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ABSTRACT 

The analysis and modeling of extreme values have traditionally 
relied on extreme value theory (EVT), which in turn has tended to 
focus on limiting or asymptotic cases and assumptions of 
independence. However, disciplines from climate science and 
digital mapping to infrastructure security and transportation, have 
been generating massive volumes of data with multidimensional 
and multivariable dependence, long-memory and long-range 
associations, and nonlinear interactions, from remote or in-situ 
sensors and computational models. This motivates the need for 
automated descriptive and predictive analysis of extremes. The 
size and complexity of data does not preclude the rarity of the 
extreme events, but presents the possibility of information 
extraction from related ancillary variables, or covariates. An 
empirical analysis of spatiotemporal auto- and cross-correlation 
structures of extremes, statistical behavior of EVT on finite and 
noisy data, as well as the impact of noise, nonlinearity and 
variability, may lead to novel formulations for understanding 
extremes and their correlations. Based on the results of 
preliminary data analysis, we proposed using graphical model 
based on tail dependence for description and analysis of spatial 
and covariate dependence structure among extremes time-series.  
Besides providing insights on climate change or natural hazards 
and the consequences for climate change science or the re-
insurance industry, the methods can be generalized to multiple 
domains ranging from water resources planning and critical 
infrastructures security to finance, telecommunications, cyber-
security and mapping technologies.             
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1. INTRODUCTION 
While most traditional developments in statistics or machine 
learning have tended to focus on an understanding of usual 
patterns and frequent occurrences, the ability to understand and 
predict rare events remains a challenge. Nonetheless, extreme 
events are growing in importance across disciplines like finance, 
insurance, hydrology [1] and climate [2-3]. Here we consider the 
climate change context, where changes in the intensity, frequency 
or duration of temperature and precipitation extremes are of 
interest for adaptation and policy. Specifically, attribution to 

human contributions, credible future projections, emergency 
preparedness or resource allocations, and insurance or re-
insurance risk assessments, may all depend on the ability to 
understand relations among extreme values and generate 
predictive insights. Here we are concerned with rare events at the 
tails of the distributions, or extremely high or low values. Rare 
events mining in artificial intelligence (AI), which includes 
classification of imbalanced datasets through synthetic over-
sampling [4], deal with situations when rare events do occur in the 
observations. Methods like skyline [19] or top-K query [20] 
processing database mining techniques may be useful in sampling 
large values from available data. However, none of these 
approaches deal with situations where the rare events may not 
occur in the observed or model-simulated “training” data, or may 
not occur in sufficient volumes for direct statistical analysis. The 
analysis of such events relies on extrapolation beyond what is 
normally observed. Extreme value theory (EVT) is among the few 
statistical methods doing true extrapolation; parametric relations 
are developed to infer about tails of the distribution (e.g., a 100-
year, or a one in a thousand, event) with values that are adequately 
large but not necessarily at the extreme tails [5; 21]. A recent 
work on EVT [23] is an example of EVT method developed in the 
machine learning (ML) community with applications to data from 
climate and the social media.   

 

2. CHALLENGES & OPPORTUNITIES  
Despite decades of development, EVT remains an area with open 
challenges, many of which may be resolved through statistics, 
data mining and AI. The growing importance of extremes, for 
example in the context of climate change and severe rainfall, 
motivates urgent solutions. Although there are many open 
challenges [6, 21] related to extreme value analysis, in this paper 
we have mainly focused on the problem of estimation of spatial 
dependence structure among extremes and the importance of 
uncertainty quantification. Being able to accurately estimate this 
dependence structure will greatly improve the effectiveness of 
decision making process in multiple sectors including insurance 
industry and water resource management. For example if two 
locations are found to be perfectly dependent in terms of extremes 
events, simultaneous 100-year precipitation events at those 
locations becomes a 100-year event itself; whereas if they are 
found to be independent, the same event will be a 10,000 year 
event. Insurance companies can greatly improve their risk 
portfolio with this kind of information and set premiums 
accordingly. On the other hand, a major change in the dependence 
structure may suggest large-scale change in climate patterns due 
to urbanization and other anthropogenic activities. However, we 
have to be careful while interpreting these estimates since they 
involve extrapolation beyond normally observed events, which 
emphasizes the importance of supplying appropriate uncertainty 
estimates.    

We have investigated the role of multi-source data and other 
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covariates in providing additional information content about the 
dependence structure and reducing the associated uncertainty. We 
have described the problem with a few motivating experiments, 
discussed where data guided techniques may help and proposed a 
potential solution approach, with particular emphasis on 
uncertainty quantification. Climate change is selected as an 
exemplar both because of the societal importance [7] and to 
validate the methods with massive data from sensors and models. 

 

3. BACKGROUND 
Rainfall extremes are typically characterized by their intensity, 

duration and frequency (IDF) for applications from water 

resources management, flood hazards, and dam design [8]. Recent 

research has explored changes in the IDF curves under climate 

change [9].  
The �-year return level, (���), defined as the level that is reached 
or exceeded once every n-years on the average (alternatively, the 
probability of exceedances on any given year is 1/n). The three [5, 
8] ways to describe extreme values are the Generalized Extreme 
Value (GEV) distribution fitted to block maxima (BM) or blocks 
of time windows like an annual maxima time series, the Poisson 
arrival of extremes followed by the Generalized Pareto 
distribution (GPD) fitted to the excesses above a threshold, 
leading to the Peak-over-Threshold (PoT) as well as the Point 
Process (PP) approach. The PDF of GEV [5] is given by  
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where parameters µ, σ and ξ are called location, scale and shape 
parameters respectively and exp(.) is exponential function. The 
PDF of GPD [5] is given by  
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where parameters µ, σ and ξ are called location, scale and 
threshold parameters respectively. 

From a pragmatic standpoint, the approaches generate estimates 
of the return levels along with associated uncertainties per time 
series, but require either the selection of a block size or a 
threshold. The distributions (GEV or GPD) arise from limiting 
cases for large sample sizes as well as when the maxima or excess 
data are independent and identically distributed. Thus, the 
tradeoffs during the choice of a block size or a threshold may be 
expressed as a bias versus variance issue: larger block sizes or 
higher thresholds may imply lower bias but larger variance while 
smaller block sizes and lower thresholds may imply larger bias. 
One may refer to [5] for more discussion on the typical choice of 
methods for practical applications.  

Linear Correlation measures (e.g. Pearson’s correlation) are useful 
in estimating the pair-wise correlation between multiple time-
series. While computing pair-wise correlation among precipitation 
time-series at different location may give us some preliminary 
idea about average spatial decorrelation length-scale among these 
time-series and dependence structure between mean precipitation 
events, this is certainly not suitable for extreme events. Firstly, 
using a method like block-maxima will greatly reduce the number 
of samples on which the correlation is being computed and 
introduce large uncertainty. Secondly, the linear correlation 
measures fail to consider the co-occurrence patterns of the 

extreme events which are of prime importance for estimating 
dependence structure among extremes. So, in order to estimate a 
spatial dependence structure between extremes occurrence, we 
may need to use more informative measures of dependence like 
tail dependence, which is loosely given by limiting proportion that 
one variable exceeds a certain threshold given that the other 
variable has already exceeded that threshold [22]. Here the 
threshold may be defined as a percentile. Copula-based methods 
may also be appropriate in estimating the dependence among 
extremes time series. 

 

4. PRELIMINARY RESULTS 

4.1 Dataset 
In our experiments we used the precipitation observations from 
Climate Prediction Center (CPC) which are available at 0.25o x 
0.25o grids [22] over entire US. A second type of dataset that we 
used here falls in the category of “reanalysis datasets” that are 
generated from physics models that are forced to match with 
available observations. So, they are mostly uniform in terms of 
quality. However, they can inherit errors associated with the 
observations. A summary of the datasets we used are provided in 
Table 1. 

 

Table 1: Description of the datasets used in the experiments 

 Temporal 
Resolution 

Spatial 
Resolution 

Region 
Used 

Variables 
Used 

Observa-
tion 

Daily .25o x .25o US Precipitation 

Reanalysis Daily 2.5o x 2.5o US Precipitation, 
Temperature 

  

4.2 Experiments 
We started by plotting the distribution of the correlation as a 
function of distance for both the observed and reanalysis 
precipitation data in Figure 1. We binned all possible distances 
among grid-points into 50 intervals and for each interval we 
computed the pairwise correlation between location pairs whose 
distance falls within that interval and averaged them. However, 
we only considered the correlations that are significant at 95% 
significance level. 

 

 

       (a)            (b)     

Figure 1: Distribution of correlation as a function of distance 
for (a) Reanalysis and (b) Observation. 

 

Next in Figure 2, we plotted the same distribution for annual 
maxima instead of the daily time-series. We can see that 
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correlation decreases significantly for annual maxima time-series. 
Furthermore, the difference between two types of dataset is more 
evident among extremes than in regular time-series. 

 

  

Figure 2: Distribution of correlation among annual maxima as 
a function of distance for (a) Reanalysis and (b) Observation. 

 

In Figure 3, we plotted the significance of the null hypothesis (that 
no correlation exists) as a function of distance in a similar way we 
plotted the correlations. A lower value of significance of null 
hypothesis means higher significance and lower uncertainty of the 
correlation. Most of the pairwise correlations computed on annual 
maxima time-series turned out to be highly uncertain and 
insignificant. So, the correlation not only became smaller when 
we used annual maxima instead of the regular time-series, they 
became insignificant. Moreover, the correlations seem to increase 
slightly at longer distances when we used maxima which may just 
be spurious. If not, they may need further analysis. So, simple 
linear correlation may not be the correct measure to estimate the 
dependence between extreme events. This shows the need for 
using other methods such as tail dependence or copula-based 
methods to quantify the dependence among extremes time-series 
instead of linear correlation measure. 

  

Figure 3: Distribution of significance of null hypothesis (that 

no correlation exist) as a function of distance for (a) 

Reanalysis and (b) Observation. (lower value means lower 
uncertainty) 

 

Now, we fitted GEV distribution (and obtained the maximum 
likelihood estimates of GEV parameters) at each individual grid-
point using the annual maxima and plotted the spatial distribution 
of the location parameter µ along with corresponding confidence 
interval in Figure 4. The distribution of parameter clearly shows 
spatial coherence which we intend to exploit.  

In our next experiment, we computed the average temperature 
over each location and plotted 30 year return level over each 
location as a function of mean temperature. Figure 5 shows the 
plot. The plot shows some correlation among average temperature 
and 30 year return levels. It is a well-known hypothesis in climate 
that, at global level, precipitation extremes increase with increase 
in temperature [18]. However, at regional level, the relation is not 
so clear. Furthermore there may be non-linear dependence and 
other covariates like relative humidity, precipitable water, updraft 
velocity etc. may also influence the extremes. 

 

(a) 

 

(b) 

Figure 4: Spatial distribution of (a) location parameter and 

(b) corresponding confidence interval for GEVs fitted at each 
grid-point 

 

 

Figure 5: Plot of 30 year return level vs Average temperature 
at 124 different grid-points within US.  

 

In this section we showed some results from preliminary 
experiments to give an outline of the key challenges in extremes 
mining using precipitation extremes as a motivating example. 
However, more empirical tests are necessary for additional 
hypothesis before we can effectively design our solutions for 
addressing these challenges. In the next section we provide some 
possible approaches for solution to the problem of dependence 
discovery. 

   

5. FUTURE RESEARCH DIRECTIONS 
We propose the development of graphical models for extremes 
based on tail dependence measures derived from multivariate 
extensions of EVT. The attributes of the graph are expected to 
offer descriptive insights about extremes and their space-time 
correlations. In addition, we propose a graphical model of the 
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covariate structures based on linear or nonlinear correlations for 
possible predictive insights on extremes. Based on space-time 
extensions of time series mining and nonlinear dynamical 
concepts like motifs and discords [25], we propose to develop 
methods for predictive insights of extremes and their correlations 
in space and time.  

Estimation of sparse dependence structure between several 
variables is a well-known problem in machine learning with 
application across a number of fields. One method which gained 
popularity recently is called “graphical lasso” which estimates a 
sparse graphical structure among a large number of variables by 
inverting the covariance matrix of the variables computed from 
data under an L1 penalization over components of the inverse 
covariance matrix in order to force most of them to be zero. Since 
the elements of the inverse covariance matrix are used to estimate 
the corresponding elements in the adjacency matrix of the 
dependency graph; the resulting dependency graph tends to be 
sparse [24]. The optimization problem for maximizing the log-
likelihood of inverse covariance matrix Θ to estimate the graph is 
given by the following equation: 

argmax( )log	�det	Θ) − tr�S.Θ) − ρ. ||Θ||�3  

where S is the empirical covariance matrix computed from the 
data, det(.) and tr(.) are respectively the determinant and the trace 
of a matrix, ||.||1 is the L1-norm of the vectorized matrix and ρ is 
the regularization parameter. However one important constraint 
that needs to be satisfied for this method to consistently estimate 
the actual graph is that the variables should be normally 
distributed [26], which is not the case for extremes. So, one main 
challenge for adopting this method to estimate the extremes 
dependence graph is to find a set of constraints under which the 
tail dependence matrix can be used to estimate the graph instead 
of the covariance matrix. Additionally, for reasons explained 
earlier, we need to provide appropriate measure of uncertainty 
associated with each estimated edge within this graph. 

A second challenge involves using the information content from 
the covariates along with the dependence graph to develop a 
prediction model for the precipitation extremes. We may have to 
look for informative patterns in the time-series for covariates that 
precedes the occurrence of any precipitation extreme after 
assigning appropriate weights on covariate values that are 
temporally closer to the time of extreme occurrence. This method 
can be regarded as supervised “motif discovery” [25] within the 
covariate time-series where the assumption is that one or more 
unobserved state variables are causing an extreme to occur and the 
state variables themselves change their state based on appearance 
of certain sequence of values within the covariate time-series.  

A different approach for utilizing the information content in the 
covariates may require us to consider this problem as a supervised 
regression where the precipitation extremes are considered as 
targets while the covariates at different temporal lag from the time 
of occurrence of extremes are regarded as features. The process of 
estimation of information content from covariates can be 
performed separately from the dependence structure estimation 
among extremes. However, a better approach may be to merge 
these methods together since both the process can inform each 
other. For predictive analysis of precipitation extremes at certain 
location, time-series from locations that are neighbors in the 
dependence graph may need to be considered along with the 
covariate time-series at the location of interest.  

A third challenge is to utilize the observation and simulation data 
for precipitation available from multiple sources in order to 
improve our estimate of the dependence structure. From the 
experimental results it can be seen that even though the 
precipitation time-series from different sources does not differ 
much in statistical sense, their corresponding extremes time-series 
might still be different and therefore it is a challenging task to 
extract and integrate the non-overlapping information available 
from these time-series and using the overlapping information to 
reduce the uncertainty in our estimated dependence structure. We 
may assume the actual underlying distribution of the extremes to 
be hidden and try to estimate it from data available from multiple 
sources. In Figure 6, we attempted to cast a simplified version of 
all three aspects of the problem in a single graphical model. Here 
g1 to g4 are actual precipitation extremes at different grid 
locations (there can be more), s1 and s2 are precipitation extremes 
extracted from observed (or simulated) data by different sources 
(there can be more) and c1 and c2 are covariates that are known to 
carry information about the precipitation extremes (there can be 
more). Shaded circles are observed whereas transparent circles are 
unobserved variables. Broken line means that the edges need to be 
estimated. However, this representation is only one of the possible 
solutions to the problem and other approaches are also possible. 
Moreover, we need further hypothesis building and data analytics 
before we can start designing the final solution. 

 

  

 

 

 

 

 

 

 

 

 

Figure 6: Graphical model showing a simpler version of the 
dependence structure estimation problem 

 

6. CONCLUSION 
In this paper, we described the importance and challenges 
associated with estimation of spatial dependence structure of 
precipitation extremes along with appropriate uncertainty 
estimates. We introduced the challenge of using the information 
content in covariates and using this information in tandem with 
the spatial dependence structure for predictive analysis of 
precipitation extremes. We further described the challenges 
associated with integration of extremes information from multiple 
data sources to reduce uncertainty associated with the spatial 
dependence structure among extremes. Preliminary results show 
that extremes are significantly different from regular time-series 
and familiar statistical and/or machine learning tools may not be 
adequate for analyzing extremes. However, results are still 
preliminary and more focused investigation is needed before we 
can make any strong hypothesis and start building solutions. 
Although we used precipitation extremes as an exemplar, these 
challenges may generalize across multiple domains where 

g1 

 

s1 s2 

g2 
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extremes are important and the solution frameworks are expected 
to generalize across multiple domains as well.             
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