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ABSTRACT

The inability to predict precipitation extremes under non-
stationary climate remains a crucial science gap. Precipitation is
not a state-variable within climate models, exhibits space-time
heterogeneities, and is subject to thresholds and intermittences.
Atmospheric variables in the spatiotemporal neighborhood, like
temperature, humidity and updraft velocity, are often better
predicted than precipitation from these models, and may have
information relevant for precipitation extremes. Model-simulated
atmospheric variables have been used to enhance model-predicted
precipitation extremes in two ways: statistical downscaling
routinely uses regression methods including neural networks and
recently physics-based formulations have been developed. The
former may not generalize under non-stationary climate while the
latter is more interpretable but may not be able to discover or
leverage the full information content in atmospheric covariates.
We propose robust data-mining strategies to complement these
approaches. The challenges are to discover spatiotemporal
neighborhoods of influence, extract dependence structures, and
determine predictive power, under non-stationary climate. We
have developed a data-dependent method to discover sparse
spatiotemporal dependence structure using spatially-penalized
elastic net regression focused on extremes of target variables. The
approach addresses neighborhood discovery, dependence
discovery and predictive modeling of precipitation extremes. The
methods show promise, specifically to improve our understanding
of precipitation extremes and hence inform stakeholders and
policy-makers in the water sector. In addition, further
developments may generalize to problems in multi-physics
simulations and to other complex, nonlinear and spatiotemporal
dynamical systems where extremes are of interest.
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1. CLIMATE SCIENCE GAP AND A NEW
DATA MINING SOLUTION

One of the largest gaps in climate science relevant for
informing stakeholders and policy makers is the inability to
develop credible projections for extreme events and regional
change at spatiotemporal scales that matter to decision-makers.
Precipitation and their extremes are particularly relevant in this
context because of the deep science challenges as well as the
widespread impacts on flood hazards and water resources
decisions. The data mining literature in climate applications have
tended to focus on teleconnections (long-range spatial
dependence), especially on oceanic influence over regional land
climatology [18, 19, 20]. However, while teleconnections are
important, local and regional atmospheric conditions typically
tend to dominate in the context of climate-related extremes. This
is an area where novel data mining approaches are motivated to
address science gaps that are relevant to global societal priorities.

The importance of adapting to a non-stationary climate has been
emphasized in the context of water resources [21]. However,
precipitation and regional climate prediction have been
highlighted as two of four real holes in climate science [5], which
makes the prediction of precipitation or their extremes at local to
regional scales a major challenge.

The climate system is nonlinear dynamical (even chaotic) and
non-stationary, while projections are sought for long lead-times.
Thus, physics-based climate models, which in turn have become
very computationally expensive, are essential. Purely data-guided
methods are not best suited for multi-step ahead prediction under
these circumstances, thus the problem is not cast here as a
standard data-mining prediction problem. On the other hand,
climate models by themselves may not be adequate, especially for
critical challenges like precipitation extremes. Large-scale climate
models solve a system of partial differential equations (PDEs)
based on first principles, but also contain parameterizations for
processes that are not so well understood. Unfortunately,
processes pertaining to precipitation are among the least well
understood and precipitation is not a state variable in the PDEs. In
addition, precipitation is known to be extremely variable in space
and time and the underlying processes are subject to thresholds
and intermittences. However, as pointed out in the literature [1-3,
22-24], precipitation extremes tend to have a dependence on
atmospheric variables ranging from temperature, humidity and
precipitable water, to updraft velocity and horizontal wind
components. These atmospheric variables, which can be thought
of as potential covariates for precipitation extremes, are often
better predicted that precipitation itself. Thus, there have been



(somewhat counter-intuitive) suggestions that precipitation
extremes may be more predictable than precipitation mean
processes, simply because the extremes may relate more directly
to covariates that are better predicted from models. The prediction
problem in the context of precipitation extremes therefore
translates to extraction of information content from these
covariates and translating them to predictive insights. The
prediction in conditional on the availability of model-simulations
all the way to the prediction horizon of the models, which implies
that the standard multi-step-ahead formulations used in data-
mining are not well-suited. Rather, the issue is one of functional
mapping from the covariates which are better predicted by models
to the extremes of precipitation which are less well-predicted but
more desired. The fundamental challenge is to ensure that the
functional mappings generalize under non-stationary conditions
over long lead times.

Recent studies [25,26] have investigated precipitation extremes
and their attributes under changing climate based on global
climate models (GCM) simulations [25,26]. The studies indicate
that the larger uncertainties remain at regional and local scales.
Dynamical downscaling based on regional climate models
(RCM), while higher-resolution and physics-based, suffers from
complex parameterizations and difficult boundary conditions.
Statistical downscaling, which have used models ranging from
simple linear regression to artificial neural networks, suffers from
lack of interpretability. The downscaling approaches may not
generalize well to non-stationary conditions owing to the
complexity of parameterizations and/or the lack of physical
consistency. One promising recent approach has been the
development of physics-based approaches which attempt to relate
the atmospheric covariates with precipitation extremes through
what could be viewed as hypothesis-guided approaches. The
physics operates at different scales or accounts for different
processes than are handled within the large-scale computational
models of climate, hence their added value [1,3,22]. While these
approaches have demonstrated significant promise, they may not
be able to leverage the full information content in atmospheric
covariates and translate these to predictive insights, primarily
because they have to rely on known physics-based hypotheses.
The best approach would need to leverage the information content
in the covariates through both the physics-based hypotheses and
the data, while keeping the functional mappings between the
covariates and the precipitation extremes interpretable and
without losing the ability to generalize to non-stationary
conditions. We propose sparse and spatially-penalized extremes
regression as a way to fill this gap. Model parsimony is embedded
into our formulations through sparse regularization and spatial
penalties to reduce spurious or overly specific relations that may
not generalize. Our data-guided approaches can be viewed as
complementary to the physics-based approaches for relating
covariates to extremes, perhaps eventually leading to hybrid
approaches to handle this difficult challenge. This paper is
focused on demonstrating the value of our approaches to extract
the functional forms and developing predictive insights from
model simulations. We focus on reanalysis data [17], which are
climate reconstructions developed by assimilating multiple remote
and in-situ sensor data into meteorological models, and do not
validate using climate model simulations in the future. In addition,
we do not yet consider vertical profiles of the atmospheric
column, but attempt to show proof-of-concept based on
spatiotemporal neighborhoods.

Based on the above, the data-mining goals can be summarized:

(1) Developing a data-driven model that focus exclusively on
describing the extreme values of a target variable as a linear
combination of the atmospheric covariates.

(2) Enforcing the sparsity constraint in the linear model using
sparse regularization techniques in order to facilitate the
emergence of a spatiotemporal neighborhood of influence directly
from the data.

(3) Introducing an adaptive spatial penalty within the sparse
regularizers in order to enforce a spatiotemporal dependence
structure that is not overly complex and remains interpretable to
domain scientists in climate, meteorology and hydrology.

The rest of this paper is organized in the following order. In
second section, we explain the data-mining problem in detail and
in third section we provide related background. In the fourth
section, we explain the notations and assumptions used to describe
the problem and in fifth section we present our experimental
results with interpretations. In section six, we conclude and
discuss future work.

2. PROBLEM DEFINITION AND
RELATED BACKGROUND

2.1 Dependence Discovery

We posit that not all the climatic variables that are well-predicted
will contain useful information about the precipitation. Therefore
we need to find out a set of variables {X;, X;...X,} that contain
information about target variable Y (precipitation here) out of a
larger pool of variables {X;, X,...Xp} where P > p. As a first step,
we consider linear dependence structures and leave nonlinear
dependence analyses to future research. Dependence in climate
data may often be reasonably well captured through linear or
quasi-linear structures.

2.2 Neighborhood Discovery

Precipitation generation processes are inherently multi-scale in
nature, all the way from localized severe thunderstorms to the
propagation of mesoscale fronts at regional scales and all the way
to the influence of larger-scale climate oscillators. For the
purposes of data-mining, we may differentiate between the
influences of local or regional spatiotemporal neighborhoods
versus long-range dependence or teleconnections, specifically
owing to ocean-driven natural climate oscillators. The former is
typically more dominant for climate extremes including
precipitation, which is our focus here. The neighborhood may
depend on the selected location and prevailing climate and wind
conditions. Here we select the neighborhood based on data rather
than enforcing a specific shape or size apriori.

However, in our proposed method we have combined both these
problems into a single sparse regression learning problem with a
spatial penalty.

2.3 Predicting Extremes

The data-mining literature has focused more on the prediction of
frequent patterns with a recent emphasis on anomaly analyses.
However, a thorough treatment of extremes, or the tails of
distributions, has been lacking. One consideration is the definition
of extremes and their attributes. In the context of precipitation
extremes, percentile-based [1-2] and extreme value theoretic
definitions [25, 26] have been used. The specific definitions of
extremes are expected to impact the predictive modeling and
corresponding insights. A fundamental issue is that extremes
cannot be expected to follow the distribution of the original
precipitation time-series since they represent distributional tails.



Thus, transformations need to be constructed based on the
statistical properties of the extreme values to make these values
amenable to predictive modeling. Finally, for precipitation
extremes, there is a need to be cognizant of the domain knowledge
available [1-2], while keeping the problem definition open to
novel data-guided insights given the nature of the science gaps.

A data-driven solution for discovering the variables those
influence precipitation extremes can be described as follows. Let
us denote precipitation extremes at a grid indexed by (i,j) on a
certain geographical region of interest by Y. Also, let us denote
all (say N) candidate variables at (ij)-th grid by V¥ = (V7
V,7...V\/} and variables at all grids by V = {V™ V(m,n) € S}
where S is the set of all grid-points within the region under
consideration. We can combine variable and neighborhood
selection into a single problem described as: For each variable ¥
we are required to find a set of variables/node NE/ = {v.: v, € V}
so that Y7 is linearly dependent only on NEY and nothing else. It
has been shown before [7,8,9] that L,-regularized linear
regression algorithms can produce sparse solutions by learning a
regression model and at the same time discards the irrelevant
features by forcing their corresponding coefficients to zero. In the
next two sub-sections we will briefly discuss these methods.

2.4 The Elastic Net

One way of dropping uninformative regressors is to use L1-
regularization on regressors’ coefficients which results in a
LASSO (least absolute shrinkage selection operator) estimator
and has the following form.

ming RSS(B) + A8l (1

An important feature of the L1 penalty is that some coefficient
estimates can be exactly zero. The parameter A controls how many
coefficients will be zero (as A goes higher, more coefficients
become zero). However, LASSO is not without its drawback.
Conceptually there are two problems as highlighted by Zou and
Hastie (2005). First, if there are L variables and D examples and
L > D, LASSO can select at most D variables. Second, if there is a
group of variables with high pairwise correlations, LASSO tends
to select only one variable from the group and does not care which
one. It turns out that a convex combination of L.2 and L1 penalties
solve these problems. The result is the “Elastic Net' (EN)
estimator [8].

Like LASSO, the EN simultaneously shrinks the coefficient
estimates and performs model selection. The LASSO penalty is
convex, but not strictly convex. Strict convexity enforces the
grouping effect so that predictors with similar properties will have
similar coefficients. The EN objective function is

ming RSS(B) + 24 [1BII1 + A11BIIZ 2

The EN penalty is thus a convex combination of the LASSO and
the ridge penalty and is strictly convex when Ay/( A; + A,) > 0. The
relative importance of L1 and L2 parts of the regularizer depends
on the values of A; and A, respectively. A computationally
appealing property of the EN is that it can be reformulated as a
LASSO problem and hence solved using LASSO algorithms [8].

Efron et al. [15] showed that LASSO is in fact special case of
what is known as Least Angle Regressions (LARS) algorithm
which is extremely efficient with complexity comparable to OLS
estimate. Recently Friedman, Hastie and Tibshirani (2009) [16]
developed an algorithm called ‘glmnet’ for solving generalized
linear models with convex penalties which include both LASSO
and EN which outperforms LARS in terms of speed. This

algorithm uses cyclic coordinate descent, computed along a
regularization path.

3. NOTATIONS AND ASSUMPTIONS

Let us assume that there are N potential climate variables that are
being considered for having possible influence on precipitation
extremes. We will henceforth call these climate variables as
covariates. But the values of these covariates at different grid-
points are needed to be considered as actual features for
neighborhood discovery as discussed earlier. So, henceforth we
will regard the time-series of covariate values at different grid
locations as separate variables and call them features.

Let us assume that for a particular grid-point (7,j) € S (S is the set
of all grid-points within the spatial region being considered), the
daily precipitation time-series is given by PV = {p,¥, p,". ... p//}
where T is the number of observations made during the period for
which data is available (or for the time-frame under
consideration). Let us also denote the time-series for potential
features as Vi = {vi,”, viu¥... v’} where k denotes individual
covariates and therefore ranges from 1 to N. Let us build the
extremes time-series from P/ by picking the extremes (using some
pre-defined definition of extreme) from the time-series.

Let us denote the new series as EY = {¢,%, e,”, ... ep”} where D(i, J)
is the number of precipitation extremes occurred at grid-point (i,j).
Now, let us assume that e/ = p,ij (i.e. the d-th extreme
precipitation occurred on the #-th day of the daily precipitation
time-series). Now for each d in 1 ...D(i,j), let us build the set
given by {¢, X'} where X/ = Via )™ Vi)™ Vi) s k€
{1.N}, V{m,n} € S}. Here 4 is the number of days prior to an
occurrence of precipitation extreme from which covariates will be
considered for possible influence on a precipitation extreme. So,
once these spatial and temporal distributions of covariate values
are considered, the total number of features become L = N(number
of covariates) x |S| (number of grids) x 4.

The main assumption here is that the spatio-temporal dependence
structure between precipitation extremes and the covariates
remains unaltered over time. Although this might not hold when
the period under consideration is in the order of thousand years
but this is a reasonable assumption for a shorter time-period. We
assume the dependence structure might vary over space and our
model should be capable of accommodating that change.

4. METHODOLOGY

The overall problem described above can be regarded as a feature
selection problem where a few features will be selected out of a
set L = NxISIx4 possible candidate features. Since we have
included all the grid-points within the set of candidate features as
a neighbor for each grid-point, we can safely assume that most of
these features will be irrelevant for each of the grid-points (our
method will still work even for the unlikely case of all features
being relevant), although the set of candidate features is same for
all the grid-points, the set of irrelevant features can be different
(but might be overlapping) for different grid-points. We are
further interested in exploiting the information content in the
covariates within the discovered neighborhood for which we need
to train a predictive model. For our problem, there might be
multiple correlated features (due to spatial and temporal
correlation) and more relevant features than the number of
available data-points. So, we used elastic net [8] to achieve sparse
linear models.

An alternative approach can be applying a feature selection
algorithm to select relevant features and thereby train a linear



predictive model based on the selected features. This alternative
was not considered here since most feature selection methods do
not work when number of features is larger than the number of
data-points. Furthermore elastic net is much faster than this
alternative since it encapsulates both feature selection and model
estimation in a single optimization problem that can be very
efficiently solved with state-of-the-art available techniques.

4.1 Dependence Estimation Using Elastic Net
We used top-M approach for selecting extremes from the daily
precipitation time-series. Specifically, we select the top M highest
independent daily precipitation events from each year. By
independent events, we mean that there should be at least one dry
day in between any two of the selected precipitation events. As
discussed earlier, precipitation extremes selected this way does
not follow Gaussian distribution, but they follow Generalized
Extreme Value distribution, PDF of which is given by

1

AN
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Now, let us fit a GEV distribution on Ej. Let us assume the
resulting distribution is given by GEV(ey; &;;,05,1;) - In order to
make these values to conform to Gaussian distribution, we used
the following transformation on Ej;.

yI = ®7(GEV(e'; &, 0", ul)) 4)
where @' is the inverse normal distribution with zero mean and

unit variance. We then solve the following elastic net optimization
problem for each location (i,j) € S

D(ij)
.. .. i .. 2 .. .
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da=1
(3)
4.2 Spatial Penalty

In equation (5) we have a formulation of the problem of finding a
spatio-temporal dependence structure between precipitation
extremes and regional covariates in terms of coefficients f. But in
its current form it is missing important domain knowledge well-
known in Geography which says “Everything is related to
everything else, but near things are more related than distant
things”. Currently, we are giving equal importance to covariates
belonging to all neighbors as a potential feature irrespective of its
distance from the grid-point for which the dependence structure is
being estimated. We address this problem by letting the
multipliers /; and 2, be functions of 8,7 and depend directly on the
normalized geodesic distance of the associated grid-point from
which the corresponding feature belong. So the new formulation
of the problem will be

D(.j) , L L
B =argmin " (v =XJ 89) + > 21871+ ) AulB P
B d=1 =1 =1

(6)
where A1; = A44.(9:/9"%)

and Ay; = Az0.(9:/91™)

and g; is the geodesic distance of the grid-point from which the /-
th feature belong. Note that, there are total of IS| grid-points and
each grid-point generates N/ potential features making the total

number of potential features NAIS|. Therefore for each elastic net
model corresponding to each of IS different grid-points we have
ISI different values of the multiplier 4 and each of them will be
repeated NA times.

5. EXPERIMENTAL RESULTS
5.1 Dataset

The precipitation data that we used for this study is originated
from NCEP-NCAR reanalysis project [17] which is publicly
available for download. This dataset is constructed by fusing and
assimilating measurements from heterogeneous remote and in-situ
sensors within the physics-based climate models. Measurements
are provided for points (grid cells) at a resolution of 2.5°x 2.5° on
a latitude-longitude spherical grid. We used daily forecasts
starting from 1948 until 2010 for the following variables as
potential covariates: i. Temperature (surface level); ii. Sea-level
Pressure (surface level); iii. Relative Humidity (surface level); iv.
Pressure (surface level); v. Precipitable Water (Entire
Atmosphere); vi. Horizontal Wind Speed (North-south). (surface
level); vii. Horizontal Wind Speed (East-west). (surface level);
viii. Updraft Velocity (Omega) (surface level).

Precipitation rate is available at a finer resolution (192x94 grid-
points over whole globe instead of 144x73, which is the resolution
for other variables). So, we had to interpolate it down to the
resolution of the other variables.

5.2 Experimental Set-up

In order to reduce the computational cost, we did not use the
global dataset. Rather we focused our analysis more at regional
level and therefore applied our algorithm on different regions in
North America instead of the whole globe.

We used the top-M approach for selecting extremes to create the
dataset for precipitation extremes. We selected highest 15
independent precipitation events from each year at each location
and considered each extreme as one instance of the target
variable. We defined precipitation events as independent if they
are separated by at least one dry day in between them. The
number 15 has been chosen after consultation with the climate
scientists as a typical value used by them. Now for each instance
of the extreme, the potential features are selected as values of each
covariate at each of the grid-points within the target region (which
is different for different experiments) on the same the extreme
occurred and on previous two days. The potential features
selection process is described in Figure 1. Three days of covariate
values were chosen since the empirical study showed very little
correlation among precipitation extremes and other covariates
beyond two previous days.

Since we have 63 years of data, we have a total of 63x15 = 945
data-points. Among them we used first 700 points for training and
rest of them for testing. We have applied our model on four
different regions, namely North-west, South-west, North-east and
South-east US. We present the numbers of grid-points and
numbers of potential features in each region in Table 1.

We used the ‘glmnet’ package designed by Friedman, Hastie and
Tibshirani [16] to implement elastic net. In this package, two
hyper-parameters A, and A, are replaced by just one parameter A
and a mixing coefficient a, so that

A =Aoand A =A(1-a)
The package provides option for choosing differential penalty

factor A for different components of B. So in one experiment we
used fixed value of A with no spatial penalty, whereas in a



separate experiment we introduced spatial penalty by using

A=20.(9:/9™) (Refer to equation (6))

Table 1: Number of grid-points and potential features in the
target regions considered

NWUS | SWUS | NEUS | SEUS
# Grid-points | 72 21 30 42
# Features 1728 588 720 1008

We chose a = 0.5 (it was observed that the value of o does not
influence the end results when it is within a range 0.5+0.25.) and
estimated A, using cross-validation.

In order to determine whether the selected covariates carry any
useful information about the precipitation extremes, we designed
a baseline experiment where the target values (precipitation
extremes) were shuffled randomly before training the elastic net
model for each grid. We call this “null experiment” and perform
this experiment several times for each run of our proposed
experiment. We claim that if we can achieve a better accuracy
than this null experiment that is enough proof that the covariates
carry some information. A set of similar experiments, each
starting from one of the following different subsets of all potential
features, were performed for comparison.

i) All covariates except precipitable water for all 3 days and all
grid-points.

ii) Only precipitable water for the day when the extreme occurred
in all grid-points.

iii) All covariates for the day when the extreme occurred in all
grid-points.

iv) All covariates for the previous 2 days when the extreme
occurred in all grid-points.

v) Only precipitable water for the day when the extreme occurred
and in the grid extreme occurred.

vi) Precipitable Water + Updraft Velocity + Relative Humidity +
Longitudinal Wind (V-wind) for all 3 days and all grid-points
(these covariates were chosen since they dominate in terms of
number of non-zero beta values).

One extreme
occurred on d-th
day.

Covariates at all
these grids
(including the red
one) are potential
features.

e __.:
d-2
d-1 Days
d

Figure 1. Showing the candidate features for an instance of
precipitation extreme

(i)

5.3 Results and Discussions

We have estimated the R%-accuracies of the linear models trained
using the elastic net for each grid-point and compared them with
the results of the “null experiment”. The spatial distributions of
the accuracies are shown in Figure 2 with and without spatial
penalty for NW and SW US. The spatial penalty does not appear

to alter the accuracies of the model. Both for NW and SW US, the
maximum accuracy reaches as high as 0.7, which is significant
given the complexity of the problem. We can use these accuracies
as an indication of our confidence on the dependence structures
obtained for the corresponding grid-point. A low accuracy may
imply spurious dependence structures.

In Figure 3, we show the cumulative distribution of accuracies in
the grid-points within the target regions when we start from
different subsets of potential features as described in previous
section. The figure shows that irrespective of the starting subset of
covariates, our method almost always performs better than the
“null experiment”, implying that the covariates do have
information-content. However, the information content varies
depending on the combination of covariates and target region.
Figure 3 suggests that (a) covariates from neighboring grid-points
improve the accuracy over covariates from just the grid where the
extremes have occurred, (b) covariates from the day the extreme
has occurred contains significantly more information compared to
the previous days, although previous days do contain information
(more than the null distribution), and (c) the east coast is more
difficult to predict than west coast. The insights both confirm
current climate knowledge and offer new insights to climate
science.

In this particular application, the distribution of B-values are of
equal, if not more, importance as the accuracy of the prediction
models. We can represent the non-zero B-values as edges
connecting two nodes where one node represents the precipitation
extremes in the grid-point on which the elastic net model is
currently being trained and the other node is one of the potential
features belonging from one of all the available grid-points (this
includes the grid-point on which model is being trained). So, if
there are S| total grid-points in the target region, we will have a
total of 3x8xIS| possible B-values (however, most of them will be
zero for a sparse model) for each grid. Again, we have one such
model for each of the IS| grid-points. So, altogether there can be
total of possible 24ISI* B-values or edges. Figure 4 shows these
edge distributions, as a function of the distance between the grid-
points they connect, before and after using spatial penalties. We
only present this for the NW US due to lack of space, but this kind
of analysis can be done for any target region. The distance will be
zero for a non-zero B that connects with a variable in the same
grid-point where the model is being trained. The plots are
separated according to the covariates they correspond to. We can
see that adding the spatial penalty results in more parsimonious
models which are more easily interpreted by the domain scientists,
while accuracies of the models remain intact. Some of the
interesting information available from these plots about NW US
are as follows: (a) winds, both vertical and horizontal, influence
the precipitation extremes from a large number of neighboring
grid-points, (b) pressure from neighboring grid-points has very
small influence on precipitation extremes, and (c) both
temperature and precipitable water have more localized influence
on precipitation extremes. The insights, which are exemplary
rather than exhaustive, range from known (c) or intuitive (a:
horizontal) to relatively novel (b) or counter-intuitive (a: vertical).
We present an example of the spatial dependence obtained from
our analyses. Figure 5 presents the actual distribution of the edges
for different covariates and for one of the grid-points in NW US
that attained maximum accuracy both before and after using
spatial penalty. Here, all the edges originate from the grid-point
on which the model is being trained. If a number appears on the
originating grid-point, that means there is edge connecting the
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Figure 2: Spatial distribution of accuracies in (a) North-west US before using spatial penalty (average accuracy = 0.366); (b) North-
west US after using spatial penalty (average accuracy = 0.39); (c) South-west US before using spatial penalty (average accuracy =
0.541); (d) South-west US after using spatial penalty (average accuracy = 0.53);

corresponding covariate in the same grid-point. We can see, even
after adding spatial penalty, there are still few edges that connect
grid-points that are far apart although most edges are now short.
This is a result that might be interesting and may lead to new
insights.

6. RELATED WORK

Data mining techniques has only been recently applied to the
climate applications. Especially, L;-regularized sparse algorithms
have been successfully applied for climate modeling before [6,
10]. In [10] Lozano et. al. used group elastic net for causal
modeling of climate change attribution. They were only interested
in finding the variables that influence some statistical property
(namely, return level) of the temperature extremes. But they do
not consider the spatial and temporal pattern in the dependence
structure and therefore their approach does not involve finding a
neighborhood of influence. Secondly, they assumed a uniform
dependence structure over the entire region they considered. We
have relaxed this constraint by letting the dependence structure
vary over space. Furthermore, they are only interested in
attribution, not in prediction of extremes, whereas we do both.

In a second paper [11] Liu et. al. considered the same problem,
but now they used multiple time-series of observations of the
same set of variables available from different sources and learned
a relational graph between them using a hidden MRF and sparse
regularization. This approach assumed the similar set of
constraints assumed in [10] mentioned before. They have not
considered extremes either.

In [6] Chen et. al. used graphical lasso to learn sparse graphical
models between different atmospheric variables for a fixed time

and space and they let these graphs vary over space and time
using kernel weighted covariance matrix. But, they neither
considered variable values in the space-time neighborhood nor
they considered extremes. In a more recent work [27], sparse
group lasso is used to select climate variables where values of a
single climate variable with a certain temporal lag at all grid-
points within a certain spatial neighborhood are considered a
group. So a feature (a climate variable at any of the neighborhood
grid-point) cannot be selected unless the group (the climate
variable itself) from which it belongs is selected. Sparsity is
enforced both at the group level and the individual feature level.
Our method does not enforce any group structure and are
permitted to select a variable value from a grid-point even if it
does not select the same variables from other grid-points.

7. IMPACT AND FUTURE WORK

We have introduced a method for finding spatiotemporal
dependence of precipitation extremes on regional atmospheric
covariates using the elastic net and exploited the dependence to
develop a predictive model for the extremes. The novelty lies in
being able to directly train a linear model exclusively on extremes
rather than on average values and achieving a prediction accuracy
that is significant for application domain. This method can be
extended for other domains, including but not limited to multi-
physics simulations (e.g., astrophysics or biology) and/or complex
and nonlinear spatiotemporal systems (e.g., turbulence in
computational fluid dynamics), where extremes are considered
more important or interesting than average behavior (e.g., biology,
finance, healthcare). Ultimately, we have been successful in
achieving our stated goals of: (1) discovering spatiotemporal
dependence structures of precipitation extremes on regional
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Figure 4: The distribution of edges before and after spatial penalty for (a) Relative humidity; (b) Temperature for NW US

atmospheric covariates, and (2) demonstrating the value of data-
driven approaches to extract the information about precipitation
extremes from model-simulated extremes and translating the
information to enhanced predictive models. The methods we have
proposed, specifically for sparse extremes regression with a
spatial penalty, are applicable to this problem and may generalize
to other domains. Future research needs to consider non-linear
dependencies inherent in the climate system, include atmospheric
covariates in the vertical layer and incorporate the physical
relations that have been developed in climate science, perhaps as
pre-processors to the data algorithms. Combining the grid-based
regression models and letting them share information is another
direction.  Statistical  properties  (including  uncertainty

quantification) of the sparse regression models that focus
exclusively on extremes need to be examined. Combining the
spatiotemporal neighborhood-based predictions with
teleconnections, specifically the influence of ocean-based
oscillators, could be a way forward for precipitation extremes
analysis.
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Figure 5: Dependency structure of precipitation extremes on precipitable water at a grid-point that attained maximum accuracy in
North-west US (see figure 2(a) and 2(b)) (a) without and (b) with spatial penalty. Colors of the edges indicate their strength (f-
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