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Abstract— Gene expression data are widely used in classifica-
tion tasks for medical diagnosis. Data scaling is recommended
and helpful for learning the classification models. In this study,
we propose a data scaling algorithm to transform the data
uniformly to an appropriate interval by learning a generalized
logistic function to fit the empirical cumulative density function
of the data. The proposed algorithm is robust to outliers, and
experimental results show that models learned using data scaled
by the proposed algorithm generally outperform the ones using
min-max mapping and z-score which are currently the most
commonly used data scaling algorithms.

I. INTRODUCTION

Genes can be expressed differently in different cells,
allowing huge variety in creation of proteins [1]. In medicine
and biology, gene expression analysis has become a very
powerful way to understand underlying biological processes.
Microarray technology is able to measure the gene expres-
sion levels of thousands of genes for a sample simultane-
ously. Gene expression data have been used in machine learn-
ing and data mining tasks and achieved promising results in
areas including tumor diagnosis [2][3], gene grouping [4],
gene selection [5], and dynamic modeling [6].

Before performing any machine learning and data min-
ing tasks, a preprocessing step is always recommended to
smooth, generalize, and scale the data [7]. Data scaling
is particularly important for models that utilize distance
measures; e.g., nearest neighbor classification and clustering.
Feature scaling is also helpful to improve performance of
the models in most cases. The most commonly used data
scaling algorithms are min-max mapping and Z-score (also
called standardization), and the details of these algorithms
will be given in later sections. Microarray gene expression
data typically have a small number of samples, so that the
above two algorithms may not scale the attribute values well.
Another shortcoming of these two algorithms is that they are
not robust to outliers. That is, if the number of examples is
small, and outliers exist in the examples, the features will be
poorly scaled, and the performance of the model might be
negatively affected.

In this study, we propose a data scaling algorithm which
can map both original and future data into a desired interval,
be suitable to tasks with small number of samples, and
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TABLE I: Data Scaling Algorithm Feature Comparison

Features Minmax Z-score Proposed
Data scaling X X X

Interval mapping X X
Robust to outliers X

at same time, be robust to outliers. Our contribution is
summarized as follow:
• Adapted from the idea of histogram equalization, we

develop an algorithm that maps the original data uni-
formly into a desired interval.

• With no assumption on the sample distribution, the
algorithm utilizes the generalized logistic functions to
approximate the cumulative density functions.

• The algorithm is suitable in tasks with small number
of samples (e.g., gene expression classification), and is
robust to outliers.

Table I shows the comparison of features of different data
scaling algorithms.

The remaining text is organized as follows: in Section II,
the details of the data scaling algorithms that are currently
used will be described; the details of the proposed algorithm
are in Section III, followed by the experiments and results
in Section IV; the summary will be in Section V.

II. DATA SCALING

In machine learning and data mining, data scaling is also
called data normalization. The objective of data scaling is
to transfer or consolidate the data into forms appropriate
for modeling and mining. Data scaling is a recommended
step in data preprocessing, and it is always a good practice
to perform data scaling before any modeling and mining.
Data scaling is a necessary step for methods that utilize
distance measures, such as, nearest neighbor classification
and clustering. In addition, artificial Neural Network models
require the input data to be normalized, so that the learning
process can be more stable and be faster [8]. Two data scaling
algorithms are widely used: min-max mapping, and z-score.

A. Min-max Mapping Algorithm

In min-max mapping, the original data are linearly trans-
formed. Suppose that minA and maxA are the minimum
and the maximum of attribute A. The min-max mapping
algorithm maps a value, v, of A to v′ in the interval of
[min′A, max′A], using the following formula

v′ =
v −minA

maxA −minA
(max′A −min′A) +min′A. (1)



The advantage of min-max mapping is that it preserves the
relationships of the original data values. However, it also has
disadvantages: when the future input cases for scaling fall
outside of the original data range of A, the mapped value
will be out of the bounds of the interval [min′A, max′A]; in
addition, it is very sensitive to outliers.

B. Z-score Algorithm

In the Z-score algorithm, the new value, v′, of an attribute,
A, is scaled from the original value, v, using the formula

v′ =
v − Ā
σA

, (2)

where Ā is the mean of the original values in attribute A, and
σA is the standard deviation of the original values in attribute
A. After the scaling, the new values in attribute A will have
value 0 as the mean, and value 1 as the standard deviation.
This algorithm is less sensitive to outliers, compared to min-
max mapping. However, it will not map the original data
into an interval. When the number of examples is small, the
mean and standard deviation of attribute A calculated by data
may not be able to approximate the true mean and standard
deviation well, so future input values will scale poorly.

III. PROPOSED ALGORITHM

We propose a data scaling algorithm which maps the
values into the open interval (0,1), and be robust to outliers.
In addition, the proposed algorithm transforms the original
distribution of values in an attribute into a uniform distribu-
tion, so that data points will be separated evenly within the
desired interval - any points, which are originally close, are
more distinguishable after scaling.

A. Scaling Formula

The new value v′ of an original value, v, in attribute A,
is computed by the following formula

v′ =

∫ v

−∞
pX(x)dx, (3)

where pX(·) is the distribution density function (pdf ) of the
values (represented by a random variable, X) in an attribute
A. Here, we assume that the value the distribution of the
random variables are continuous. Formula (3) can be also
written as

v′ = PX(v), (4)

where PX(·) is the cumulative density function (cdf ) of the
values in an attribute A.

Theorem 1: The mapping in formula (3) maps the random
variable, X , the values of attribute A, to a random variable
Y , which is a uniform random variable in the interval (0,1).

Proof: Let PY (·) denotes the cdf of random variable
Y , P (e) denotes the probability of an event, e, and P−1X (·)

denotes the inverse of the cdf of random variable X

Y = PX(X)

PY (y) = P (Y < y) = P (PX(X) < y)

= P (X < P−1X (y)) = PX(P−1X (y))

= y

pY (y) =
dPY (y)

dy
= 1

The idea, which uses the cumulative density function (cdf )
of data to map the values from one interval to another inter-
val, is originated from the Histogram Equalization technique
[9] in the field of Digital Image Processing. It is used to
enhance the contrast of an image. The new values of an
attribute after scaling by the cdf will span evenly in the
close interval [0,1], thus any samples originally were close
with each other will become relatively more distant. This
enhancement of sample separation may help to improve the
classification performance. However, in practice, we do not
know the distribution of the data, and thus we do not know
the cdf.

B. Cumulative Density Function Approximation

From the data, we do not know the exact form of the
cumulative density function (cdf ) of an attribute A; therefore,
we need to approximate the cdf . We can find the empirical
cumulative density function (ecdf ) of an attribute A by using
the formula

P̂X(v) =
1

n

n∑
i=1

1xi≤v, (5)

where P̂X(v) is the ecdf at a value v, n is the number
of examples, and xi is the value of attribute A in the ith

example.
Unfortunately, in most of the cases, the ecdf has no

analytical form representation. Moreover, original data tend
to be noisy, so the ecdf usually is very bumpy. Therefore,
we propose to use a generalized logistic function (GLF) to
approximate the ecdf. Using a Logistic Function to approx-
imate the cdf of a normal distribution was proven viable
and accurate [10]. In this algorithm, we do not make any
assumption on the distribution of the data; therefore, we use
a more general form of the Logistic function

L(x) = C +
K − C

(1 +Qe−B(x−M))1/ν
; (6)

because the range of an ecdf is [0,1], the parameter C should
equal 0, and the parameter K should equal 1. Formula (6)
can be rewritten as

L(x) =
1

(1 +Qe−B(x−M))1/ν
. (7)

Compared to the Logistic Function used in [10], this general
form of Logistic Function provides us with the flexibility
to approximate a more variety of distributions. One of the
notable properties of (7) is that it maps the values in the



interval (∞,−∞) to the interval the interval (0,1). Compared
to ecdf and min-max mapping (they map the values in the
interval [minA,maxA] to the interval [0,1], where minA and
maxA are the minimum and maximum value of attribute
A, respectively), this property makes our proposed scaling
algorithm robust to outliers, and guarantees that the scaled
data will be in (0,1); contrast to ecdf and mim-max mapping,
if the future data are not in [minA,maxA], the scaled values
are going to be out of the bound of [0,1].

In order to approximate the ecdf, we need to learn the
parameters Q, B, M , and ν from the data, so that the GLF
could best fit the ecdf . The sum of squared differences of
the GLF and the ecdf can be represented by

η =

n∑
i=1

||L(xi)− P̂X(xi)||2, (8)

noting that η is a function of the parameters of the GLF. The
best set of parameters is the minimizer of η, so the key to
find the most appropriate GLF to approximate the ecdf is to
solve an optimization problem

minimize
B,M,Q,ν

η(B,M,Q, ν). (9)

Because (7) and (8) are differentiable, we can easily derive
the derivatives of η with respect to the parameters

dη

dB
=

n∑
i=1

−T1
Qe−B(xi−M)(xi −M)

T2
,

dη

dM
=

n∑
i=1

T1
BQe−B(xi−M)

T2
,

dη

dB
=

n∑
i=1

T1
e−B(xi−M)

T2
,

dη

dB
=

n∑
i=1

−T1
ln(Qe−B(xi−M) + 1)

ν2(Qe−B(xi−M) + 1)1/ν
,

where

T1 = 2(P̂X(xi)− L(xi))

T2 = ν(Qe−B(xi−M) + 1)1/ν+1.

Therefore, the local minimum of the objective function,
η(B,M,Q, ν), can be solve efficiently with any of the
gradient descent algorithms. In order to achieve a good
local minimum (or even global minimum) of the objective
function, the values of the parameters should be carefully
initialized. We arrive at the following initialization of the
parameters:

Q0 = 1

M0 = P̂−1X (0.5) (10)

B0 =
ln(9)

maxA −M0
(11)

ν0 = log10(1 +Q0e
−B0(minA−M0)) (12)

The reason behind (10) is that when Q and ν are around
1, the GLF with an input valued at M should be around 0.5,

Fig. 1: An example showing the approximation of a ecdf using a
generalized logistic function (GLF).

namely L(M) = 1
21/ν

≈ 0.5; therefore, M ≈ L−1(0.5) ≈
P̂−1X (0.5), and P̂−1X (0.5) can be approximated by the median
of the original values in attribute A. If we assume that as
the GLF at maxA and minA (the maximum and minimum
of the original values in attribute A), the output values
are approximately 0.9 and 0.1 respectively, we obtain the
initializations in (11) and (12). With these initialization we
could find a set of parameters which make the GLF fit the
ecdf reasonably well, as shown in Fig. 1.

IV. EXPERIMENTS AND RESULTS

One of the datasets used to evaluate our proposed method
is originally published in [11], and we download the data
from the website which was made available by [12]. The
data are consisted of multiple samples from 14 human cancer
tissues and 12 normal tissues, and each sample was obtained
by measuring the expression levels of 15,009 genes. By
coupling the cancer and normal samples from the same
tissue type, we extracted 4 binary classification data sets for
diagnosing the four most common tumor types worldwide
(lung, breast, colon, and prostate) [13]. Another dataset is
from [14], and samples have measurements of 12,625 genes
from the Myeloma cells of patients to diagnose whether there
are bone lesions. Summaries of the data sets are in Table II.

To assess how different data scaling algorithms affect
the classification performances, we use Logistic Regression
and Support Vector Machine as the classification models.
These two classification models have been used extensively
in biological and medical researches due to their simplicity
and accessibility. The program codes are implemented in

TABLE II: Summary of data used in Experiments

Dataset #Genes # of Samples
(positive/negative)

Breast [12] 15,009 17/15
Colon [12] 15,009 15/11
Lung [12] 15,009 20/7

Prostate [12] 15,009 14/9
Myeloma [14] 12,625 137/36



TABLE III: Results of 5 data sets (5 binary classification tasks) using different data scaling algorithms and classification models. Raw:
raw data (no data scaling); Minmax: min-max mapping; Z-score: z-score scaling; Proposed: proposed algorithm. Best performances are
emphasized in bold

Dataset Model Raw Minmax Z-score Proposed

Breast
Logistic Regression 0.3235 0.7882 0.8353 0.8118

Support Vector Machine 0.4941 0.8000 0.7882 0.8000

Colon
Logistic Regression 0.5000 0.9394 0.9333 0.9818

Support Vector Machine 0.8000 0.9333 0.9091 0.9818

Lung
Logistic Regression 0.4500 0.8429 0.7286 0.8643

Support Vector Machine 0.2857 0.7929 0.7714 0.8571

Prostate
Logistic Regression 0.4643 0.7143 0.7381 0.8016

Support Vector Machine 0.5000 0.7698 0.7460 0.8571

Myeloma
Logistic Regression 0.5000 0.7374 0.7541 0.7644

Support Vector Machine 0.6281 0.7597 0.7609 0.7658

MATLAB. For datasets with a small number of samples,
namely, Breast, Colon, Lung, and Prostate, the results are ob-
tained using leave-one-out cross validation; for the Myeloma
data set, 10-fold cross validation is used to obtain the result.
The performances are measured by the Area Under the ROC
Curve (AUC). The results are shown in Table III.

In all the dataset classification tasks, most models learned
with raw data (no data scaling) have very poor performance.
Models learned with scaled data have significantly better
performances compared to the models learned with raw
data. Models learned with the data scaled by the proposed
algorithm generally achieve the best AUCs. The advantage
of the proposed algorithm is more notable in the datasets
that with small number of samples, such as, colon, lung,
and prostate. In the dataset with relatively larger number of
samples, such as, Myeloma, the AUC differences of the data
scaling algorithms are relatively small.

V. SUMMARY

In this study, we propose a data scaling algorithm to
transform data to an appropriate interval for machine learning
and data mining tasks. In the proposed algorithm, the values
of an attribute are transformed in the (0,1) interval using
the cumulative density function (cdf ) of the attribute. Since
obtaining the analytical form of the cdf is difficult, a gen-
eralized logistic function (GLF) is used to fit the empirical
cdf , and the optimized GLF is used for data scaling. The
proposed algorithm maps original data uniformly in the
desired interval, and it is robust to outliers. Experimental
results show that models learned using data scaled by the
proposed algorithm generally outperform the ones using min-
max mapping and z-score, which are currently the most used
data scaling algorithms.
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