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Abstract—When faced with the task of forming predictions
for nodes in a social network, it can be quite difficult to decide
which of the available connections among nodes should be used
for the best results. This problem is further exacerbated when
temporal information is available, prompting the question of
whether this information should be aggregated or not, and if
not, which portions of it should be used. With this challenge
in mind, we propose a novel utilization of variograms for
selecting potentially useful relationship types, whose merits are
then evaluated using a Gaussian Conditional Random Field model
for node attribute prediction of temporal social networks with a
multigraph structure. OQur flexible model allows for measuring
many Kinds of relationships between nodes in the network
that evolve over time, as well as using those relationships to
augment the outputs of various unstructured predictors to further
improve performance. The experimental results exhibit the effec-
tiveness of using particular relationships to boost performance
of unstructured predictors, show that using other relationships
could actually impede performance, and also indicate that while
variograms alone are not necessarily sufficient to identify a useful
relationship, they greatly help in removing obviously useless
measures, and can be combined with intuition to identify the
optimal relationships.
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I. INTRODUCTION

As researchers are becoming increasingly aware of the
wealth of information that is available in various social net-
works and its potential uses, more and more of them turn to
studying datasets built on top of these networks over more
conventional datasets. Research in this topic can tackle an
extremely wide array of problems, from evaluating delin-
quency and alcohol consumption in students based on their
social interactions [1] to creating recommender systems for
various online marketplaces based on customer interactions
with other customers and products [2] to helping ad companies
place relevant ads for its customers based on the interactions
among said customers and their friends [3]. With such a wide
range of potential research areas, however, come a host of
challenges related to the underlying tasks: when multiple links

exist between users, which ones should be chosen? If temporal
information is available, should the data be aggregated to
obtain a more generalized result or should each time step be
treated separately for a more specific look into the behavior of
the data?

The intent of this project is to address several such chal-
lenges, the most notable being the utilization of temporal
information and determining the efficiency of using various
kinds of links. With such challenges in mind, the ultimate goal
is to examine how effective a state-of-the-art predictive model,
namely Gaussian Conditional Random Fields (GCRF) which
was first used for classification in computer vision [4] but now
adapted for regression in a social network context, is at the
task of predicting node attributes in temporal networks with a
multigraph structure. While many significantly simpler models
have shown to be quite effective at this task, they fail to utilize
much of the information available in the networks they are
applied to. The models that did use some of the relationships
that could be extracted from the networks relied on intuition
when selecting the kinds of relationships they use, and using
the idea of variograms and GCRF we hope to establish a more
concrete methodology for selecting relationships that are used
for various models.

Applying the GCRF model to a bibliographic dataset
to achieve the goal of relationship evaluation is a perfect
fit, given both the nature of bibliographic networks and the
strengths of the GCRF model. Bibliographic networks have
a rich heterogeneous structure, including relationships among
papers, authors, terms, and venues, which can be extracted
from the network even if they are not explicitly defined. Once
these relationships are extracted, they can be used within
a GCRF framework, which examines both the relationships
between input variables and output variables, as well as the
relationships between output variables. Here we apply GCRF
to a bibliographic network of theoretical high energy particle
physics papers (HepTh)!, treating past citation counts for
papers as inputs, future citation counts as outputs, and using
several different kinds of relationships (which we refer to
as “similarity measures”) among the papers as the different
link types among nodes in a multigraph setting. We use a
GCRF model because it simultaneously assigns weights to
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both the unstructured predictors and similarity measures that
comprise the model, which lets us easily gauge the usefulness
of both components. Using this setup we are able to directly
evaluate the performance of potentially useful relationships by
examining how they affect the output of the GCRF model. We
then compare how these findings relate to the perceived utility
of each relationship that was first gleaned from its variogram
plot.

The rest of the paper is organized as follows: in Section
IT we discuss some of the work that has already been done
in the field of node and link prediction in a bibliographic
network setting. Section III provides the formal description of
the GCRF model we use, and defines how we use variograms.
In Section IV we describe the dataset used in our experiments,
as well as explain all of the similarity measures that we used
and evaluated using variograms and the GCRF model. Section
V provides an analysis of our experimental setup, our usage
of variograms, the evaluation measures we use, and the results
we obtained. Finally, Section VI consists of a summary of our
findings, as well as a brief look into the future work we intend
to do with this setup.

II. RELATED WORK

Citation prediction is by no means a new topic, and a fair
amount of research has already been carried out in this area.
One of the primary tasks of the KDD Cup 2003 competition
was citation prediction for a bibliography of physics-related
papers, and the method that received first place in that com-
petition was able to outperform its competitors despite being
extremely simple [5]. The method consisted of identifying
papers that had similar patterns in citation histories to the
paper in question, and the prediction was formed by averaging
the values from these papers, completely disregarding network
structure. Castillo et al. [6] focus on predicting citation counts
by using primarily author-related information extracted from
bibliographic networks, which again did not utilize all of the
information that was available. Yan et al. [7] also studied the
problem of citation count prediction, but used various features
computed from a bibliographic network that were then used
with Gaussian processes and a classification and regression
tree model to perform the predictions. While this work did
utilize much of the available network information, the authors
focused on a rather coarse temporal granularity when forming
predictions as they predicted citation counts in upcoming years,
whereas we focus on monthly predictions.

Various other methods have also incorporated some de-
gree of citation prediction, and were oriented towards link
prediction and hence address the more challenging task of
predicting who will cite whom rather than simply predicting
how many citations a paper will get. Although this goal
is different from ours, the methods that are used to attain
it revolve around computing features for pairs of papers in
order to discern potential citation relationships in the future,
rather than focusing on features for individual papers. This is
precisely the kind of information that we utilize in our GCRF
model, so we mention a few related link prediction papers
here. Shibata et al. [8] extract general network-based features
for pairs of papers, and then use those features in a support
vector machine model to determine if a citation relationship
will evolve between a pair of papers. Bethard and Jurafsky [9]

introduce a wide variety of paper-paper relationships, including
those based on content, authors, and topics. Yu et al. [10] use
a meta-path based set of features to compute the relationship
strength between papers based on various meta-path counts
that occur between the papers, which again utilize different
aspects of the bibliographic network.

Finally, our model is an extension of the Conditional
Random Field model first introduced in 2001 by Lafferty et
al. [11], [12] that was more recently expanded to allow for
faster learning and inference [4] and accommodate continuous
values [13] and was used for regression of remote sensing data
[14]. Our temporal social network model is a further extension
to the Conditional Random Field used for regression, and we
were able to tailor the bibliographic network data to allow the
output to be regarded as a multivariate Gaussian distribution,
which in turn allowed us to perform computations in a more
computationally feasible way.

III. MODEL DESCRIPTION
A. Multigraph Networks

Here we briefly define the general structure of a multigraph
network, as well as how we utilize this structure within the
framework of our model.

Suppose that we are interested in a set of N nodes that we
observe over a period of T timesteps. Each node contains a
real-valued attribute that changes over time, and we observe
that value for each node at each timestep. In addition, a node
can be linked to any other node with a variety of connections,
which can also change over time. Because there are multiple
connections possible between a pair of nodes at the same
timestep, the structure of this network can be considered as
a multigraph. With this setup, we can formally define the
problem we are interested in as the following:

Given a set of nodes N, a history of node attribute values
for each node up to timestep t, and a history of connections
among nodes up to timestep t, predict the node attribute values
for all N nodes at timestep t + 1.

In the context of our experiments, N is the set of papers we
focus on, T is a set of monthly snapshots, the node attribute
values are the number of citations that each paper has received
in that month, and the connections are the different links that
exist among papers in the scope of a bibliographic network
(which are defined in Section IV). Note that while the primary
problem we address is predicting the citation counts for the
set of papers at a future timestep, we are also interested in the
secondary problem of evaluating the quality of the different
types of connections that are available, in order to eliminate
useless connections and thus improve both the accuracy and
the runtime of our model.

B. Conditional Random Fields

Conditional Random Fields allow for modeling the condi-
tional distribution of an output given an input based on various
types of dependencies among outputs. It builds upon the tradi-
tional association potential function that is used in regression
problems to associate input values with their appropriate output
values. This association potential can be established by any
number of association functions, which are represented in



our model by two unstructured predictors that use different
methods for mapping inputs to outputs.

On top of utilizing various kinds of association functions
Conditional Random Fields also utilize relationships among
outputs, for which interaction potential functions are used.
These functions can be either independent or dependent on
the input, and can take on a variety of forms depending on the
context in which they are used. For example, when performing
citation prediction on a bibliographic network, we can model
interaction potential as the shared number of authors for a pair
of papers, or the number of similar terms used by a pair of
authors.

A graphical representation of the kinds of relationships
used by Conditional Random Fields is provided in Figure 1.
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Fig. 1. Graphical representation of the relationships observed by a Conditional
Random Field model over 3 timesteps. The gray nodes represent an input
variable, the white nodes represent the corresponding output variables, the
black links represent the interaction potential, and the dotted links represent
the association potential. Note that the strength of the ties among both inputs
and outputs varies over time, and the ties can disappear completely if the
strength is zero at a particular timestep.

In order to model the conditional distribution of output vec-
tors y = (y1 ...yn) on a set of input vectors z = (z1 ... zN),
with association potential function A(a,y;,x) where « is
a K-dimensional set of parameters and interaction potential
function B(S,v;,y;,z) where § is a L-dimensional set of
parameters, we represent the distribution as
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where j ~ 4 denotes the connected outputs y; and y;
(connected with a black line at Figure 1) and where Z(z, a, )
is the normalization function defined as
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As already noted, A and I could be conveniently defined
as linear combinations of a set of fixed features in terms of «
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The use of features to define the model is convenient because
it allows us to include arbitrary properties of observation-
output pairs into the compatibility measure. In this way, any
potentially relevant feature could be included in the model
because parameter estimation automatically determines their
actual relevance by feature weighting.

The learning task is to choose values of parameters « and
B to maximize the conditional log-likelihood of the set of
training examples (we assume that interactions among outputs
are defined over the whole training set)

' L(a,B) = logP(yl2) )
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The inference task is to find the outputs y for a given set of
observations x and estimated parameters « and (8 such that the
conditional probability P(y|z) is maximized

§ = arg max(P(y|r)) ©)
y

Conditional Random Fields were initially designed for
classification problems, which was a significantly easier task
since the normalizing function Z was a sum over a finite set
of possibilities rather than an integral. This proves to be much
more challenging for regression as Z must be an integrable
function, which can be very difficult and computationally
expensive to prove due to the complexity of the interaction
and association potentials. To address this issue, P(y|z) can
be represented as a multivariate Gaussian distribution, which
results in Gaussian Conditional Random Fields.

C. Gaussian Conditional Random Fields

~ The exponent portion E of the CRF model can be rewritten
in Gaussian form as:
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where Q and b are canonical parameters of Gaussian distri-

bution defined below. By representing the quadratic terms of
y in the association and interaction potentials as y” Q,y and
yT Qqy respectively, and combining them, we obtain
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where ;. represents the similarity between outputs y; and yy,
and eg,? = 1 if an edge exists between y; and y; under the

particular interaction potential /, and ez(.é) = 0 otherwise.



To get u, which is expressed as

p=0Q b (12)

the linear terms in of the Gaussian form are matched with
the linear terms in the exponent of the original form to get
1 = Xb, where b is a vector with elements

K
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Finally, using this new representation we see that
Z(a, B, ) = (27) % || 2 exp(const) (14)

and hence
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with ! and 1 defined above. The « and 3 values used in this
model are obtained from the association potential defined by
the outputs of two unstructured predictors, and the interaction
potential defined by various similarity measures introduced
below, respectively.

1) Learning and inference: The learning task is to choose
« and [ to maximize the conditional log-likelihood, as defined
in Equations 5 and 6. To have a feasible model with real
valued outputs, Z must be integrable, which is ensured by
the constraint that all elements of o and § are greater than 0.
In this setting, learning is a constrained optimization problem.
To convert it to the unconstrained optimization, we adopt a
technique used in [13] that applies the exponential transfor-
mation of the parameters to guarantee that they are positive.
All parameters are learned by the gradient-based optimization.
To apply it, we need to find the gradient of the conditional
likelihood:
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The inference task is to find the outputs y for a given input
x, such that the conditional probability P(y|x) is maximized.
The GCRF model is Gaussian and, therefore, the maximum a
posteriori estimate of y is obtained as the expected value p of
the GCREF distribution,

y« = argmax(P(y|z)) = u (18)
y

Uncertainty for each output can be taken as corresponding
element from the diagonal of the covariance matrix.

D. Variograms

In order to establish an evaluation of the various similarity
measures that we formally define in the next section, we
plotted the variograms for each similarity measure to observe
how it behaves in relation to the actual data. To obtain these
variograms, we first decided on a subset of papers that we
would be examining using the GCRF model, as well as the
subset of time points that we would use, which ended up
giving us 800 papers and 40 time points. We then computed
the similarities among all pairs of papers from this set at
each time point (for the similarities that change over time),
and also computed the squared difference between the citation
counts of the two papers at those time points. After collecting
all of the similarities and variances over all time points, we
binned the results into 10 roughly equal-sized bins, and plotted
the similarity values versus the variance of each bin. By
including the variance of the dataset on this plot and observing
the behavior of the bins we were able to tell whether each
similarity measure exhibits an appropriate behavior, namely,
displaying a lower variance as the similarity value increases,
and staying below the line of variance for the full dataset.
These plots also allow us to discard unnecessary portions of
the similarity measures, by setting similarity measure values
whose corresponding variances are above the variance of the
whole data to zero.

IV. DATASET AND FEATURE DESCRIPTION
A. Data

The dataset we used for our experiments was the high en-
ergy physics theory bibliographic network which was extracted
from arXiv for the 2003 KDD Cup competition. The network
consists of 29,955 papers and 352,807 citations spanning over
11 years, and the dataset includes text versions of all papers
that can be used to extract additional information about each
paper. An XML version of this dataset, from Proximity HEP-
Th database, which included most of the metadata available
from the full texts of the papers was used to quickly extract the
information that was used in our experiments. The Proximity
HEP-Th database is based on data from the arXiv archive
and the Stanford Linear Accelerator Center SPIRES-HEP
database provided for the 2003 KDD Cup competition with
additional preparation performed by the Knowledge Discovery
Laboratory, University of Massachusetts Amherst. The citation
pairs were used to construct a citation history matrix, which
represents the number of citations that a particular paper has
received at a particular time point.

B. Similarity Measures

The various types of information extracted from the XML
file were used to compute a number of similarity features
for a pair of papers, which were then used as the interaction
potential functions within the GCRF framework to augment
the outputs of the unstructured predictors. The following ten
similarity measures were used in our experiments:

1) coCiter: Jaccard based similarity measure. Similarity
between two papers A and B is expressed as:

. 2 X #of cocitationsof Aand Batt
SzmcoCitm‘(Av B) = - — (19)
#of cit.of Aatt + #of cit.of Batt




2) history:

d(A,B)2

Simhistory (Aa B) = eXp_ k (20)

where d(A,B) is Euclidean distance between the citation
counts of papers A and B over a history of a particular length,

and k=S SN % where N and T are number of

all papers and all timestamps respectively. We used a history
of length 8 here.

3) termTFIDF non temporal: The rest of the similarity
measures are all based on the classic TF-IDF term scoring
from information retrieval, which were used in [9]:

tf(t,d) = |{t' € terms(d) : t' =t} (21)

, Dl
=1
idf(d) tlog |d e D:teterms(d)|+1

scoreierms(g,d) = Y tf(t,d)"idf (d)* (23)

teq

(22)

This score increases when terms (t) are shared between the
query (q) and the document (d), but terms that appear in
many documents in the collection (D), such as the, are heavily
discounted.

In order to use this score (which is asymmetric) as a

similarity measure, we transform it into a symmetric measure
in several ways.

scoreterms (A, B) + scoreierms (B, A)

Simyini(A, B) = 5

(24)

4) termTFIDF non temporal cosine: In this case the same
concept is used, but we compute the cosine similarity:

tAB
A-B E T wiAwi B

Simittntc(A, B) = = i=1
LAl B]] A B
Zi:l Wi Zi:l Wi,

where tAB is the set of terms common to papers A and B, fA
is the set of terms in paper A, ¢B is the set of terms in paper
B, and w; 4 = tf(i, A)%Sidf (A)2.

(25)

5) author non temporal: For authors the equations remain
the same

rs(A, B ors (B, A
Simant(A, B) = scorequthors ( );Scoreautho s( ) (26)

scoTequthors 1S calculated the same way as Scoreéierms,
except authors are considered as terms.

6) author non temporal cosine: In this case the equations
are also the same as for terms, but we consider authors as
terms instead:

aAB
. A-B Zi:l Wi, AWi,B
SlmantC(AyB) = - 27)

IER oa -
2 a 2
Zi:l wi,A Zi:l wi B

where aAB is the set of authors common to papers A and B,
aA is the set of authors of paper A, aB is the set of authors
of paper B, w; 4 = tf(i, A)®%idf (A)?, and i is author rather
than term.

7) author temporal: In the following similarity measures
TFIDF scores of terms/author ids are calculated for the citers of
papers that we compare, and averaged over the two papers we
comgare. The temporal aspect is satisfied because we aggregate
all the citers up to the current time point:

aggtemp(A, B) = scoreterms(authors(A), concat (authors(d))) (28)
)

deciting(B
aggtemp(A, B) + aggtemp(B, A)

Simgi(A, B) = 3 (29)
8) term temporal:
aggtemp(A, B) = scoreierms(A, concat (authors(d))) (30)

deciting(B)
aggtemp(A, B) + aggtemp(B, A)
2

Simes (A, B) = 31)

9) author nontemporal v2: This score is exactly the same
as the above author temporal score, but is calculated up to the
first time point we consider.

10) term nontemporal v2: This score is exactly the same
as the above term temporal score, but is calculated up to the
first time point we consider.

C. Unstructured Predictors

To represent the association potential among the inputs and
outputs of the GCRF model we used two simple unstructured
predictors:

1) k-nearest-neighbor: A sliding window nearest neighbor
predictor that forms predictions for a papers citation counts in
a future time point by comparing its citation history to that
of citation histories of other papers in the dataset, selecting
the k papers that have the most similar history, and averaging
their final corresponding citation counts to predict the count
for the paper in question. After testing several configurations
we selected a predictor using a window of size 8 and a k value
of 9.

2) Multiple linear regression: A linear regression predictor
whose coefficients were trained on the features of all papers
up to the time point we were interested in, and then applying
those coefficients on the features at the given time point to
form the prediction. For this predictor we used a history of 3
time points as the feature set.

V. EXPERIMENTS
A. Experimental Setup

In order to avoid the problem of sparsity, we first organized
the data so that we were observing only papers that were
written before year 2000, and tracking their citation counts
starting at year 2000. We then filtered out papers that received
less than 25 citations over the resulting 40 month period,
leaving us with a matrix of 40 time steps and the citation counts
for the 800 most-cited papers at each of those time points. Note
that although we focused on the 40 time steps that took place
after the year 2000 for training the GCRF model, we still had
the citation counts for the previous time steps which we used
when training the unstructured predictors.
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Fig. 2. Examples of variograms of bad similarity measures. The horizontal lines represent the overall variance of the dataset, indicating that regardless of the
similarity strength, neither of these similarities are useful for identifying a relationship between the true values.

B. Variograms of Similarity Measures

After selecting the paper set that we would be focusing on,
we extracted the appropriate information from the XML file
to obtain the similarity measures for each pair of papers. We
then examined each similarity measure via a variogram, and
selected the most promising ones, of which there were nine, to
be used within the GCRF model. Some of the variograms we
examined are reproduced in Figures 2 and 3. Note here that
we do not show all of the variograms we examined as all of
the bad variograms had behaviors similar to the two bad ones
presented in Figure 2, and the good ones looked very similar
to the two good ones presented in Figure 3.

In total we examined over 40 variograms from the various
combinations of the similarity measures defined above, and
we discarded any individual or combined similarity whose
variogram did not exhibit the behavior of the two “good”
variograms shown in Figure 3, leaving us with nine potentially
useful measures. Using these we then explored the overall per-
formance of the model when training and testing on different
intervals. Although the differences were fairly minor, we opted
to use the intervals that had the highest overall performance,
which consisted of training the GCRF model on time points 10-
20, and testing on time points 21-30. In order to avoid unfair
bias for the unstructured predictors that we used in our model,
we used time points 1-9 to train them and obtain predictions
for the 10-30 interval, thus ensuring that we weren’t seeing
additional data when forming those predictions. In the case
of kNN, we treated the interval up to time point 9 as the
only interval from which we could observe citation counts,
and made predictions in the 10-30 interval using those values.
In the case of Multiple Linear Regression we again only used
features up to the 9th time point to learn the coefficients of
the model, and used them to predict in the 10-30 interval.

Finally we conducted a series of experiments to explore
the performance of the GCRF model using different similarity
measures both independently and in combination, as well as
comparing those results to those obtained from using GCRF
with only one of the two unstructured predictors to help
determine how much the similarities were actually helping.

C. Evaluation Measures

To gauge the performance of the GCRF model as well as
the unstructured predictors by themselves, we consider two
traditional evaluation measures for regression tasks:

1) R? coefficient of determination: a goodness-of-fit mea-
sure that displays how closely the output of the model matches
the actual value of the data. A score of 0 indicates a very poor
matching, while a score of 1 indicates a perfect match.

Zz(% - yaver(zge)2

where f(z;) is the predicted value, y; is the true value, and
Yaverage 18 the average of y values.

R*=1-

(32)

2) Root mean squared error: an overall measure of the
difference between the predicted values and the actual values.
Though it is sometimes difficult to interpret when the values
being measured cover a wide range, in our case it is an
appropriate evaluation metric as citation counts fall within a
fairly narrow range.

RMSE = \/Tll > (fl@i) — i) 33)

where f(z;) is the predicted value, y; is the true value, and n
is the number of samples.

D. Results

In order to accurately gauge the effectiveness of the differ-
ent similarity measures we performed a number of experiments
using the parameters defined in the previous sections this
includes focusing on a set of 800 papers over the span of
40 months and using months 1-20 to train the model and
months 21-30 to test it. Using these parameters we measured
the performance of the unstructured predictors by themselves,
the performance of the GCRF model using two of the bad
similarity measures, using each of the good similarity measures
individually, as well as a combination of the most promising
of these similarities and a combination of the least promising
of these similarities. We also observe the performance of
GCRF using these similarity measures and only one of the
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Fig. 3. Examples of variograms of good similarity measures. Note that after a certain similarity value, the respective variance drops below the overall variance
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similarity measure: for example, by setting any value of coCiter * Temporal Author Similarity below 20 to zero, we ensure that the similarity only identifies

the meaningful relationships among the data points.

TABLE 1. PERFORMANCE OF INDIVIDUAL UNSTRUCTURED
PREDICTORS, AS WELL AS GCRFS THAT USED TWO BAD SIMILARITY
MEASURES. NOTE THAT THERE WERE SIGNIFICANTLY MORE BAD
SIMILARITY MEASURES, BUT AS THE RESULTS FROM USING THEM WITH
GCRF WERE IDENTICAL TO THE RESULTS SHOWN HERE WE OMIT THEM.

Model Average R?
MLR 0.67
kNN 0.58
GCREF termTemporal 0.67
GCREF author 0.67

two unstructured predictors to better define the impact of the
similarity measures on the individual predictors. The results
are organized as follows: in Table I, the first two rows are the
performance results of the individual unstructured predictors;
the next two rows are the performance results of our GCRF
model using both unstructured predictors and one bad similar-
ity measure each. The remaining results in Tables II and III are
trios of GCREF results using the specified similarity measure(s)
and both unstructured predictors, just MLR, and just kNN,
respectively. Although we computed the RMSE values and
variances of all metrics for each set of experiments, the RMSE
values displayed exactly the same results the R? values did,
and the variances were small for all experiments, so we omit
them from the results.

Analyzing these results yields several conclusions, all of
which are consistent with either our variogram evaluations
or the nature of the GCRF model. Firstly, by looking at
Table I we can see that when GCRF uses both unstructured
predictors, its performance is at least as good as the better of
the two individual predictors, even when using a bad similarity
measure. This behavior is to be expected as the model is able
to form predictions using the information extracted from both
predictors, and is able to offset the downfalls of one with
the advantages of the other. We can also see that applying
the similarity measures that were deemed bad as a result of
their variograms offers no improvement in performance: in
both cases GCRF performs identically to MLR, suggesting that
those similarities did in fact offer no beneficial information to
the model.

Observing the next set of results shown in Table II further

TABLE II. PERFORMANCE OF USING A SINGLE GOOD SIMILARITY
MEASURE IN THE GCRF MODEL. HERE EACH COLUMN REPRESENTS
USING A DIFFERENT UNSTRUCTURED PREDICTOR SETUP WITH THE GIVEN
SIMILARITY MEASURE: BOTH MEANS GCRF IS TRAINED USING BOTH
MLR AND KNN AND THE SIMILARITY MEASURE, MLR MEANS GCRF 18
TRAINED USING ONLY MLR AS THE UNSTRUCTURED PREDICTOR, AND
KNN MEANS ONLY KNN WAS USED AS THE UNSTRUCTURED PREDICTOR.

Similarity Measure Average R? Average R? Average R
both MLR kNN
coCiter 0.71 0.70 0.64
authorCoCiter 0.69 0.68 0.59
authorCosineCoCiter 0.69 0.68 0.59
authorTemporalCoCiter 0.68 0.67 0.58
history 0.68 0.67 0.58
termTemporalHistory 0.68 0.67 0.58
authorCosineHistory 0.70 0.69 0.61
authorNewHistory 0.68 0.67 0.58
termNewHistory 0.68 0.67 0.58

showcases the benefits of having two unstructured predictors
over one, but also shows the improvements offered by some of
the good similarity measures. For example, we can see that the
performance of GCRF using the coCiter similarity and only the
kNN unstructured predictor is noticeably better than KNN by
itself, suggesting that the coCiter similarity measure allows for
more accurate predictions. On the other hand, several of the
good similarity measures also offer little to no improvements in
the performance of the model. This can be explained by one of
two ideas: the similarities that are based on coCiter similarity
such as authorTemporalCoCiter appeared to be good due to
the effectiveness of the coCiter similarity alone, but their other
components did not actually contribute anything positive to the
model. The history-based similarities also displayed promising
variograms, but when implemented within the GCRF did not
really improve the performance. This can be explained by the
fact that the unstructured predictors heavily rely on citation
history, so using a similarity based on the same concept did not
add any new information to the model. This behavior was not
evident when computing variograms, since said variograms did
not incorporate the citation histories as GCRF did (and hence
the variograms of history-based similarities looked good but
didn’t actually help).



TABLE III. PERFORMANCE OF GCRF USING A COMBINATION OF THE
BEST INDIVIDUAL SIMILARITY MEASURES, AND USING A COMBINATION
OF THE WORST INDIVIDUAL SIMILARITY MEASURES.

Average R? Average R? Average R?
both MLR kNN

Similarity Combinations

coCiter, authorCoCiter,
authorCosineCoCiter, 0.70 0.70 0.63

authorCosineHistory

authorTemporalCoCiter,
termTemporalHistory, 0.68 0.67 0.58
history authorNewHistory,
termNewHistory

The final set of observations, shown in Table III, exhibit
the results of using several similarity measures at once. When
grouping 4 of the best-performing similarities together, the
results of which are shown in the first row of Table III, we
saw that the results were actually worse than the performance
of the best similarity by itself (coCiter), and in fact took much
longer to obtain. This is again consistent with the nature of the
model, as two of the similarities were highly correlated with
coCiter similarity, and the history-based similarity suffered
from the problem discussed above. So when combining a
single good measure with three others that offered little to
no new information, we were needlessly complicating the
model and hurting the performance of the best similarity. The
final combination of the least-promising similarities further
shows that good variograms by themselves are not sufficient
to determine if the measure is actually useful, as all of the
variograms in this combination looked promising. As a result,
we can conclude that the nature of the model must also be
taken into account when determining what similarity measures
would offer the best performance.

VI. CONCLUSION AND FUTURE WORK

In this paper we examined the issue of selecting effective
relationships from a large pool of potential connections among
nodes in a social network. These relationships were first exam-
ined by computing their respective variograms and observing
how the relationship strength relates to the actual values of the
data. We then tested the benefits of these relationships when
they were implemented in our Gaussian Conditional Random
Field model that was adapted for node attribute prediction in
temporal social networks with a multigraph structure. These
experiments showed that while variograms offer a great amount
of insight into the effectiveness of a relationship, they must
be combined with insights based on the types of unstructured
predictors that are used in the model to find the truly optimal
relationships.

In future experiments we hope to further explore this
behavior by constructing additional unstructured predictors that
are less reliant on a common source of information (as our pre-
dictors were on citation history), as well as exploring additional

similarity types, such as the meta-path-count-based similarities
that were used in [10]. We will also apply our approach to
additional datasets to see if the results are consistent in other
networks.

This work is supported in part by DARPA Grant FA9550-
12-1-0406 negotiated by AFOSR.
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