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ABSTRACT

The analysis and modeling of extreme values have traditionally
relied on extreme value theory (EVT), which in turn has tended to
focus on limiting or asymptotic cases and assumptions of
independence. However, disciplines from climate science and
digital mapping to infrastructure security and transportation, have
been generating massive volumes of data with multidimensional
and multivariable dependence, long-memory and long-range
associations, and nonlinear interactions, from remote or in-situ
sensors and computational models. This motivates the need for
automated descriptive and predictive analysis of extremes. The
size and complexity of data does not preclude the rarity of the
extreme events, but presents the possibility of information
extraction from related ancillary variables, or covariates. An
empirical analysis of spatiotemporal auto- and cross-correlation
structures of extremes, statistical behavior of EVT on finite and
noisy data, as well as the impact of noise, nonlinearity and
variability, may lead to novel formulations for understanding
extremes and their correlations. Based on the results of
preliminary data analysis, we proposed using graphical model
based on tail dependence for description and analysis of spatial
and covariate dependence structure among extremes time-series.
Besides providing insights on climate change or natural hazards
and the consequences for climate change science or the re-
insurance industry, the methods can be generalized to multiple
domains ranging from water resources planning and critical
infrastructures security to finance, telecommunications, cyber-
security and mapping technologies.
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1. INTRODUCTION

While most traditional developments in statistics or machine
learning have tended to focus on an understanding of usual
patterns and frequent occurrences, the ability to understand and
predict rare events remains a challenge. Nonetheless, extreme
events are growing in importance across disciplines like finance,
insurance, hydrology [1] and climate [2-3]. Here we consider the
climate change context, where changes in the intensity, frequency
or duration of temperature and precipitation extremes are of
interest for adaptation and policy. Specifically, attribution to

Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted without fee provided that the copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

ACM SustKDD'12, August 12, 2012, Beijing, China Copyright 2012
ACM 978-1-4503-1558-6/12/08 ....$10.00

human contributions, credible future projections, emergency
preparedness or resource allocations, and insurance or re-
insurance risk assessments, may all depend on the ability to
understand relations among extreme values and generate
predictive insights. Here we are concerned with rare events at the
tails of the distributions, or extremely high or low values. Rare
events mining in artificial intelligence (AI), which includes
classification of imbalanced datasets through synthetic over-
sampling [4], deal with situations when rare events do occur in the
observations. Methods like skyline [19] or top-K query [20]
processing database mining techniques may be useful in sampling
large values from available data. However, none of these
approaches deal with situations where the rare events may not
occur in the observed or model-simulated “training” data, or may
not occur in sufficient volumes for direct statistical analysis. The
analysis of such events relies on extrapolation beyond what is
normally observed. Extreme value theory (EVT) is among the few
statistical methods doing true extrapolation; parametric relations
are developed to infer about tails of the distribution (e.g., a 100-
year, or a one in a thousand, event) with values that are adequately
large but not necessarily at the extreme tails [5; 21]. A recent
work on EVT [23] is an example of EVT method developed in the
machine learning (ML) community with applications to data from
climate and the social media.

2. CHALLENGES & OPPORTUNITIES

Despite decades of development, EVT remains an area with open
challenges, many of which may be resolved through statistics,
data mining and Al The growing importance of extremes, for
example in the context of climate change and severe rainfall,
motivates urgent solutions. Although there are many open
challenges [6, 21] related to extreme value analysis, in this paper
we have mainly focused on the problem of estimation of spatial
dependence structure among extremes and the importance of
uncertainty quantification. Being able to accurately estimate this
dependence structure will greatly improve the effectiveness of
decision making process in multiple sectors including insurance
industry and water resource management. For example if two
locations are found to be perfectly dependent in terms of extremes
events, simultaneous 100-year precipitation events at those
locations becomes a 100-year event itself; whereas if they are
found to be independent, the same event will be a 10,000 year
event. Insurance companies can greatly improve their risk
portfolio with this kind of information and set premiums
accordingly. On the other hand, a major change in the dependence
structure may suggest large-scale change in climate patterns due
to urbanization and other anthropogenic activities. However, we
have to be careful while interpreting these estimates since they
involve extrapolation beyond normally observed events, which
emphasizes the importance of supplying appropriate uncertainty
estimates.

We have investigated the role of multi-source data and other



covariates in providing additional information content about the
dependence structure and reducing the associated uncertainty. We
have described the problem with a few motivating experiments,
discussed where data guided techniques may help and proposed a
potential solution approach, with particular emphasis on
uncertainty quantification. Climate change is selected as an
exemplar both because of the societal importance [7] and to
validate the methods with massive data from sensors and models.

3. BACKGROUND

Rainfall extremes are typically characterized by their intensity,
duration and frequency (IDF) for applications from water
resources management, flood hazards, and dam design [8]. Recent
research has explored changes in the IDF curves under climate
change [9].

The n-year return level, (RL,,), defined as the level that is reached
or exceeded once every n-years on the average (alternatively, the
probability of exceedances on any given year is I/n). The three [5,
8] ways to describe extreme values are the Generalized Extreme
Value (GEV) distribution fitted to block maxima (BM) or blocks
of time windows like an annual maxima time series, the Poisson
arrival of extremes followed by the Generalized Pareto
distribution (GPD) fitted to the excesses above a threshold,
leading to the Peak-over-Threshold (PoT) as well as the Point
Process (PP) approach. The PDF of GEV [5] is given by
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where parameters 1, ¢ and & are called location, scale and shape
parameters respectively and exp(.) is exponential function. The
PDF of GPD [5] is given by

R

where parameters p, ¢ and & are called location, scale and
threshold parameters respectively.

From a pragmatic standpoint, the approaches generate estimates
of the return levels along with associated uncertainties per time
series, but require either the selection of a block size or a
threshold. The distributions (GEV or GPD) arise from limiting
cases for large sample sizes as well as when the maxima or excess
data are independent and identically distributed. Thus, the
tradeoffs during the choice of a block size or a threshold may be
expressed as a bias versus variance issue: larger block sizes or
higher thresholds may imply lower bias but larger variance while
smaller block sizes and lower thresholds may imply larger bias.
One may refer to [5] for more discussion on the typical choice of
methods for practical applications.

Linear Correlation measures (e.g. Pearson’s correlation) are useful
in estimating the pair-wise correlation between multiple time-
series. While computing pair-wise correlation among precipitation
time-series at different location may give us some preliminary
idea about average spatial decorrelation length-scale among these
time-series and dependence structure between mean precipitation
events, this is certainly not suitable for extreme events. Firstly,
using a method like block-maxima will greatly reduce the number
of samples on which the correlation is being computed and
introduce large uncertainty. Secondly, the linear correlation
measures fail to consider the co-occurrence patterns of the

extreme events which are of prime importance for estimating
dependence structure among extremes. So, in order to estimate a
spatial dependence structure between extremes occurrence, we
may need to use more informative measures of dependence like
tail dependence, which is loosely given by limiting proportion that
one variable exceeds a certain threshold given that the other
variable has already exceeded that threshold [22]. Here the
threshold may be defined as a percentile. Copula-based methods
may also be appropriate in estimating the dependence among
extremes time series.

4. PRELIMINARY RESULTS
4.1 Dataset

In our experiments we used the precipitation observations from
Climate Prediction Center (CPC) which are available at 0.25° x
0.25° grids [22] over entire US. A second type of dataset that we
used here falls in the category of “reanalysis datasets™ that are
generated from physics models that are forced to match with
available observations. So, they are mostly uniform in terms of
quality. However, they can inherit errors associated with the

observations. A summary of the datasets we used are provided in
Table 1.

Table 1: Description of the datasets used in the experiments

Temporal Spatial Region Variables
Resolution | Resolution | Used Used
Observa- Daily 25%x .25° Us Precipitation
tion
Reanalysis Daily 2.5°x2.5° US Precipitation,
Temperature

4.2 Experiments

We started by plotting the distribution of the correlation as a
function of distance for both the observed and reanalysis
precipitation data in Figure 1. We binned all possible distances
among grid-points into 50 intervals and for each interval we
computed the pairwise correlation between location pairs whose
distance falls within that interval and averaged them. However,
we only considered the correlations that are significant at 95%
significance level.
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Figure 1: Distribution of correlation as a function of distance
for (a) Reanalysis and (b) Observation.

Next in Figure 2, we plotted the same distribution for annual
maxima instead of the daily time-series. We can see that




correlation decreases significantly for annual maxima time-series.
Furthermore, the difference between two types of dataset is more
evident among extremes than in regular time-series.
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Figure 2: Distribution of correlation among annual maxima as
a function of distance for (a) Reanalysis and (b) Observation.

In Figure 3, we plotted the significance of the null hypothesis (that
no correlation exists) as a function of distance in a similar way we
plotted the correlations. A lower value of significance of null
hypothesis means higher significance and lower uncertainty of the
correlation. Most of the pairwise correlations computed on annual
maxima time-series turned out to be highly uncertain and
insignificant. So, the correlation not only became smaller when
we used annual maxima instead of the regular time-series, they
became insignificant. Moreover, the correlations seem to increase
slightly at longer distances when we used maxima which may just
be spurious. If not, they may need further analysis. So, simple
linear correlation may not be the correct measure to estimate the
dependence between extreme events. This shows the need for
using other methods such as tail dependence or copula-based
methods to quantify the dependence among extremes time-series
instead of linear correlation measure.
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Figure 3: Distribution of significance of null hypothesis (that
no correlation exist) as a function of distance for (a)
Reanalysis and (b) Observation. (lower value means lower
uncertainty)

Now, we fitted GEV distribution (and obtained the maximum
likelihood estimates of GEV parameters) at each individual grid-
point using the annual maxima and plotted the spatial distribution
of the location parameter p along with corresponding confidence
interval in Figure 4. The distribution of parameter clearly shows
spatial coherence which we intend to exploit.

In our next experiment, we computed the average temperature
over each location and plotted 30 year return level over each
location as a function of mean temperature. Figure 5 shows the
plot. The plot shows some correlation among average temperature
and 30 year return levels. It is a well-known hypothesis in climate
that, at global level, precipitation extremes increase with increase
in temperature [18]. However, at regional level, the relation is not
so clear. Furthermore there may be non-linear dependence and
other covariates like relative humidity, precipitable water, updraft
velocity etc. may also influence the extremes.
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Figure 4: Spatial distribution of (a) location parameter and
(b) corresponding confidence interval for GEVs fitted at each
grid-point
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Figure 5: Plot of 30 year return level vs Average temperature
at 124 different grid-points within US.

In this section we showed some results from preliminary
experiments to give an outline of the key challenges in extremes
mining using precipitation extremes as a motivating example.
However, more empirical tests are necessary for additional
hypothesis before we can effectively design our solutions for
addressing these challenges. In the next section we provide some
possible approaches for solution to the problem of dependence
discovery.

S. FUTURE RESEARCH DIRECTIONS

We propose the development of graphical models for extremes
based on tail dependence measures derived from multivariate
extensions of EVT. The attributes of the graph are expected to
offer descriptive insights about extremes and their space-time
correlations. In addition, we propose a graphical model of the



covariate structures based on linear or nonlinear correlations for
possible predictive insights on extremes. Based on space-time
extensions of time series mining and nonlinear dynamical
concepts like motifs and discords [25], we propose to develop
methods for predictive insights of extremes and their correlations
in space and time.

Estimation of sparse dependence structure between several
variables is a well-known problem in machine learning with
application across a number of fields. One method which gained
popularity recently is called “graphical lasso” which estimates a
sparse graphical structure among a large number of variables by
inverting the covariance matrix of the variables computed from
data under an L1 penalization over components of the inverse
covariance matrix in order to force most of them to be zero. Since
the elements of the inverse covariance matrix are used to estimate
the corresponding elements in the adjacency matrix of the
dependency graph; the resulting dependency graph tends to be
sparse [24]. The optimization problem for maximizing the log-
likelihood of inverse covariance matrix ® to estimate the graph is
given by the following equation:

argmax{log (det ©) — tr(S.0) — p.||0]],}
®

where S is the empirical covariance matrix computed from the
data, det(.) and tr(.) are respectively the determinant and the trace
of a matrix, ILIl; is the L1-norm of the vectorized matrix and p is
the regularization parameter. However one important constraint
that needs to be satisfied for this method to consistently estimate
the actual graph is that the variables should be normally
distributed [26], which is not the case for extremes. So, one main
challenge for adopting this method to estimate the extremes
dependence graph is to find a set of constraints under which the
tail dependence matrix can be used to estimate the graph instead
of the covariance matrix. Additionally, for reasons explained
earlier, we need to provide appropriate measure of uncertainty
associated with each estimated edge within this graph.

A second challenge involves using the information content from
the covariates along with the dependence graph to develop a
prediction model for the precipitation extremes. We may have to
look for informative patterns in the time-series for covariates that
precedes the occurrence of any precipitation extreme after
assigning appropriate weights on covariate values that are
temporally closer to the time of extreme occurrence. This method
can be regarded as supervised “motif discovery” [25] within the
covariate time-series where the assumption is that one or more
unobserved state variables are causing an extreme to occur and the
state variables themselves change their state based on appearance
of certain sequence of values within the covariate time-series.

A different approach for utilizing the information content in the
covariates may require us to consider this problem as a supervised
regression where the precipitation extremes are considered as
targets while the covariates at different temporal lag from the time
of occurrence of extremes are regarded as features. The process of
estimation of information content from covariates can be
performed separately from the dependence structure estimation
among extremes. However, a better approach may be to merge
these methods together since both the process can inform each
other. For predictive analysis of precipitation extremes at certain
location, time-series from locations that are neighbors in the
dependence graph may need to be considered along with the
covariate time-series at the location of interest.

A third challenge is to utilize the observation and simulation data
for precipitation available from multiple sources in order to
improve our estimate of the dependence structure. From the
experimental results it can be seen that even though the
precipitation time-series from different sources does not differ
much in statistical sense, their corresponding extremes time-series
might still be different and therefore it is a challenging task to
extract and integrate the non-overlapping information available
from these time-series and using the overlapping information to
reduce the uncertainty in our estimated dependence structure. We
may assume the actual underlying distribution of the extremes to
be hidden and try to estimate it from data available from multiple
sources. In Figure 6, we attempted to cast a simplified version of
all three aspects of the problem in a single graphical model. Here
gl to g4 are actual precipitation extremes at different grid
locations (there can be more), s1 and s2 are precipitation extremes
extracted from observed (or simulated) data by different sources
(there can be more) and cl and c2 are covariates that are known to
carry information about the precipitation extremes (there can be
more). Shaded circles are observed whereas transparent circles are
unobserved variables. Broken line means that the edges need to be
estimated. However, this representation is only one of the possible
solutions to the problem and other approaches are also possible.
Moreover, we need further hypothesis building and data analytics
before we can start designing the final solution.

Figure 6: Graphical model showing a simpler version of the
dependence structure estimation problem

6. CONCLUSION

In this paper, we described the importance and challenges
associated with estimation of spatial dependence structure of
precipitation extremes along with appropriate uncertainty
estimates. We introduced the challenge of using the information
content in covariates and using this information in tandem with
the spatial dependence structure for predictive analysis of
precipitation extremes. We further described the challenges
associated with integration of extremes information from multiple
data sources to reduce uncertainty associated with the spatial
dependence structure among extremes. Preliminary results show
that extremes are significantly different from regular time-series
and familiar statistical and/or machine learning tools may not be
adequate for analyzing extremes. However, results are still
preliminary and more focused investigation is needed before we
can make any strong hypothesis and start building solutions.
Although we used precipitation extremes as an exemplar, these
challenges may generalize across multiple domains where



extremes are important and the solution frameworks are expected
to generalize across multiple domains as well.
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