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ABSTRACT 

The inability to predict precipitation extremes under non-
stationary climate remains a crucial science gap. Precipitation is 
not a state-variable within climate models, exhibits space-time 
heterogeneities, and is subject to thresholds and intermittences. 
Atmospheric variables in the spatiotemporal neighborhood, like 
temperature, humidity and updraft velocity, are often better 
predicted than precipitation from these models, and may have 
information relevant for precipitation extremes. Model-simulated 
atmospheric variables have been used to enhance model-predicted 
precipitation extremes in two ways: statistical downscaling 
routinely uses regression methods including neural networks and 
recently physics-based formulations have been developed. The 
former may not generalize under non-stationary climate while the 
latter is more interpretable but may not be able to discover or 
leverage the full information content in atmospheric covariates. 
We propose robust data-mining strategies to complement these 
approaches. The challenges are to discover spatiotemporal 
neighborhoods of influence, extract dependence structures, and 
determine predictive power, under non-stationary climate. We 
have developed a data-dependent method to discover sparse 
spatiotemporal dependence structure using spatially-penalized 
elastic net regression focused on extremes of target variables. The 
approach addresses neighborhood discovery, dependence 
discovery and predictive modeling of precipitation extremes. The 
methods show promise, specifically to improve our understanding 
of precipitation extremes and hence inform stakeholders and 
policy-makers in the water sector. In addition, further 
developments may generalize to problems in multi-physics 
simulations and to other complex, nonlinear and spatiotemporal 
dynamical systems where extremes are of interest. 
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1. CLIMATE SCIENCE GAP AND A NEW 

DATA MINING SOLUTION 
One of the largest gaps in climate science relevant for 

informing stakeholders and policy makers is the inability to 
develop credible projections for extreme events and regional 
change at spatiotemporal scales that matter to decision-makers. 
Precipitation and their extremes are particularly relevant in this 
context because of the deep science challenges as well as the 
widespread impacts on flood hazards and water resources 
decisions. The data mining literature in climate applications have 
tended to focus on teleconnections (long-range spatial 
dependence), especially on oceanic influence over regional land 
climatology [18, 19, 20]. However, while teleconnections are 
important, local and regional atmospheric conditions typically 
tend to dominate in the context of climate-related extremes. This 
is an area where novel data mining approaches are motivated to 
address science gaps that are relevant to global societal priorities.        

The importance of adapting to a non-stationary climate has been 
emphasized in the context of water resources [21]. However, 
precipitation and regional climate prediction have been 
highlighted as two of four real holes in climate science [5], which 
makes the prediction of precipitation or their extremes at local to 
regional scales a major challenge.  

The climate system is nonlinear dynamical (even chaotic) and 
non-stationary, while projections are sought for long lead-times. 
Thus, physics-based climate models, which in turn have become 
very computationally expensive, are essential. Purely data-guided 
methods are not best suited for multi-step ahead prediction under 
these circumstances, thus the problem is not cast here as a 
standard data-mining prediction problem. On the other hand, 
climate models by themselves may not be adequate, especially for 
critical challenges like precipitation extremes. Large-scale climate 
models solve a system of partial differential equations (PDEs) 
based on first principles, but also contain parameterizations for 
processes that are not so well understood. Unfortunately, 
processes pertaining to precipitation are among the least well 
understood and precipitation is not a state variable in the PDEs. In 
addition, precipitation is known to be extremely variable in space 
and time and the underlying processes are subject to thresholds 
and intermittences. However, as pointed out in the literature [1-3, 
22-24], precipitation extremes tend to have a dependence on 
atmospheric variables ranging from temperature, humidity and 
precipitable water, to updraft velocity and horizontal wind 
components. These atmospheric variables, which can be thought 
of as potential covariates for precipitation extremes, are often 
better predicted that precipitation itself. Thus, there have been 



(somewhat counter-intuitive) suggestions that precipitation 
extremes may be more predictable than precipitation mean 
processes, simply because the extremes may relate more directly 
to covariates that are better predicted from models. The prediction 
problem in the context of precipitation extremes therefore 
translates to extraction of information content from these 
covariates and translating them to predictive insights. The 
prediction in conditional on the availability of model-simulations 
all the way to the prediction horizon of the models, which implies  
that the standard multi-step-ahead formulations used in data-
mining are not well-suited. Rather, the issue is one of functional 
mapping from the covariates which are better predicted by models 
to the extremes of precipitation which are less well-predicted but 
more desired. The fundamental challenge is to ensure that the 
functional mappings generalize under non-stationary conditions 
over long lead times.         

Recent studies [25,26] have investigated precipitation extremes 
and their attributes under changing climate based on global 
climate models (GCM) simulations [25,26]. The studies indicate 
that the larger uncertainties remain at regional and local scales. 
Dynamical downscaling based on regional climate models 
(RCM), while higher-resolution and physics-based, suffers from 
complex parameterizations and difficult boundary conditions. 
Statistical downscaling, which have used models ranging from 
simple linear regression to artificial neural networks, suffers from 
lack of interpretability. The downscaling approaches may not 
generalize well to non-stationary conditions owing to the 
complexity of parameterizations and/or the lack of physical 
consistency. One promising recent approach has been the 
development of physics-based approaches which attempt to relate 
the atmospheric covariates with precipitation extremes through 
what could be viewed as hypothesis-guided approaches. The 
physics operates at different scales or accounts for different 
processes than are handled within the large-scale computational 
models of climate, hence their added value [1,3,22]. While these 
approaches have demonstrated significant promise, they may not 
be able to leverage the full information content in atmospheric 
covariates and translate these to predictive insights, primarily 
because they have to rely on known physics-based hypotheses. 
The best approach would need to leverage the information content 
in the covariates through both the physics-based hypotheses and 
the data, while keeping the functional mappings between the 
covariates and the precipitation extremes interpretable and 
without losing the ability to generalize to non-stationary 
conditions. We propose sparse and spatially-penalized extremes 
regression as a way to fill this gap. Model parsimony is embedded 
into our formulations through sparse regularization and spatial 
penalties to reduce spurious or overly specific relations that may 
not generalize. Our data-guided approaches can be viewed as 
complementary to the physics-based approaches for relating 
covariates to extremes, perhaps eventually leading to hybrid 
approaches to handle this difficult challenge. This paper is 
focused on demonstrating the value of our approaches to extract 
the functional forms and developing predictive insights from 
model simulations. We focus on reanalysis data [17], which are 
climate reconstructions developed by assimilating multiple remote 
and in-situ sensor data into meteorological models, and do not 
validate using climate model simulations in the future. In addition, 
we do not yet consider vertical profiles of the atmospheric 
column, but attempt to show proof-of-concept based on 
spatiotemporal neighborhoods.      

Based on the above, the data-mining goals can be summarized: 

(1) Developing a data-driven model that focus exclusively on 
describing the extreme values of a target variable as a linear 
combination of the atmospheric covariates.   
(2) Enforcing the sparsity constraint in the linear model using 
sparse regularization techniques in order to facilitate the 
emergence of a spatiotemporal neighborhood of influence directly 
from the data. 
(3) Introducing an adaptive spatial penalty within the sparse 
regularizers in order to enforce a spatiotemporal dependence 
structure that is not overly complex and remains interpretable to 
domain scientists in climate, meteorology and hydrology. 
 
The rest of this paper is organized in the following order. In 
second section, we explain the data-mining problem in detail and 
in third section we provide related background. In the fourth 
section, we explain the notations and assumptions used to describe 
the problem and in fifth section we present our experimental 
results with interpretations. In section six, we conclude and 
discuss future work. 

2. PROBLEM DEFINITION AND 

RELATED BACKGROUND 

2.1 Dependence Discovery 
We posit that not all the climatic variables that are well-predicted 
will contain useful information about the precipitation. Therefore 
we need to find out a set of variables {X1, X2…Xp} that contain 
information about target variable Y (precipitation here) out of a 
larger pool of variables {X1, X2…XP}  where P > p. As a first step, 
we consider linear dependence structures and leave nonlinear 
dependence analyses to future research. Dependence in climate 
data may often be reasonably well captured through linear or 
quasi-linear structures. 

2.2 Neighborhood Discovery 
Precipitation generation processes are inherently multi-scale in 
nature, all the way from localized severe thunderstorms to the 
propagation of mesoscale fronts at regional scales and all the way 
to the influence of larger-scale climate oscillators. For the 
purposes of data-mining, we may differentiate between the 
influences of local or regional spatiotemporal neighborhoods 
versus long-range dependence or teleconnections, specifically 
owing to ocean-driven natural climate oscillators. The former is 
typically more dominant for climate extremes including 
precipitation, which is our focus here. The neighborhood may 
depend on the selected location and prevailing climate and wind 
conditions. Here we select the neighborhood based on data rather 
than enforcing a specific shape or size apriori. 

However, in our proposed method we have combined both these 
problems into a single sparse regression learning problem with a 
spatial penalty. 

2.3 Predicting Extremes 
The data-mining literature has focused more on the prediction of 
frequent patterns with a recent emphasis on anomaly analyses. 
However, a thorough treatment of extremes, or the tails of 
distributions, has been lacking. One consideration is the definition 
of extremes and their attributes. In the context of precipitation 
extremes, percentile-based [1-2] and extreme value theoretic 
definitions [25, 26] have been used. The specific definitions of 
extremes are expected to impact the predictive modeling and 
corresponding insights. A fundamental issue is that extremes 
cannot be expected to follow the distribution of the original 
precipitation time-series since they represent distributional tails. 



Thus, transformations need to be constructed based on the 
statistical properties of the extreme values to make these values 
amenable to predictive modeling. Finally, for precipitation 
extremes, there is a need to be cognizant of the domain knowledge 
available [1-2], while keeping the problem definition open to 
novel data-guided insights given the nature of the science gaps.   

A data-driven solution for discovering the variables those 
influence precipitation extremes can be described as follows. Let 
us denote precipitation extremes at a grid indexed by (i,j) on a 
certain geographical region of interest by Yij. Also, let us denote 
all (say N) candidate variables at (i,j)-th grid by V

ij = {V1
ij
, 

V2
ij
…VN

ij} and variables at all grids by � = {���	∀(	,�) 	 ∈ �} 
where S is the set of all grid-points within the region under 
consideration. We can combine variable and neighborhood 
selection into a single problem described as: For each variable Yij 
we are required to find a set of variables/node NE

ij = {��:	�� ∈ �} 
so that Yij is linearly dependent only on NE

ij and nothing else. It 
has been shown before [7,8,9] that L1-regularized linear 
regression algorithms can produce sparse solutions by learning a 
regression model and at the same time discards the irrelevant 
features by forcing their corresponding coefficients to zero. In the 
next two sub-sections we will briefly discuss these methods. 

2.4 The Elastic Net 
One way of dropping uninformative regressors is to use L1-
regularization on regressors’ coefficients which results in a 
LASSO (least absolute shrinkage selection operator) estimator 
and has the following form.  

   min�RSS(β) + λ||β||��          (1) 

An important feature of the L1 penalty is that some coefficient 
estimates can be exactly zero. The parameter λ controls how many 
coefficients will be zero (as λ goes higher, more coefficients 
become zero). However, LASSO is not without its drawback. 
Conceptually there are two problems as highlighted by Zou and 
Hastie (2005). First, if there are L variables and  D examples and 
L > D, LASSO can select at most D variables. Second, if there is a 
group of variables with high pairwise correlations, LASSO tends 
to select only one variable from the group and does not care which 
one. It turns out that a convex combination of L2 and L1 penalties 
solve these problems. The result is the `Elastic Net' (EN) 
estimator [8]. 

Like LASSO, the EN simultaneously shrinks the coefficient 
estimates and performs model selection. The LASSO penalty is 
convex, but not strictly convex. Strict convexity enforces the 
grouping effect so that predictors with similar properties will have 
similar coefficients. The EN objective function is 

min�RSS(�) +  �||�||��+  !||�||!!                 (2) 

The EN penalty is thus a convex combination of the LASSO and 
the ridge penalty and is strictly convex when λ2/( λ1 + λ2) > 0. The 
relative importance of L1 and L2 parts of the regularizer depends 
on the values of λ1 and λ2 respectively. A computationally 
appealing property of the EN is that it can be reformulated as a 
LASSO problem and hence solved using LASSO algorithms [8].  

Efron et al. [15] showed that LASSO is in fact special case of 
what is known as Least Angle Regressions (LARS) algorithm 
which is extremely efficient with complexity comparable to OLS 
estimate. Recently Friedman, Hastie and Tibshirani (2009) [16] 
developed an algorithm called ‘glmnet’ for solving generalized 
linear models with convex penalties which include both LASSO 
and EN which outperforms LARS in terms of speed. This 

algorithm uses cyclic coordinate descent, computed along a 
regularization path.  

3. NOTATIONS AND ASSUMPTIONS 
Let us assume that there are N potential climate variables that are 
being considered for having possible influence on precipitation 
extremes. We will henceforth call these climate variables as 
covariates. But the values of these covariates at different grid-
points are needed to be considered as actual features for 
neighborhood discovery as discussed earlier. So, henceforth we 
will regard the time-series of covariate values at different grid 
locations as separate variables and call them features.  

Let us assume that for a particular grid-point (i,j) ϵ S (S is the set 
of all grid-points within the spatial region being considered), the 
daily precipitation time-series is given by Pij

 = {p1
ij
, p2

ij
, … pT

ij} 
where T is the number of observations made during the period for 
which data is available (or for the time-frame under 
consideration). Let us also denote the time-series for potential 
features as Vk

ij = {vk1
ij
, vk2

ij
,… vkT

ij} where k denotes individual 
covariates and therefore ranges from 1 to N. Let us build the 
extremes time-series from Pij by picking the extremes (using some 
pre-defined definition of extreme) from the time-series.  

Let us denote the new series as Eij = {e1
ij
, e2

ij
, … eD

ij} where D(i,j) 
is the number of precipitation extremes occurred at grid-point (i,j). 
Now, let us assume that ed

ij
 = pt

ij (i.e. the d-th extreme 
precipitation occurred on the t-th day of the daily precipitation 
time-series). Now for each d in 1 …D(i,j), let us build the set 
given by {et

ij
, Xt

ij} where Xt
ij = {vk(d-1)

mn
, vk(d-2)

mn
… vk(d-∆)

mn 
; k ϵ 

{1..N}, ∀{	,�} ϵ S}. Here ∆ is the number of days prior to an 
occurrence of precipitation extreme from which covariates will be 
considered for possible influence on a precipitation extreme. So, 
once these spatial and temporal distributions of covariate values 
are considered, the total number of features become L = N(number 
of covariates) x |S| (number of grids) x ∆.     

The main assumption here is that the spatio-temporal dependence 
structure between precipitation extremes and the covariates 
remains unaltered over time. Although this might not hold when 
the period under consideration is in the order of thousand years 
but this is a reasonable assumption for a shorter time-period. We 
assume the dependence structure might vary over space and our 
model should be capable of accommodating that change. 

4. METHODOLOGY 
The overall problem described above can be regarded as a feature 
selection problem where a few features will be selected out of a 
set L = Nx|S|x∆ possible candidate features.  Since we have 
included all the grid-points within the set of candidate features as 
a neighbor for each grid-point, we can safely assume that most of 
these features will be irrelevant for each of the grid-points (our 
method will still work even for the unlikely case of all features 
being relevant), although the set of candidate features is same for 
all the grid-points, the set of irrelevant features can be different 
(but might be overlapping) for different grid-points. We are 
further interested in exploiting the information content in the 
covariates within the discovered neighborhood for which we need 
to train a predictive model. For our problem, there might be 
multiple correlated features (due to spatial and temporal 
correlation) and more relevant features than the number of 
available data-points. So, we used elastic net [8] to achieve sparse 
linear models.  

An alternative approach can be applying a feature selection 
algorithm to select relevant features and thereby train a linear 



predictive model based on the selected features. This alternative 
was not considered here since most feature selection methods do 
not work when number of features is larger than the number of 
data-points. Furthermore elastic net is much faster than this 
alternative since it encapsulates both feature selection and model 
estimation in a single optimization problem that can be very 
efficiently solved with state-of-the-art available techniques.   

4.1 Dependence Estimation Using Elastic Net 
We used top-M approach for selecting extremes from the daily 
precipitation time-series. Specifically, we select the top M highest 
independent daily precipitation events from each year. By 
independent events, we mean that there should be at least one dry 
day in between any two of the selected precipitation events. As 
discussed earlier, precipitation extremes selected this way does 
not follow Gaussian distribution, but they follow Generalized 
Extreme Value distribution, PDF of which is given by 

f(x;μ, σ, ξ) = 1
σ )1 + ξ *x− μ

σ ,-./
�01/� × 

                          exp5−)1 + ξ*6/78 ,-*/
9
:,;                 (3) 

Now, let us fit a GEV distribution on Eij. Let us assume the 
resulting distribution is given by GEV(eij; ξij,σij,µij) . In order to 
make these values to conform to Gaussian distribution, we used 
the following transformation on Eij. 

y=> 	 = 	Φ/�(GEV(e=>;	ξ=>, σ=>, μ=>))       (4) 

 where Φ-1 is the inverse normal distribution with zero mean and 
unit variance. We then solve the following elastic net optimization 
problem for each location (i,j) ϵ S 

�CDE = argmin� I *JKLM −NODE
P�DE,!+  �||�LM||��+  !||�LM||!!

Q(L,M)

KR�
 

                                                    (5) 

4.2 Spatial Penalty 
In equation (5) we have a formulation of the problem of finding a 
spatio-temporal dependence structure between precipitation 
extremes and regional covariates in terms of coefficients β. But in 
its current form it is missing important domain knowledge well-
known in Geography which says “Everything is related to 
everything else, but near things are more related than distant 
things”.  Currently, we are giving equal importance to covariates 
belonging to all neighbors as a potential feature irrespective of its 
distance from the grid-point for which the dependence structure is 
being estimated. We address this problem by letting the 
multipliers λ1 and λ2 be functions of βp

ij and depend directly on the 
normalized geodesic distance of the associated grid-point from 
which the corresponding feature belong. So the new formulation 
of the problem will be  

 

�CDE = argmin� I *JKLM −NODE
P�DE,! +I �S|TSLM|

U

SR�
+I !S|TSLM|!

U

SR�

Q(L,M)

KR�
 

              (6) 

where  �S =  �V . (XS/XS�Z[)  
and  !S =  !V . (XS/XS�Z[) 
and XS is the geodesic distance of the grid-point from which the l-
th feature belong. Note that, there are total of |S| grid-points and 
each grid-point generates N∆ potential features making the total 

number of potential features N∆|S|. Therefore for each elastic net 
model corresponding to each of |S| different grid-points we have 
|S| different values of the multiplier λ and each of them will be 
repeated N∆ times. 

5. EXPERIMENTAL RESULTS 

5.1 Dataset 
The precipitation data that we used for this study is originated 
from NCEP-NCAR reanalysis project [17] which is publicly 
available for download. This dataset is constructed by fusing and 
assimilating measurements from heterogeneous remote and in-situ 
sensors within the physics-based climate models. Measurements 
are provided for points (grid cells) at a resolution of 2.5o x 2.5o on 
a latitude-longitude spherical grid. We used daily forecasts 
starting from 1948 until 2010 for the following variables as 
potential covariates: i. Temperature (surface level); ii. Sea-level 
Pressure (surface level); iii. Relative Humidity (surface level); iv. 
Pressure (surface level); v. Precipitable Water (Entire 
Atmosphere); vi. Horizontal Wind Speed (North-south). (surface 
level); vii. Horizontal Wind Speed (East-west). (surface level); 
viii. Updraft Velocity (Omega) (surface level). 

Precipitation rate is available at a finer resolution (192x94 grid-
points over whole globe instead of 144x73, which is the resolution 
for other variables). So, we had to interpolate it down to the 
resolution of the other variables.    

5.2 Experimental Set-up 
In order to reduce the computational cost, we did not use the 
global dataset. Rather we focused our analysis more at regional 
level and therefore applied our algorithm on different regions in 
North America instead of the whole globe.  

We used the top-M approach for selecting extremes to create the 
dataset for precipitation extremes. We selected highest 15 
independent precipitation events from each year at each location 
and considered each extreme as one instance of the target 
variable. We defined precipitation events as independent if they 
are separated by at least one dry day in between them. The 
number 15 has been chosen after consultation with the climate 
scientists as a typical value used by them. Now for each instance 
of the extreme, the potential features are selected as values of each 
covariate at each of the grid-points within the target region (which 
is different for different experiments) on the same the extreme 
occurred and on previous two days. The potential features 
selection process is described in Figure 1. Three days of covariate 
values were chosen since the empirical study showed very little 
correlation among precipitation extremes and other covariates 
beyond two previous days.  

Since we have 63 years of data, we have a total of 63x15 = 945 
data-points. Among them we used first 700 points for training and 
rest of them for testing. We have applied our model on four 
different regions, namely North-west, South-west, North-east and 
South-east US. We present the numbers of grid-points and 
numbers of potential features in each region in Table 1. 

We used the ‘glmnet’ package designed by Friedman, Hastie and 
Tibshirani [16] to implement elastic net. In this package, two 
hyper-parameters λ1 and λ2 are replaced by just one parameter λ 
and a mixing coefficient α, so that 

λ1 = λ.α and λ1 = λ.(1-α) 

The package provides option for choosing differential penalty 
factor λ for different components of β. So in one experiment we 
used fixed value of λ with no spatial penalty, whereas in a 



separate experiment we introduced spatial penalty by using 

λ =  V . (XS/XS�Z[)         (Refer to equation (6)) 

 

Table 1: Number of grid-points and potential features in the 
target regions considered 

 NW US SW US NE US SE US 

# Grid-points 72 21 30 42 

# Features 1728 588 720 1008 

 

We chose α = 0.5 (it was observed that the value of α does not 
influence the end results when it is within a range 0.5\0.25.) and 
estimated  V using cross-validation. 

In order to determine whether the selected covariates carry any 
useful information about the precipitation extremes, we designed 
a baseline experiment where the target values (precipitation 
extremes) were shuffled randomly before training the elastic net 
model for each grid. We call this “null experiment” and perform 
this experiment several times for each run of our proposed 
experiment. We claim that if we can achieve a better accuracy 
than this null experiment that is enough proof that the covariates 
carry some information. A set of similar experiments, each 
starting from one of the following different subsets of all potential 
features, were performed for comparison. 

i) All covariates except precipitable water for all 3 days and all 
grid-points. 
ii) Only precipitable water for the day when the extreme occurred 
in all grid-points. 
iii) All covariates for the day when the extreme occurred in all 
grid-points. 
iv) All covariates for the previous 2 days when the extreme 
occurred in all grid-points. 
v) Only precipitable water for the day when the extreme occurred 
and in the grid extreme occurred. 
vi) Precipitable Water + Updraft Velocity + Relative Humidity + 
Longitudinal Wind (V-wind) for all 3 days and all grid-points 
(these covariates were chosen since they dominate in terms of 
number of non-zero beta values).   

 

Figure 1. Showing the candidate features for an instance of 
precipitation extreme 

5.3 Results and Discussions 
We have estimated the R2-accuracies of the linear models trained 
using the elastic net for each grid-point and compared them with 
the results of the “null experiment”. The spatial distributions of 
the accuracies are shown in Figure 2 with and without spatial 
penalty for NW and SW US. The spatial penalty does not appear 

to alter the accuracies of the model. Both for NW and SW US, the 
maximum accuracy reaches as high as 0.7, which is significant 
given the complexity of the problem. We can use these accuracies 
as an indication of our confidence on the dependence structures 
obtained for the corresponding grid-point. A low accuracy may 
imply spurious dependence structures.  

In Figure 3, we show the cumulative distribution of accuracies in 
the grid-points within the target regions when we start from 
different subsets of potential features as described in previous 
section. The figure shows that irrespective of the starting subset of 
covariates, our method almost always performs better than the 
“null experiment”, implying that the covariates do have 
information-content. However, the information content varies 
depending on the combination of covariates and target region. 
Figure 3 suggests that (a) covariates from neighboring grid-points 
improve the accuracy over covariates from just the grid where the 
extremes have occurred, (b) covariates from the day the extreme 
has occurred contains significantly more information compared to 
the previous days, although previous days do contain information 
(more than the null distribution), and (c) the east coast is more 
difficult to predict than west coast. The insights both confirm 
current climate knowledge and offer new insights to climate 
science. 

In this particular application, the distribution of β-values are of 
equal, if not more, importance as the accuracy of the prediction  
models. We can represent the non-zero β-values as edges 
connecting two nodes where one node represents the precipitation 
extremes in the grid-point on which the elastic net model is 
currently being trained and the other node is one of the potential 
features belonging from one of all the available grid-points (this 
includes the grid-point on which model is being trained). So, if 
there are |S| total grid-points in the target region, we will have a 
total of 3x8x|S| possible β-values (however, most of them will be 
zero for a sparse model) for each grid. Again, we have one such 
model for each of the |S| grid-points. So, altogether there can be 
total of possible 24|S|2 β-values or edges. Figure 4 shows these 
edge distributions, as a function of the distance between the grid-
points they connect, before and after using spatial penalties. We 
only present this for the NW US due to lack of space, but this kind 
of analysis can be done for any target region. The distance will be 
zero for a non-zero β that connects with a variable in the same 
grid-point where the model is being trained. The plots are 
separated according to the covariates they correspond to. We can 
see that adding the spatial penalty results in more parsimonious 
models which are more easily interpreted by the domain scientists, 
while accuracies of the models remain intact. Some of the 
interesting information available from these plots about NW US 
are as follows: (a) winds, both vertical and horizontal, influence 
the precipitation extremes from a large number of neighboring 
grid-points, (b) pressure from neighboring grid-points has very 
small influence on precipitation extremes, and (c) both 
temperature and precipitable water have more localized influence 
on precipitation extremes. The insights, which are exemplary 
rather than exhaustive, range from known (c) or intuitive (a: 
horizontal) to relatively novel (b) or counter-intuitive (a: vertical). 
We present an example of the spatial dependence obtained from 
our analyses. Figure 5 presents the actual distribution of the edges 
for different covariates and for one of the grid-points in NW US 
that attained maximum accuracy both before and after using 
spatial penalty. Here, all the edges originate from the grid-point 
on which the model is being trained. If a number appears on the 
originating grid-point, that means there is edge connecting the 
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Figure 2: Spatial distribution of accuracies in (a) North-west US before using spatial penalty (average accuracy = 0.366); (b) North-
west US after using spatial penalty (average accuracy = 0.39); (c) South-west US before using spatial penalty (average accuracy = 

0.541); (d) South-west US after using spatial penalty (average accuracy = 0.53); 

corresponding covariate in the same grid-point. We can see, even 
after adding spatial penalty, there are still few edges that connect 
grid-points that are far apart although most edges are now short. 
This is a result that might be interesting and may lead to new 
insights. 

6. RELATED WORK 
Data mining techniques has only been recently applied to the 
climate applications. Especially, L1-regularized sparse algorithms 
have been successfully applied for climate modeling before [6, 
10]. In [10] Lozano et. al. used group elastic net for causal 
modeling of climate change attribution. They were only interested 
in finding the variables that influence some statistical property 
(namely, return level) of the temperature extremes. But they do 
not consider the spatial and temporal pattern in the dependence 
structure and therefore their approach does not involve finding a 
neighborhood of influence. Secondly, they assumed a uniform 
dependence structure over the entire region they considered. We 
have relaxed this constraint by letting the dependence structure 
vary over space. Furthermore, they are only interested in 
attribution, not in prediction of extremes, whereas we do both. 

In a second paper [11] Liu et. al. considered the same problem, 
but now they used multiple time-series of observations of the 
same set of variables available from different sources and learned 
a relational graph between them using a hidden MRF and sparse 
regularization. This approach assumed the similar set of 
constraints assumed in [10] mentioned before. They have not 
considered extremes either. 

In [6] Chen et. al. used graphical lasso to learn sparse graphical 
models between different atmospheric variables for a fixed time 

and space and they let these graphs vary over space and time 
using kernel weighted covariance matrix. But, they neither 
considered variable values in the space-time neighborhood nor 
they considered extremes. In a more recent work [27], sparse 
group lasso is used to select climate variables where values of a 
single climate variable with a certain temporal lag at all grid- 
points within a certain spatial neighborhood are considered a 
group. So a feature (a climate variable at any of the neighborhood 
grid-point) cannot be selected unless the group (the climate 
variable itself) from which it belongs is selected. Sparsity is 
enforced both at the group level and the individual feature level. 
Our method does not enforce any group structure and are 
permitted to select a variable value from a grid-point even if it 
does not select the same variables from other grid-points. 

7. IMPACT AND FUTURE WORK 
We have introduced a method for finding spatiotemporal 
dependence of precipitation extremes on regional atmospheric 
covariates using the elastic net and exploited the dependence to 
develop a predictive model for the extremes. The novelty lies in 
being able to directly train a linear model exclusively on extremes 
rather than on average values and achieving a prediction accuracy 
that is significant for application domain. This method can be 
extended for other domains, including but not limited to multi-
physics simulations (e.g., astrophysics or biology) and/or complex 
and nonlinear spatiotemporal systems (e.g., turbulence in 
computational fluid dynamics), where extremes are considered 
more important or interesting than average behavior (e.g., biology, 
finance, healthcare). Ultimately, we have been successful in 
achieving our stated goals of: (1) discovering spatiotemporal 
dependence structures of precipitation extremes on regional 
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Figure 3: Cumulative distribution of accuracies (best viewed in colors) in (a) North-west US; (b) South-west US; (c) North-east US; 

(d) South-east US; (R2-accuracy along x-axis and cumulative number of grid-points that exceeds a corresponding accuracy are 
plotted along y-axis 

   

(a)      (b)  

Figure 4: The distribution of edges before and after spatial penalty for (a) Relative humidity; (b) Temperature for NW US 

atmospheric covariates, and (2) demonstrating the value of data-
driven approaches to extract the information about precipitation 
extremes from model-simulated extremes and translating the 
information to enhanced predictive models. The methods we have 
proposed, specifically for sparse extremes regression with a 
spatial penalty, are applicable to this problem and may generalize 
to other domains. Future research needs to consider non-linear 
dependencies inherent in the climate system, include atmospheric 
covariates in the vertical layer and incorporate the physical 
relations that have been developed in climate science, perhaps as 
pre-processors to the data algorithms. Combining the grid-based 
regression models and letting them share information is another 
direction. Statistical properties (including uncertainty 

quantification) of the sparse regression models that focus 
exclusively on extremes need to be examined. Combining the 
spatiotemporal neighborhood-based predictions with 
teleconnections, specifically the influence of ocean-based 
oscillators, could be a way forward for precipitation extremes 
analysis. 
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(a)       (b) 

Figure 5: Dependency structure of precipitation extremes on precipitable water at a grid-point that attained maximum accuracy in 
North-west US (see figure 2(a) and 2(b)) (a) without and (b) with spatial penalty. Colors of the edges indicate their strength (β-

value). If a number appears on the originating grid-point, that means there is edge connecting the corresponding covariate in the 

same grid-point. 
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Covariate = Prec Water (with spatial penalty); Total number of edges = 4
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