models in the first method.

In addition, we assess the statistical significance of the
models based on the two methods and show their

acceptability.

4 Methodology

DIDT is a privacy preserving distributed decision tree

building algorithm. It uses the count of values of attributes

across classes among patient data distributed among hos-
pitals to build the prediction model. This information is

captured by the data structure known as crosstable matrix

(Caragea et al. 2004). If an attribute a takes values
v1,v2,….,vm spread across classes c1,c2,….,cn among the

instances in a given patient database, the (x, y)th element of

the crosstable matrix corresponding to a is the count of data
instances having class label cy for which attribute a has

value vx. The template for crosstable matrix corresponding

to attribute a having the characteristics mentioned above
takes the form (Mathew and Obradovic 2012):

j c1    cn
v1

..

.

vm

���������

1

The crosstable matrix formats across all participating

hospitals corresponding to each attribute are maintained

uniformly. The sum of the crosstable matrices from indi-
vidual hospitals is called global crosstable matrix. For a

given attribute, the global crosstable matrix represents the

complete distribution of the values among all classes. The
global crosstable matrices can be used to calculate infor-

mation gains. The attribute that gives maximum gain is

picked to generate the next down-level branches of the
decision tree. Assume that the global crosstable matrix for

attribute a based on template (1) is as follows (Mathew and

Obradovic 2011):

b11       b1n
..
. . .
. ..

.

..

. . .
. ..

.

bm1       bmn

2

6666664

3

7777775
2

Then, the formula for computing the weighted average
impurity measure for attribute a is (Mathew and Obradovic

2011):
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The global crosstable matrix for each attribute is used to
calculate its weighted average impurity measure. The

attribute with the highest gain (smallest weighted average

impurity measure) is chosen for test (Tan et al. 2006). Once
an attribute is chosen for test, the logical expression

representing the path of traversal from root to each of the

new nodes is constructed using Boolean operations. These
logical expressions are used for searching the data sets to

globally identify attributes to be considered for the new set

of crosstable matrices and eventual down level node splits.
These steps are repeated until leaf nodes are reached.

The DIDT algorithm uses a centralized agent called

Clearing House to mediate between the query originator
and the distributed hospitals. A step-by-step working of the

DIDT algorithm is outlined below:

1. A query Q by a medical practitioner is sent to the

Clearing House (CH).

2. CH sends the query Q to k hospitals S1, …, Sk.
3. for (i = 1 to k) {

Di be the local patient database in hospital Si;

Ii = set of instances matching query Q in Di;
Ai = set of all attributes among instances in Ii;

Ci = set of all classes in Ii;

for each x e Ai {
Vx
i = set of values for x;

}

The metadata tuple in the form

\ Ai;fVi
xjxeAig;Ci; Iij j [ 4

is sent to CH;
}

4. CH aggregates the k tuple expressions in (4) to create a

global schema.
5. for (i = 1 to k) {
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Si receives global schema in the format

\ a1;. . .amf g; v11;::v
1
d1

n o
;::; vm1 ;::v

m
dm

n on o
; c0;::ctf g [

from CH;
for each a e{a1, …, am} {

Template Ta is created in the format (1);
crosstable matrix is computed using layout Ta;

crosstable matrix is sent to CH;

}
}

6. For each attribute a e{a1,…, am}, CH sums up the site-
specific crosstable matrices to create global crosstable

matrix for a.
7. The weighted average impurity measure for the

attributes are calculated using (3) and the attribute

with smallest value of weighted average impurity

measure (highest gain) is chosen for test.
8. To proceed to the next level of the decision tree,

updated queries are generated for each branch of the

decision tree, based on values of the attribute selected
for test.

9. The process repeats from step 2 with each of the new

queries until the classes are reached in the leaf nodes.
10. The CH sends final decision tree to the query

originator.

Cross-validation is done by leave-one-hospital-out

method. In this method, data from one hospital are used for

testing, while data from all other hospitals are used for
training. When a large number of hospitals participate, the

leave-one-hospital-out cross-validation method will lead to

a large number of cross-validations. Hence, we modified
the cross-validation method in the original DIDT algorithm

to accommodate a varied form such that the number of

cross-validations can be kept at 10. In this modified format,
a set of hospitals are combined together to create a logical

mega-hospital. Then a mega-hospital can be left out for

testing. Mega-hospital building was implemented by ran-
domly selecting appropriate number of hospitals without

replacement so that these mega-hospitals provide a parti-

tion of all participating hospitals. For example, when there
are 500 participating hospitals, a leave-one-hospital-out

cross-validation will necessitate 500-fold cross-validations.

On the other hand, 10 mega-hospitals formed by picking 50
hospitals at a time randomly without replacement can be

used for 10-fold cross-validations using the mega-hospi-

tals. In our study, this modified version of DIDT was used
for distributed model building. Weka (Hall et al. 2009)

open source software was used for building local models

with 10-fold cross-validations. Age attribute was catego-
rized using a binning process (Elomaa et al. 1999). A range

of 8 years (starting with ages 0–7) was used for one bin.

The 2009 NIS data set had up to 25 CCS codes per

hospitalization record, while the 2007–2008 NIS data sets
had up to 15 CCS codes per record. All the 259 CCS codes

were represented as binary attributes in each instance for

experiments. For a given hospitalization record, the value
of the binary attribute corresponding to a CCS code was set

as 1 or 0 depending on the presence or absence of the CCS

code in the record. In our classification, we used 262
attributes for each hospitalization record. These were: age,

race, sex and the 259 binary attributes for CCS codes. The
selection of these attributes was influenced by Khalilia

et al.’s (2011) work. Values for the attribute ‘race’ were

missing from some states. In our study, we excluded hos-
pitals from these states. Details related to this information

are given in Table 3.

Even in the non-excluded hospitals from other states, the
attribute values for ‘race’ were missing from a portion of

the records. In these cases, we included only data instances

for patient records that had all the attributes present.

5 Experiments

5.1 Pre-processing

The SPSS load program from the AHRQ-HCUP web site

was used to load the NIS 2007–2009 data files into SPSS

Statistics software (Ver. 19) from IBM. From SPSS, we
exported data records as comma separated values (csv)

based text files. These csv files were parsed using PERL

scripts and corresponding arff format files were created.
‘arff’ is a data input format used by Weka software.

The experiments were done in a simulated distributed

environment. The way we implemented DIDT in JAVA,
the code requires one dedicated (or self-contained) data-

base per hospital for patient data. This ensures that the

querying for matches against individual databases and local
cross table generations for attributes are all working in

accordance with the published procedural steps of the

DIDT algorithm. Since we were using the NIS data sets and
not live patient databases from real hospitals, the patient

records corresponding to each hospital within the NIS data

Table 3 Information regarding missing attribute ‘race’ in NIS
2007–2009 patient records

Years Number of instances with all
attributes present

States with race attribute
missing

2007 5,807,267 GA, IL, KY, ME, MN, NV,
OH, OR, WA, WV

2008 6,520,461 GA, IL, MN, OH, WV

2009 6,614,593 MN, NC, OH, WV
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set were extracted and loaded into individual databases in

one–one mapping—one Neo4j (2013) graph database
(Cook and Holder 2007; Aggarwal and Wang 2007) per

hospital. The experiments were done as a simulation using

this group of databases that provided the virtual distributed
environment of hospitals. Using graph model for the data

framework helps capture the underlying structure of clini-

cal data in a very natural way. The symptoms associated
with a patient visit were represented as the labeled vertices

of a graph. A graph database is well suited to represent
heterogeneous records. Lucene (2013) indexing was used

for text indexing within the neo4j databases. Decision tree

building on mega-hospitals and individual hospitals were
done using Weka software.

5.2 Baseline experiment using NIS 2009 dataset

In this section, we present the published baseline experi-

ment (Mathew and Obradovic 2012). We studied the
problem of classifying patients with or without ‘‘Diabetes

mellitus without complications’’ using NIS 2009 data set.

Only hospitals with all 262 attributes present were taken
into account. There were 902 such hospitals. Local models

were built for these 902 hospitals using 10-fold cross-val-

idations. The distribution of the resulted accuracy ranges is
shown in Table 4.

As observed from Table 4, 23 hospitals had local

models with less than 60 % accuracy. To further evaluate
the distribution in this range so as to identify possible

improvements, patient records from these 23 hospitals were

tallied into ranges as shown in Table 5.
As can be observed from Table 5, the prevalence of

hospitals in this group had less than 100 patient records. So,

we decided to focus on this group of 11 hospitals, each of
which had less than 100 patient records. Of these 11 hos-

pitals, 5 could not build local models and 2 had less than 3

records. Using less than 3 records from one hospital can
possibly lead to reverse-identifying individual patient(s) in

a distributed system. Hence, we decided to leave out these

hospitals from our study. Thus, we targeted the 9 hospitals

having less than 100 patient records. We generated local

decision trees with 10-fold cross-validations. The results are

as shown in Table 6.
Average local prediction accuracy among the 9 target

hospitals was calculated using:

count of correctly classified instances in all 9 hospitals

total instances in all 9 hospitals

 53:08%

DIDT algorithm performed on the same set of hospitals

yielded an accuracy of 63 %, an improvement of 9.92 %.
For comparison with equivalent centralized model, data

from all 9 hospitals were combined centrally and decision

tree was built on this data using the same cross-validation
splits as the one used by DIDT to avoid cross-validation

mismatch. This resulted in an accuracy of 64.07 % and is

recorded in Table 7 (second row).
It is seen from Table 7 that DIDT gives empirical result

close to its centralized equivalent. The aberration in the

result is due to the fact that multiple attributes can have
identical information gains and so any one of them can be

chosen for a given node split. Consequently, the distributed

trees are not necessarily identical to one another. However,
the big advantage of DIDT over its centralized equivalent

is that no raw patient record is required from the hospi-

tals—only statistics of the patient data is needed. The
centralized tree building requires raw patient data from all

hospitals in a central location and is costly in terms of data

communication costs as well as in terms of data privacy.

Table 4 Spread of prediction accuracies across 902 hospitals having
diabetes records (Mathew and Obradovic 2012)

Accuracy ranges Count of hospitals

Could not build classifier 5

Below 50 % 1

50–60 % 17

60–70 % 86

70–80 % 411

80–90 % 353

90–100 % 29

Table 5 Distribution of hospitals having \ 60 % accuracies in local
prediction models

Count of patient records Count of hospitals

1–100 11

101–200 2

201–300 4

301–400 4

401–500 1

501–600 1

Table 6 Spread of prediction accuracies across hospitals hav-
ing \ 100 patient records with diabetes feature (Mathew and Obra-
dovic 2012)

Count of patient
records

Count of
hospitals

Local prediction
accuracy

1–10 3 –

25–50 2 56–60 %

51–75 3 48.48–58.06 %

76–100 1 57.5 %
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The statistics of not harming patients by improved diag-

nosis using DIDT is shown in the last column of Table 7.
These results show another advantage of using DIDT. The

number of patients incorrectly classified is quite less with

DIDT in comparison to what local models do on their own,
even after excluding the 16patients that could not be classified

by the local models from the count and accounting for them in

DIDT. The collaborative distributed model we used reduced
the misclassification from 159 to 138 effectively providing

accurate early diagnostics to 37 additional patients.

As observed from the values in Table 8, employing
DIDT resulted in an improvement of 9.92 % in accuracy.

We postulated that this method gives the best net

improvement in accuracy. To validate this hypothesis,
improvements in accuracies were computed when hospitals

collaborate with hospitals having higher number of similar

patient records. This was done using DIDT algorithm to
generate the corresponding decision trees on related patient

records from the 9 hospitals augmented by the hospitals in

the corresponding tier. The resulting improvements in
accuracies for various tiers are shown in Table 8.

It is seen from Table 8 that the net improvement in

accuracy was best when the disadvantaged hospitals
with less than 100 patient records used DIDT to build a

distributed prediction model. Collaboration of hospitals

with insufficient number of data with hospitals having
larger number of records did not contribute to improve the

accuracy substantially. A visual representation of this trend

is shown in Fig. 4.
Hospitals having large number of patient records to

build local models tend to fare better on their own since

they can build prediction models specific to their patients.

5.3 Experiments based on NIS 2007–2008 data sets

In line with the baseline experiment, we conducted two

other classification studies. First problem was classifying
patients with or without ‘‘congestive heart failure’’ (CCS

code 108) using NIS 2007 data set. Second problem was

classifying patients with or without ‘‘chronic obstructive
pulmonary disease and bronchiectasis’’ (CCS code 127)

using NIS 2008 data set. The experiments were based on

data from hospitals with all 262 attributes present. There
were 757 hospitals in the NIS 2007 data set and 855 hos-

pitals in the NIS 2008 data set with data instances having

non-missing values for age, sex and race. In line with the
baseline experiment, local models for these hospitals

with less than 100 patient records were generated with

10-fold cross-validations and those hospitals with less than
60 % accuracy were identified. The results are shown in the

fourth column of Table 9. Note that in following tables,

result from baseline experiment is also added for easy
comparison.

Applying DIDT with leave-one-hospital-out cross-vali-

dation, we got the results shown in the last column of
Table 9.

It is observed from last two columns of Table 9 that the

improvements in accuracies are consistent with the base-
line experiment. The statistics of not harming patients by

improved diagnosis is shown in Table 10.

As can be seen from Table 10, the improvements in
statistics of not harming patients are also consistent with

the baseline results.

5.4 Dimension reduction

The next experiment was oriented towards reducing the
dimension of the patient data. Feature selection (Van Hulse

et al. 2012) and feature reduction (Mathew and Obradovic

2013) are common techniques for pre-processing high
dimensional data. It was observed that some comorbidities

do not exist among the aggregated data set. Hence, attri-

butes corresponding to these symptoms were eliminated,

Table 7 Prediction accuracies for 9 hospitals having \ 100 records

Method Accuracy (%) Count of incorrectly
diagnosed patients

Average of local predictions 53.08 159a

DIDT 63 138

Centralized equivalent 64.07 136

a 16 patients from the 3 hospitals that could not build local models
were excluded from this count

Table 8 Improvements in accuracies contributed by DIDT among
hospitals having \ 1,000 records (Mathew and Obradovic 2012)

Count of patient
records

Count of
hospitals

Increase in accuracy contributed
by DIDT (%)

1–100 9 9.92

1–250 12 4.92

1–500 19 1.49

1–1,000 20 0.37

Fig. 4 Plot of accuracies across increasing resolutions among
hospitals
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resulting in much reduced dimensions as shown in

Table 11.
Comparing the columns in Table 11 for prior DIDT and

lower dimension DIDT, it is observed that the accuracy

with reduced dimension remains very close to the prior
even after considerable reduction in dimension.

5.5 Experiments using prediction models of other
hospitals

A natural follow-up question is, whether there are local
models from hospitals with large number of instances that

can serve as good prediction models for hospitals with

insufficient data. If suchmodels exist, what are their profiles?
Note that a predication model does not contain any patient

information and so it can be passed to another site without

any privacy violations. To explore this idea, we considered
hospitals with high accuracy ([ 95 %), high number of

positive instances and high area under curve (AUC). The

interest in higher number of positives is because patients
have multiple comorbidities and hence positive class

instances for the diagnosis of interest tend to be much lower.

First, we identified hospitals with greater than 95 %
accuracy. These hospitals were ranked based on two factors:

the number of positive instances and the AUC. Weights

were assigned based on ranking and the weighted average
was calculated between number of positive instances and

AUC. We only considered the top 5 ranks. For rank r, the
weight was 1– (r - 1) 9 0.10 = 1.10 – r 9 0.10. For
example, in the NIS 2007 data set for CCS Code 108, the

distribution of accuracy, number of positive instances and

the AUC of top 4 hospitals are as shown below in Table 12.
For the entry with hospid 12323, the rank for number of

positives is 1, while the rank for AUC is 4. Hence, the

weighted average is (1.10 – 1 9 0.10 ? 1.10 – 3 9 0.10)/2,

which is 0.9. Themodel with the highest weighted average is
chosen. For the purpose of this discussion, we call this model

the weighted model. Using this method, we identified hos-

pitals in the previous 3 experiments with accuracy [ 95 %.
From these lists, hospitals were ranked and the weighted

models were selected. Using these weighted prediction

models to classify instances in the hospitals with insufficient
data for years 2007–2009 resulted in accuracies shown in

Table 13.

Based on the results in Table 13, we observe that the
weighted model gives accuracy better than the collabora-

tively built DIDT model.

5.6 Statistical significance

In this section, we statistically evaluate the significance of
the models developed in Sect. 5.5 compared to the ones in

Sect. 5.3.

Assume there are k cross-validations. Let di be the dif-
ference in error rates between the decision trees in Sects. 5.3

and 5.5 at ith cross-validation. Since we do a leave-one-
hospital-out cross-validation, the numbers of instances are

not consistent among the training/testing sets across cross-

validations. To compensate for this aberration, we use
weighted mean:

Table 9 Accuracies for hospitals with \ 100 records using local models and DIDT

NIS data year CCS code Count of hospitals Average local model accuracy (%) DIDT accuracy (%)

2007 108 6 51.59 61.90

2008 127 5 59.09 66.09

2009 49 9 53.08 63

Table 10 Distribution of incorrect diagnosis of patients for hospitals
with \ 100 records

NIS year Using local models Using DIDT

2007 54a 47

2008 72a 57

2009 159a 138

a Excluding patients from hospitals without local models

Table 11 Distribution of prediction accuracies after dimension
reduction for hospitals with \ 100 diagnosis-related records

NIS data
year

Reduction in number
of features

Prior
DIDT (%)

Lower dimension
DIDT (%)

2007 129 61.90 61.90

2008 126 66.09 65.51

2009 91 63 63

Table 12 Distribution of number of positives and AUC for hospitals
with [ 95 % accuracy in NIS 2007 data set

Hospid Accuracy
(%)

Number of
positives

AUC Weighted
average

12323 96.43 549 0.67 0.9

36194 97.63 385 0.66 0.8

6558 95.12 312 0.76 0.9

6577 95.48 238 0.69 0.8
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l  
P k

i1 diwiP k
i1 wi

Here,

wi  number of records for testing in ith iteration

total number of records in the whole system
The weighted variance is calculated using the formula:

r 2weighted 
P k

11 widi  l 2
P k

i1 wi

Then the confidence interval dcvt is determined by:

dcvt = l * � t(1-a ),k-1. r weighted

Here t(1-a ),k-1 is the t-distribution co-efficient with k-1

degrees of freedom and confidence level (1-a ). Using these

formulas, the confidence intervals for the models in
Table 13 at 95 % confidence level are shown in Table 14.

As can be seen from Table 14, in all cases, the confi-

dence interval span zero and so the error rates are not
statistically significant.

6 Conclusion

Using NIS data for 2007–2009, we demonstrated that the
DIDT algorithm can be employed to the advantage of

hospitals that do not have enough information to build a

local decision support model to collaboratively build a
distributed model using just the statistics of data from such

hospitals. The DIDT algorithm does not require patient

data from participating hospitals. It improves the overall
accuracy of a classification model and provides the disad-

vantaged hospitals with a classification model that other-

wise would not be at their disposal. The error in diagnosis
is reduced by DIDT. Though DIDT is a general-purpose

distributed decision making algorithm, we demonstrated

this algorithm could be used to address a very specific

problem. We studied the model building in the case of

predicting hospitalization based on three diseases. Since
this methodology has no dependency on the disease per say

it can be applied to build a classification model for any

disease. We also improved efficiency of the leave-one-
hospital-out cross-validation method in DIDT implemen-

tation to include the megahospital concept by banding

together hospitals. The local models of hospitals with high
accuracy, high AUC and high number of positive instances

provided slightly better results compared to the collabora-
tively built DIDT models. The dimension reduction process

produced nearly identical results compared to the original

data.
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