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Abstract

Background

Early classification of time series is beneficial for biomedical informatics problems such
including, but not limited to, disease change detection. Early classification can be of
tremendous help by identifying the onset of a disease before it has time to fully take hold. In
addition, extracting patterns from the original time series helps domain experts to gain
insights into the classification results. This problem has been studied recently using time
series segments called shapelets. In this paper, we present a method, which we call
Multivariate Shapelets Detection (MSD), that allows for early and patient-specific
classification of multivariate time series. The method extracts time series patterns, called
multivariate shapelets, from all dimensions of the time series that distinctly manifest the
target class locally. The time series were classified by searching for the earliest closest
patterns.

Results

The proposed early classification method for multivariate time series has been evaluated on
eight gene expression datasets from viral infection and drug response studies in humans. In
our experiments, the MSD method outperformed the baseline methods, achieving highly
accurate classification by using as little as 40%-64% of the time series. The obtained results
provide evidence that using conventional classification methods on short time series is not
as accurate as using the proposed methods specialized for early classification.



Conclusion

For the early classification task, we proposed a method called Multivariate Shapelets
Detection (MSD), which extracts patterns from all dimensions of the time series. We
showed that the MSD method can classify the time series early by using as little as
40%-64% of the time series’ length.

Background

In medical informatics, the patient’s clinical data records, such as heart rate, are collected over
time and therefore represent a time series. If the data is collected from two groups of patients
(for example, symptomatic and asymptomatic with respect to heart failure), the task of
multivariate time series (MTS) classification is to learn temporal patterns to determine
whether the patient belongs to the group of symptomatic patients.

Time series have been extensively analyzed in various fields, such as statistics, signal
processing, and control theory. The focus of the research in these fields is on gaining a better
understanding of the data-generating mechanism, the prediction of future values, or the
optimal control of a system. From a statistical viewpoint, time series analysis is comprised of
methods for analyzing time series data in order to extract meaningful statistics from the data.
As a part of time series analysis, time series forecasting is aimed to use a model, e.g.
AutoRegressive Moving Average (ARMA), to predict future values based on previously
observed values [1]. The ultimate objective of the signal processing community is the
characterization of the time series in such a manner as to allow for transformation of the time
series, with a method like Fast Fourier Transformation (FFT), to extract useful information
from the time series [2]. Researchers and practitioners in Control Theory strive to calculate
solutions for proper corrective action from the controller (inputs) that result in system
stability. A set of past inputs and outputs is observed, and new inputs are set in such a way as
to try to achieve a desired output [3].

Although all of the aforementioned methods could be helpful in our study, and the experience
of researchers and practitioners from other fields are extremely valuable, the focus of our
research is to classify a new time series as early as possible by looking at and extracting
patterns from past observations rather than predicting future values or analyzing a single time
series’ pattern.

In the data mining community, the time series classification problem has been studied in some
detail as well. The predictive patterns framework has been introduced to directly mine a
compact set of highly predictive patterns [4]. Instead of adopting a two-phase approach by
generating all frequent patterns in the first phase and selecting the discriminative patterns in
the second phase, this approach integrates pattern mining and feature pruning into the same
phase to filter out non-informative and redundant patterns while they are being generated. A
temporal rule-based classification method for temporal pattern representation was recently
proposed to address the deficiencies of existing methods [5].



A method that extracts all meta-features from a multivariate time series was proposed by
Kadous et al. [6]. The types of meta-features are defined by the user, but are extracted
automatically and are used to construct propositional attributes (attribute-value features) for
another high-level classifier, like a decision tree, that learns a non-linear hypothesis to
distinguish among classes.

In the context of classification of unknown time series (time series with an unknown label),
models utilize the whole time series with the unknown label to predict it based on the
information learned from training data. In an early classification context, the objective is to
provide patient-specific classification of unknown time series as early as possible. Therefore,
instead of utilizing the whole time series, our MSD method looks into a portion (current
stream) of the unknown time series and determines whether it is able to predict the label of the
whole time series without looking at the rest of the time series. If MSD is able to predict at the
time point which is at the end of the current stream, the label is predicted. Otherwise, MSD
requires more data for the unknown time series and looks at a larger segment, and does so
until it is able to predict the label of the time series.

For early classification, a new method called Early Classification on Time Series (ECTS) has
been proposed [7]. The idea behind the method is to explore the stability of the nearest
neighbor relationship in the full space and in the subspaces formed by prefixes of the training
examples. The disadvantage of ECTS is that it only provides classification results, without
extracting and summarizing patterns from training data; thus, users may not be able to gain
deep insights from the classification results. This drawback of ECTS has been resolved by
extracting local shapelets which distinctly manifest the target class locally, and are effective
for early classification [8]. However, the method is applicable only to one-dimensional
time series.

In this study, we generalize the definition of local shapelets to a multivariate context and
accordingly propose a method for early classification of multivariate time series. The
proposed method is called Multivariate Shapelets Detection (MSD). A multivariate shapelet
consists of multiple segments, where each segment is extracted from exactly one dimension.
The test time series is then classified based on the multivariate shapelets that best match the
test time series.

In particular, we propose the following extensions to the existing univariate shapelet method:

• Extending the concept of univariate shapelets to multivariate shapelets, which are
multidimensional subsequences with a distance threshold along each dimension.

• Proposing use of information gain-based distance threshold.

• Proposing use of weighted information-gain based utility score of a shapelet. A theorem
is provided to show that the weighted information gain incorporates the earliness and
assigns high utility score to the shapelet that appears earlier given the same accuracy
performance.



The mathematical definition of the problem is presented in the Definitions section. The
method for multivariate time series classification is described in the Methods section. Datasets
are described in the Dataset and Data Processing section. In the Results and Discussion
section, the experimental results are presented. Finally, future work and concluding remarks
are discussed in the Conclusion section.

Definitions

A time series T = {t1, t2, . . . , tL} of length L, len(T) = L, is defined as a sequence of real
values sampled at L time stamps. Each time series is associated with a class label c ∈ C where
C is a finite set of class labels. A dataset D is a collection of M pairs {(Ti, ci) : i = 1 . . . M}
where Ti is the time series number i and ci = Class(Ti) is its class. Given a time series
T = {t1, t2, . . . , tL}, a subsequence s = {ti, ti+1, . . . , ti+l−1}, s ⊂ T , is a sampling of contiguous
positions of T of length l < L. Given two subsequences s and h where len(s) = len(h) = l, the
Euclidean distance between s and h is defined as:

dist(s, h) =
√√√√ l∑

k=1

(s[ k]−h[ k] )2

For a given time series T of length L and a subsequence s of length l, the distance between s
and T is defined as the minimum distance between s and all subsequences of T of length l.
Therefore, we slide a window of length l over the time series T to extract all subsequences
{h1, h2, . . . hL−l+1} of length l. As shown in Figure 1, the distance between s and T is
computed as:

dist(s, T) = min∀i∈{1,2,...,L−l+1} dist(s, hi) (1)

Figure 1 Illustration of computing the distance between a subsequence s and a time
series T . To compute the distance between a subsequence s of length 5 and a time series T of
length 24, a window of length 5 is slid over T and the distance between s and T is computed as
the minimum distance between s and every subsequence of T with length 5

A shapelet is defined as f = (s, l, δ, cf ) where s is a time series subsequence of length l. The
class label cf of the shapelet is called the target class. The other classes are called the
non-target classes, and are referred to as cf . We call a time series Ti a target time series if the
class of the time series is cf . The distance threshold is computed as follows:

• The distance di between s and every time series Ti in the dataset is computed using
Equation 1. The distance di is represented as a point in the order line as shown in Figure
2. If Class(Ti) = cf , then di is represented as blue point. If Class(Ti) ̸= cf , then di is
represented as red square.

• The distance threshold δ is computed (as explained in the Methods section) to separate
the two groups (blue and red groups).



Figure 2 Illustration of the distance threshold. The distance threshold is chosen such that it
divides the dataset into two separate groups (red and blue groups). It is clear that there is no
unique best threshold. Any threshold between 10 and 14 or between 16 and 21 has only either
one false negative or one false positive. However, there is no perfect threshold that separates
the datasets into two pure groups

In another way, the distance threshold δ is computed such that the distance between any target
time series Ti and s is less than the threshold δ:

∀(Ti, cf ) ∈ D⇒ dist(s, Ti) ≤ δ

The distance between a shapelet f and time series T is defined as dist(f , T) := dist(s, T).

An N-dimensional (multivariate) time series of length L is defined as T =[ T1, T2, . . . , TN]
where T j is the jth dimension of T and T j[ k] is the value of the jth dimension of T at time
stamp k. Hereafter, we use the terms ‘multidimensional’ and ‘multivariate’ interchangeably.

An N-dimensional shapelet (N-shapelet) of length l is defined as f = (s, l, 1, cf ). The vector
s =[ s1, s2, . . . , sN] where sj is the jth dimension of the shapelet. Figure 3 shows an example of
a 3-dimensional time series of length 15. It shows an example of an extracted 3-dimensional
shapelet of length 4. The shapelet is extracted from the time series from position 6 to
position 9.

Figure 3 Illustration of a 3-dimensional shapelet. This shows an example of a
3-dimensional time series (red, green and blue lines) of length 15. An example of an extracted
3-dimensional shapelet of length 4 is illustrated in the right part of the figure. The shapelet is
extracted from the time series from position 6 to position 9

The distance between an N-shapelet f and N-dimensional time series T is a vector of N
Euclidean distances and is defined as:

dist(s, T) =[ dist(s1, T1), dist(s2, T2), . . . , dist(sN , TN)] (2)

where dist(sj, T j) is defined as in Equation 1. Simply, the distance between two multivariate
time series is a vector of distances where each component in the distance vector is the distance
between the corresponding dimensions of the two multivariate time series. The distance
between a shapelet f and a time series T is defined as dist(f, T) := dist(s, T).

The distance threshold 1 =[ δ1, δ2, . . . , δN] where δj is computed (as explained in the
Methods section) so that:

∀(Ti, cf ) ∈ D⇒ dist(sj, T j
i ) ≤ δj ∀j = 1 . . . N



Methods

In this section we first describe a recently proposed method for early classification of
univariate time series [8] together with our suggested modifications. Then, we propose a new
method for early classification of multivariate time series.

Modifications of univariate shapelet for early time series classification

An Early Distinctive Shapelet Classification (EDSC) method, which is proposed at [8] and
described in Algorithm 1, is aimed to extract a small set of shapelets from univariate time
series for early classification.

Algorithm 1: UnivariateShapeletsDetection

Input: A training dataset D of M univariate time series; minL; maxL
Output: A list of univariate shapelets

1. for each time series T ∈ D do {T is of length L}
2. for l← minL to maxL do {for each shapelet length}
3. for k← 1 to L – l + 1 do {for each starting position}
4. RowDist = ShapeletDist(k,l,Dist)
5. ComputeThreshold (flk,RowDist)
6. ComputeUtilityScore (flk)
7. Add(flk, ShapeletList)
8. PruneShapelets(ShapeletList)
9. return ShapeletList

The method iterates over the time series in the dataset D (line 1). For each time series T , all
shapelets of length l between minL and maxL (user parameters) are extracted from T . For each
shapelet flk (lines 2 and 3) the method calls the function ShapeletDist (line 4) that computes
the distances between flk and all time series in D using Equation 1. Then, the method
computes the distance threshold (line 5) for the candidate shapelet flk using Chebyshev’s
inequality. Then, it assigns flk a utility score (line 6) using a weighted F1 score measure. In
line 8, the method ranks all extracted shapelets using their utility scores and selects a subset of
the highest ranked shapelets as the pruned set of shapelets which can exhaustively classify
time series.

The functions that compute the distance threshold and utility score are explained in the
following sections. We describe how to prune the shapelets and use them for early
classification in the Shapelet Pruning and Classification sections, respectively.

Distance threshold method

The Chebyshev’s inequality method is proposed for computing the distance threshold [8]. It
guarantees that for any distribution, no more than 1/b2 of the distribution’s values are more



than b standard deviations away from its mean [9]. The Chebyshev’s inequality is applied to
the non-target time series distances to compute the range where the non-target distance has a
low probability of appearing. The method refers to a one-sided test, and is not able to find the
distance threshold that can discriminate among the classes well. Here we proposed
information gain [10] to find a discriminant distance threshold. In Additional file 1: Table S.4
of the supplementary document, we showed that using information gain as a method to
compute the distance threshold outperformed the Chebyshev’s inequality method.

Information gain-based distance threshold for univariate shapelets

The basic idea is to find the shapelet’s distance threshold that maximizes the information gain
and divides the dataset into two groups, target and non-target time series [10].

First, the entropy of the dataset is computed as

Entropy = −
∑
c∈C

mc

M
log(

mc

M
) (3)

where mc is the number of time series of class c and M is the number of all time series. To
compute the distance threshold, the method sorts the distances between the shapelet and all
time series. Then, it finds the mid point between two consecutive distances as a candidate for
the threshold. The dataset is then divided into two datasets DL and DR as illustrated in Figure
4. The dataset DL contains all time series such that the distance between the shapelet and time
series is less than or equal to the candidate threshold. The dataset DR contains the rest of the
time series. Then the entropies EL and ER of the datasets DL and DR are computed,
respectively. By comparing the entropy before and after the split, we obtain a measure of
information gain which is computed as

IG = Entropy− ML

M
EL − MR

M
ER (4)

where ML and MR are the number of time series in DL and DR. Therefore, we choose the
distance threshold that maximizes the information gain for the shapelet. The algorithm is
described in details in Additional file 1: Algorithm S.2.

Figure 4 Candidate distance threshold. The distance threshold δ1 splits the dataset into two
datasets so that it has 4 true positives, 0 false positive, 4 true negatives, and 1 false negative.
The information gain of δ1 is 0.4090. The distance threshold δ2 divides the dataset into two
datasets so that it has 4 true positives, 1 false positive, 3 true negatives, and 1 false negative.
The information gain of δ2 is 0.1591. Hence, δ1 has better information gain than δ2

Figure 4 shows an example of two distance thresholds δ1 and δ2. The threshold δ1 splits the
dataset into two datasets so that it has 4 true positives, 0 false positive, 4 true negatives, and 1
false negative. The information gain of δ1 is 0.4090. The distance threshold δ2 divides the
dataset into two datasets so that it has 4 true positives, 1 false positive, 3 true negatives, and 1
false negative. The information gain of δ2 is 0.1591. Therefore, the threshold δ1 is chosen
because it has maximum information gain.



Utility score method

The set of shapelets extracted from the dataset might be exceedingly large. Therefore, it is
important to rank the shapelets in order to select a small subset of the shapelets for
classification. For this reason, each shapelet has to be assigned a score that takes into
consideration earliness as well as discrimination among classes.

The weighted F1 score method is proposed to rank shapelets [8]. In our study, we introduce
the weighted information gain as a new utility score method. In the supplementary document
(Additional file 1: Table S.5) we showed that our proposed method outperformed the
weighted F1 method.

Weighted information gain

The utility score of a shapelet should incorporate the earliness and the distinctiveness
properties. First, we define the earliness [8] between a shapelet f = (s, l, δ, cf ) and a time
series T as

EML(f , T) = min∀i∈{1,2,...,L−l+1} dist(s, hi) ≤ δ

EML measures how early the shapelet f has classified the time series T . The weighted
information gain of the shapelet is computed as follows:

1. Compute the distance between the shapelet f = (s, l, δ, cf ) and every time series Ti in
the dataset.

2. Split the dataset D into two datasets DL and DR such that DL contains all time series
where dist(f , Ti) ≤ δ and DR contains all time series where dist(f , Ti) > δ.

3. For each time series T in the dataset DL, if Class(T) = cf , then T is weighted by
EML(f , T). Otherwise, the time series is weighted by 1.

4. Compute ML as the weighted count of the number of time series in the dataset DL and
MR is the size of the dataset DR.

5. Compute the weighted information gain using Equation 4.

The following theorem proves that the weighted information gain incorporates the earliness
and assigns high utility score to the shapelet that has better earliness given the same accuracy
performance.

Theorem: If f1 and f2 are two shapelets that have the same distance threshold (same splitting
point), the same class, and different earliness (f 1 has better earliness than f 2), then f 1
has better weighted information gain than f 2.

Proof: Suppose that the number of target time series in DL is NT and the number of
non-target time series in DL is NNT . Without loss of generality, since f 1 has better



earliness than f 2, suppose that for every target time series T in DL, EML(f1, T) = P1
and EML(f1, T) = P2 such that P1 < P2. The weighted count ML1 and ML2 of the time
series in DL for f1 and f2 is P1NT + NNT and P2NT + NNT , respectively. Since P1 < P2,
then ML1 < ML2. Hence the weighted information gain of f1 is greater than the
weighted information gain of f2.

Therefore, the weighted information gain gives high scores to the shapelets that come early in
the time series.

Shapelet pruning

To select a subset of the shapelets for classification, the shapelets are sorted in descending
order using their utility scores. In this manuscript, two methods have been used to select a
subset of the shapelets.

The first method iterates over the shapelets starting from the highest ranked shapelet. We
select the shapelet and remove all training examples that are covered by that shapelet. The
shapelet f covers a training time series T if dist(f , T) ≤ δ and Class(T) = cf . We use the next
highest ranked shapelet to see if it covers any of the remaining training time series. If it covers
some of them, then we select the shapelet and remove all time series that are covered.
Otherwise, we discard it and proceed to the next one. This process continues until all training
time series are covered.

The second method simply involves keeping the top x shapelets from each class where x is a
user-defined parameter. In our experiments, we used the top 5, 10, 15 and 20 shapelets from
each class.

Classification

If the length of the shortest shapelets extracted by Algorithm 1 is l, then we can not classify
any time series before observing l time points. Hence, the classification method (Additional
file 1: Algorithm S.1) initially reads l time stamps from the test time series. It then gets the
highest-ranked shapelet. If the shapelet covers the current stream of the test time series then
the time series is classified as the class of the shapelet and the prediction is done. Otherwise, it
gets the next shapelet from the ranked list and repeats the process. If none of the shapelets
cover the current stream of the test time series the method reads one more time stamp and
continues classifying the time series. Therefore, the test time series could be classified after
reading number of time points greater than the shapelet’s length. If the method reaches the
end of the time series and none of the shapelets covers it, the method marks the time series as
a not-classified example. In the results section, we report the relative accuracy as well as the
percentage of the covered test time series.



Multivariate shapelets detection for ECMTS

In a dataset of N-dimensional time series, the method extracts all N-dimensional shapelets
f = (s, l, 1, cf ). The method assumes that all subsequences sj are extracted from the same
starting position. Hence, we slide a window of length l over the time series. At each time
stamp p, a subsequence sj of length l starting from time point p is extracted from the jth

dimension to construct s =[ s1, s2, . . . , sN]. An example of a 3-dimensional shapelet is shown
in Figure 3.

We follow the same procedures as in the univariate case. Namely, for each N-shapelet f, we
compute the minimum distance between f and every time series T in the dataset. The distance
between f and T is a vector of distances (N-dimensional distance) and is computed as in
Equation 2. To compute the distance threshold of a shapelet, we need to provide a way to
compare two multi-dimensional distances. Therefore, two multidimensional distances
d1 =[ d1

1, d2
1, . . . , dN

1 ] and d2 =[ d1
2, d2

2, . . . , dN
2 ] are defined to be ordered according to the

following criterion:
d1 < d2 ⇔ dj

1 < dj
2 ∀j = 1 . . . N (5)

Equation 5 requires all N dimensions of d1 to be less than all corresponding N dimensions of
d2. Therefore, we would require all N dimensions to be less than the shapelet’s threshold.
This way, the method would try to find a pattern very similar to the shapelet at hand, which
could lead to overfitting. In order to prevent overfitting, Equation 5 is relaxed and redefined to
be partially ordered according to the following criteria:

d1 <Perc d2 ⇔ d
qj
1 < d

qj
2 ∀j = 1 . . . Perc× N (6)

where Perc ∈ ] 0, 1].

The algorithm for extracting the multivariate shapelets from a dataset is similar to Algorithm
1. The algorithm iterates over each time series and extracts all multivariate shapelets. For each
candidate multivariate shapelet, it computes the distances with every time series. Note that
each distance is a vector of length N. Hence, the distances between a multivariate shapelet and
all time series is a matrix with dimensions N ×M where M is the number of time series.
Then, the method computes the distance threshold and utility score for each candidate
multivariate shapelet as explained in the following section. Finally, it prunes the shapelets
using the same procedure as mentioned in the univariate case.

Distance threshold method

Multivariate information gain-based distance threshold for multivariate shapelets

The multivariate information gain (Additional file 1: Algorithm S.3) is computed in a similar
way to the one that computes the information gain in the univariate case. It takes as input an
N-shapelet f; a matrix Dist, that stores the multivariate distances between the shapelet and all
M time series in the dataset; and Perc, which determines the percentage of dimensions used to
compute Equation 6. It sorts the matrix Dist, and then the multivariate candidate threshold is



computed as the mid-point between two successive distances (columns in the matrix Dist).
Using the candidate threshold, the information gain is computed. Finally, the algorithm
returns the multivariate threshold 1 =[ δ1, δ2, . . . , δN] that has maximal information gain.

Utility score method

The steps to adapt the utility scores defined on univariate time series are similar to the steps
we have followed to adapt the distance threshold method.

After computing the score for each shapelet, the method sorts them in descending order
according to their utility scores and then selects a subset of shapelets as explained in the
Shapelet Pruning section. The classification process is similar to the process described in the
Classification section, taking Equation 6 into consideration when computing the distance
between the shapelet and the current stream of the query time series.

Dataset and data processing

Viral challenge datasets

We used two datasets for blood gene expression from human viral studies with influenza A
(H3N2) and live rhinovirus (HRV) to distinguish individuals with symptomatic acute
respiratory infections from uninfected individuals [11].

H3N2 dataset: A healthy volunteer intranasal challenge with H3N2 was performed in 17
subjects. Of those subjects, 9 became symptomatic and 8 remained asymptomatic. Blood
samples were taken from each subject at 16 time points. Some subjects have missed certain
measurements at time points 1,5,6 and/or 7. Hence, the gene expression values were measured
on average 14-16 times for each subject. 30 genes were identified, in ranked order, as
contributing to respiratory infection [11]. We used 23 unique genes from that list that were
found in the available dataset.

HRV dataset: A healthy volunteer intranasal challenge with HRV was performed in 20
subjects. Of those subjects, 10 became symptomatic and 10 remained asymptomatic. Blood
samples were taken from each subject at 14 time points. We ignored time stamps 8-11
because the majority of the subjects missed the measurements at those time points. Thus, the
gene expression values were measured on average 6-10 times for each subject. 30 genes were
identified, in ranked order, as contributing to respiratory infection [11]. We used 26 unique
genes from that list that were found in the available dataset.

Drug response dataset

Another clinical dataset was generated for studying the changes in cellular functions in
multiple sclerosis (MS) patients in response to drug therapy with IFNβ [12]. The dataset
contains time series gene expression for 52 patients. The patients were classified as good



responders (33 patients) or bad responders (19 patients) to the drug. The blood samples were
taken every 3 months in the first year and every 6 months in the second year. Some patients
missed certain measurements, especially at the 7th time point. Thus, the gene expression
values were measured on average 5-7 times for each subject. The list of the genes used in our
experiments is provided (Additional file 1: Table S.1).

Identification of triplets of genes for a Bayes classifier of time series expression data of
multiple sclerosis patients’ response to the drug has been performed [12]. Previous research
identified 12 genes in terms of triplets. Hence, we generated four datasets: Baranzini3A and
Baranzini3B, consisting of one triplet of the best two triplets of genes, respectively;
Baranzini6 has the top two triplets; and Baranzinin12 has all 12 genes identified by all triplets.

A discriminative hidden Markov model has been developed and applied to the MS dataset to
reveal the genes that are associated with the good or bad responders to the therapy [13]. A
total of 9 genes were found that are associated with the therapy. Hence, we constructed a
dataset, called Lin9, consisting of those 9 genes.

A mixture of hidden Markov models has been developed to identify the genes that are
associated with the patient response to the treatment [14]. A total of 17 relevant genes were
found. Therefore, we constructed a dataset called Costa17 that contains data for these
17 genes.

Environment setup and evaluation measure

In all experiments we set minL = 3 and maxL to be 60% of the time series’ length. Since the
number of subjects was small, bootstrapping was used for estimating the generalization
error [15, 16]. We sample with replacement a subset (75%) from the original dataset. We train
our model on the sample data and then test it on the subjects that are not used in the training
data. This process is repeated 1000 times and the final reported statistics (like relative
accuracy) is the median of the statistics over all bootstrap samples. We report the median
instead of the average since the distribution of the statistics is skewed and not symmetric.

In the results, we report the median of the accuracy, the coverage (the percentage of the time
series that are covered by the method), and the earliness (the fraction of the time series length
used for classification). Note that the earliness varied from test example to another. In other
words, each test example could be classified at different time point, so that our method is
patient-specific and there is no fixed length of the time series used for classification.

Because there is an imbalance in the drug response dataset, the accuracy (Acc) is calculated as
the average between sensitivity and specificity:

Sensitivity = tp
tp+ fn

, Specificity = tn
tn+ fp

, Acc = Sensitivity+ Specificity
2

where tp is the number of true positives, tn is the number of true negatives, fp is the number of
false positives, and fn is the number of false negatives.



Since the objective of the paper is to provide a method for early classification, we propose an
evaluation measure that incorporates both the earliness (Ear) and the accuracy (Acc). We use
Fβ-measure as the weighted average between Acc and Ear. Fβ-measure is defined as:

Fβ = (1+ β2)
Acc.(1− Ear)

β2(1− Ear)+ Acc

where smaller values of β put more weight on the earliness and larger values of β put more
weight on the accuracy. Note that we use (1− Ear) because we want to penalize larger values
of Ear. In our experiments, we used the balanced F1-score, which gives both the accuracy and
the earliness the same weight. F1-score reaches its best value at 1 and worst score at 0.

Results and discussion

Evaluation of MSD method

First, we show the effectiveness of the MSD method on a single patient from the H3N2
dataset. In Figure 5, the top panel shows genes RSAD2 and IFI44L observed at 15 time steps
for an asymptomatic test subject from H3N2 data that is correctly and early classified by MSD
at the 5th time point. The MSD method used a shapelet of length 5 to classify the test subject.
In the bottom panel, MSD used a shapelet of length 6 that was extracted from the time series
of a symptomatic subject, so it correctly classified the symptomatic test subject at the 8th time
point (it used only 50% of the time series’ length to classify the test subject).

Figure 5 Illustration of the effectiveness of the MSD method on a case from H3N2
dataset. The effectiveness of the MSD method is illustrated on a single patient from H3N2. In
the top panel, a 2-dimensional H3N2 asymptomatic test subject (genes RSAD2 and IFI44L
observed at 15 time steps) has been correctly classified by MSD method at the 5th time point.
In the bottom panel a 2-dimensional H3N2 symptomatic test subject (genes RSAD2 and
IFI44L observed at 16 time steps) has been correctly classified by MSD method at the earliest
possible time stamp number 8. Red lines represent time series of the symptomatic subject.
Blue lines represent time series of the asymptomatic subject. Shapelets are represents by solid
markers

Next, the MSD method was evaluated on the viral and drug response datasets using all genes
defined by the dataset. In Table 1, we report the median of the coverage, the relative accuracy,
and the earliness. The list of the parameters that have been used for each method is provided
in Additional file 1: Table S.2.



Table 1 Evaluation of the MSD method on the viral infection and drug response datasets
using all genes

Dataset Number of genes Accuracy Relative Accuracy Coverage Earliness F1

H3N2 23 77.78 85.71 100 62.50 0.5060
HRV 26 70.00 71.43 100 40.00 0.6462

Baranzini3A 3 70.00 73.91 95.83 46.26 0.6080
Baranzini3B 3 66.67 68.00 100 44.81 0.6039
Baranzini6 6 70.83 70.83 100 42.86 0.6325
Baranzini12 12 66.67 66.67 100 42.86 0.6154

Lin9 9 67.86 69.57 100 44.00 0.6136
Costa17 17 68.00 69.23 100 45.24 0.6067

The performance of the MSD method on 8 datasets is shown in the table. The MSD method achieved
good accuracy on most of the datasets using a small fraction of the time series. The distribution of the
statistics were skewed and not symmetric, so we report the median of the statistic.

From Table 1, it is clear that the MSD method achieved high accuracy using a small fraction
of the time series. For example, MSD on the H3N2 dataset covered approximately 100% of
the dataset, and out of the covered time series it achieved 85.71% accuracy using 62% of the
time series’ length. On another benchmark dataset called Lin9, the method developed in [13]
achieved 85% accuracy using the full time series (F1 ≈ 0.01) while our MSD method
achieved approximately 68% accuracy using less than half of the time series’ length on
average (F1 ≈ 0.51).

For the viral infection dataset, a list of 23 genes associated with the viral infection sorted by
their relevance to the infection diagnosis is provided in a recently published study [11].
Starting from this list, we searched for a subset of genes that could be used to achieve more
accurate results. We ran MSD using different numbers of top genes provided by the ranked
list. The coverage, the relative accuracy, and the accuracy of MSD on H3N2 are shown in
Figure 6. It is clear that the method becomes more accurate when using 11 genes instead of
using 23 genes.

Figure 6 Performance of MSD method on the H3N2 dataset using different numbers of
top genes. This figure illustrates the performance of the MSD method on the H3N2 dataset
using different numbers of top genes from the provided ranked list [11]

For the drug response dataset, no ranked list of genes is provided in previous publications. In
4 out of the 6 drug response datasets the number of the genes is small, therefore, on these
datasets, we ran our MSD method on all combinations of genes. The number of genes used
for each dataset to achieve the highest accuracy is provided in Table 2. The accuracy of the
MSD method on those datasets is improved by using less number of genes. For example, the
accuracy of MSD on the Lin9 dataset using only two genes is significantly improved
(F1-score increased from 0.61 to 0.67).



Table 2 Evaluation of the MSD method on the drug response datasets using a subset of
genes that gives the highest accuracy

Dataset genes Accuracy Relative Accuracy Coverage Earliness F1

H3N2 Top 11 genes 80.00 87.50 88.89 64.29 0.4938
HRV RSAD2 71.43 75.00 100 38.89 0.6587

Baranzini3A Caspase 10 75.00 76.00 100 45.45 0.6316
Baranzini3B Caspase 2 , Caspase 3 75.00 76.19 100 44.05 0.6409
Baranzini6 Caspase 10 , IL-4Ra 75.00 76.00 100 43.45 0.6448

Lin9 Caspase 2, Caspase 3, Jak2 81.82 82.61 100 43.43 0.6689
The MSD method has been evaluated on all combinations of the genes on 4 datasets. The accuracy of
the classifier is improved than using all genes. For example, the performance of MSD method on the
Lin9 dataset is improved significantly from 68% to 82% when using only 3 genes instead of 9 genes.

Since our method achieved high accuracy using a small number of genes (in some cases only
one gene), we ran the univariate method [11] (using the Chebyshev’s inequality as distance
threshold method and the weighted recall as utility score method) on each gene in the dataset
and report the best accuracy achieved. As shown in Table 3, our methods significantly
outperformed the univariate method on all datasets except the H3N2 dataset, where they have
similar accuracy but the univariate method is much earlier. The reason of achieving less
accurate results using MSD method as compared to the univariate method may be due to the
non-robustness of the MSD method to noisy variables so that MSD does not extract
meaningful features from the multivariate data in an automated fashion. Therefore, Equation 6
is affected by the noise in the variables which may lead to poor discrimination among the
classes. In future work, we will investigate more resilient multivariate shapelet detection
techniques that effectively utilize a subset of the variables providing maximum discrimination
power as compared to using all the variables.

Table 3 Evaluation of the univariate method on all datasets
Dataset gene Accuracy Relative Accuracy Coverage Earliness F1

H3N2 LOC26010 77.78 85.71 100 38.34 0.6879
HRV RSAD2 42.86 80.00 55.56 52.50 0.4506

Baranzini3A Caspase 10 12.00 100.00 12.25 42.86 0.1983
Baranzini3B Caspase 3 26.09 80.00 31.38 40.26 0.3632
Baranzini6 Caspase 10 12.00 100.00 12.25 42.86 0.1983
Baranzini12 Caspase 3 26.09 80.00 31.38 40.26 0.3632

Lin9 Caspase 3 26.09 80.00 31.38 40.26 0.3632
Costa17 Caspase 3 26.09 80.00 31.38 40.26 0.3632

The univariate method (using the Chebyshev’s inequality as distance threshold method and the weighted
recall as utility score method) has been evaluated on each gene on all datasets. The best accuracy is
reported.

Baseline classifier for early classification

We compared the MSD method with a random classifier to evaluate MSD by comparison. The
results of the random classifier are shown in Table 4. It is clear that the MSD method is much
accurate than the random classifier.



Table 4 Evaluation of the random classifier on all datasets
Dataset Accuracy
H3N2 55.2833
HRV 52.1869

Baranzini3A 49.7893
Baranzini3B 49.6808
Baranzini6 50.8227

Baranzini12 53.9255
Lin9 50.7689

Costa17 51.5093

In addition, we compared MSD to the baseline classical classifier, which uses shorter time
series. Recent research strongly suggested that the 1-nearest neighbor (1NN) method with
Dynamic Time Warping (DTW) is exceptionally difficult to beat [17]. Therefore, we
compared MSD to the 1NN classifier using DTW. We compared (data is not shown) 1NN
using Euclidean distance to 1NN using DTW and we found that 1NN with DTW is more
accurate than 1NN with Euclidean distance.

We constructed 2 datasets out of H3N2, which we call 1NN(70) and 1NN(60). We also
constructed 2 datasets out of the HRV dataset, which we call 1NN(60) and 1NN(50). The
1NN(k) dataset was constructed from the prefixes of the original dataset such that all its time
series are of fraction k of the original time series. For each dataset, 1NN was applied using all
genes. The results are shown in Figure 7.

Figure 7 Comparison of the MSD method to the baseline classifier The performance of
1NN with DTW using different time series length and MSD on the viral infection datasets.
The left (right) group shows accuracy of the classifiers on H3N2 (HRV) dataset, respectively.
The x-axis within a group is ordered by the fraction of the time series, shown in parenthesis.
The results provide evidence that the MSD method is more accurate than 1NN

On the HRV dataset (right group), the accuracy of 1NN using 60% of the time series’ length
(gray bar) is worse than our early classification method MSD (yellow bar), and MSD used a
smaller fraction of time series on average. For instance, 1NN achieved 55% accuracy on
1NN(60%) dataset (F1 ≈ 0.46) while MSD was more accurate using on average 51% of time
series’ length (F1 ≈ 0.67). The results were consistent with the H3N2 dataset.

Therefore, for the early classification task, using conventional classification methods on
shorter time series is not as accurate as using methods specialized for early classification, such
as our proposed method.

Run-time analysis

In Table 5, we show the run time of the MSD method on viral infection and drug response
datasets. All experiments were conducted on a PC Intel Core i7 2.8 GHz with 8GB RAM. It is
evident that the run time grows exponentially with the number of examples and the time series
length.



Table 5 Run-time analysis of MSD on the viral infection and drug response datasets
Dataset Number of genes Number of examples TS length Time in seconds
H3N2 23 17 16 295.1
HRV 26 20 10 77.7

Baranzini3A 3 52 7 49.3
Baranzini3B 3 52 7 36.1
Baranzini6 6 52 7 41.1
Baranzini12 12 52 7 64.3

Lin9 9 52 7 48.8
Costa17 17 52 7 131.9

The run time of the MSD method is reported for all datasets. The number of genes, number of examples,
the time series length, and the run time in seconds are reported in the table.

Conclusion

For the early classification task, we proposed a method called Multivariate Shapelets
Detection (MSD). It extracts patterns from all dimensions of the time series. In addition, we
proposed using of information gain-based distance threshold and weighted information-gain
based utility score of a shapelet. The weighted information gain incorporates the earliness and
assigns high utility score to the shapelet that appears earlier. In order to adhere to the
limitations of clinical settings (in which only a small pre-specified number of genes is
provided in shorter time series), datasets comprised of fairly short time series were used in
reported experiments. However, our method is applicable to any domain. We showed that
MSD can classify the time series early by using as little as 40%-64% of the time series’
length. We compared MSD to a baseline classifier and showed that using the method proposed
for early classification is more accurate than using conventional methods.

The run time of the MSD method grows exponentially with the number of examples and the
length of the time series which limits the applicability of the proposed approach to datasets
with smaller number of data instances and/or temporal observations. In practice, this is not a
limitation for early classification in many health informatics applications (e.g. sepsis) since
decisions typically have to be made very early by learning from a small number of patients.
However, in future work, we will speed up the run time of the method by incorporating
parallelism in the algorithm.

We are working to improve MSD by allowing the components of the multivariate time series
shapelet to have different starting positions. Since the number of candidate shapelets grows
exponentially, the concept of closed shapelets, and maximal closed shapelets can be
introduced to pruning redundant shapelets that are supersets of smaller shapelets. Another
extension to our work is to let the horizon between the time stamps in the subjects vary.
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