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Abstract. The appropriate choice of a method for imputation of missing data 
becomes especially important when the fraction of missing values is large and 
the data are of mixed type. The proposed dynamic clustering imputation (DCI) 
algorithm relies on similarity information from shared neighbors, where mixed 
type variables are considered together. When evaluated on a public social 
science dataset of 46,043 mixed type instances with up to 33% missing values, 
DCI resulted in more than 20% improved imputation accuracy over Multiple 
Imputation, Predictive Mean Matching, Linear and Multilevel Regression, and 
Mean Mode Replacement methods. Data imputed by 6 methods were used for 
test of NB-Tree, Random Subset Selection and Neural Network-based 
classification models. In our experiments classification accuracy obtained using 
DCI-preprocessed data was a lot better than when relying on alternative 
imputation methods for data preprocessing.  
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1   Introduction 

A common approach to analyzing data with missing values is to remove attributes 
and/or instances with a large fraction of missing values. Such data preprocessing is 
appealing because it is simple and also reduces dimensionality. However, this is not 
applicable when missing values cover a lot of instances, or their presence in essential 
attributes is large [1]. 

Another common and practical way to address the problem of missing values in 
data is to replace them as estimates derived from the non-missing values by a linear 
function. The missing attribute j from an instance i, denoted as xi,j

ms, is estimated as: 
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where f is a linear function of Pj variables; Pj is the number of instances in the data 
with non-missing values for attribute j; and xp,j is a non-missing attribute j from an 
instance p. 

A special case of (1), which is simple, fast, and often provides satisfactory results 
when the number of missing values is relatively small and their distribution is 
random, is mean (or mode for categorical attributes) value based imputation: 
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The limitation of mean value based imputation and its variations is its focus on a 

specific variable without taking into account the overall similarities between 
instances. For example, consider the following 5 data points with 6 attributes, where a 
categorical attribute (fifth column) is missing one value (denoted as “ms”): 

1 10.2 1 1 1
1 9.8 1 1 2 1
0 1.1 0 0 1 0
0 1.1 0 0 1 1
1 0.3 0 0 1 0

ms⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
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 . (3) 

 
Here, it would be reasonable to replace “ms” by “2” since the first two instances 

are very similar. However, mean/mode value-based imputation methods would 
replace “ms” by “1” as it is the most common value for this attribute in the dataset. 

One of the most powerful approaches to missing values estimation is replacement 
by multiple imputation [1, 2]. The idea is to generate multiple simulated values for 
each incomplete instance, and iteratively analyze datasets with each simulated value 
substituted in turn. The purpose is to obtain estimates that better reflect the true 
variability and uncertainty in the data than are done by regression. Multiple 
imputation methods yield multiple imputed replicate datasets each of which is 
analyzed in turn. The results are combined and the average is reported as the estimate. 
For continuous attributes and a fairly small fraction of missing values, reliable 
estimates are obtained by combining only a few imputed datasets. 

A clustering based approach for missing data imputation was considered as a local 
alternative to global estimation [3]. The premise was that instances could be grouped 
such that all the imputations in identified groups are independent from other groups. 
However, previous distance-based [4] clustering work was focused mainly to 
development of supervised clustering methods and mean/mode based imputations in 
these clusters. Also, prior studies were based on a strict separation for objects within 
clusters, such that it was assumed that there is no influence of instances in one cluster 
to an imputation process in other clusters. 



 In our DCI approach an independent cluster of similar instances with no missing 
values for a particular attribute is constructed deterministically around each instance 
with a missing value. In contrast to a typical clustering method, we allow cluster 
intersections such that the same instance may be included in many clusters. DCI relies 
on a distance measure that considers together categorical and continuous variables 
and is applicable for estimation of missing values in high dimensional mixed type 
data. 

2   Methodology 

We assume that the given data consist of M instances with N attributes where N is a 
mixture of tens to hundreds of categorical and continuous attributes. For the proposed 
Dynamic Clustering based Imputation (DCI) we use a dissimilarity measure between 
instances in a mixed type dataset described in Section 2.1. This measure is used in a 
clustering algorithm for identification of similar instances as described in Section 2.2 
to perform a dynamic cluster-specific imputation of missing values as described in 
Section 2.3. An evaluation method and alternative imputation approaches were 
described in Section 2.4. 

2.1   Measuring Dissimilarity between Instances in Mixed Type Data for DCI 

The Minkowski distance, the Simple Matching Coefficient, the Jacquard Similarity 
Coefficient or other metrics could be used separately to measure the distance between 
instances for each type of attributes. However, such approaches are of limited 
applicability for mixed type data consisting of categorical and continuous attributes in 
the presence of many missing values [5]. In DCI given N dimensional data, to 
measure the dissimilarity between two instances xi and xj of mixed type in the 
presence of missing values, we compute [6]: 
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where max and min are computed over all non-missing vales of the n-th attribute. 

2.2   Clustering for Identification of Similar Instances in DCI 

To identify similar instances in DCI we employ a new clustering algorithm consists of 
the following steps: 
 



1. Computing the similarity matrix (SM) for all instances: 
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2. Computing the neighborhood matrix (NM): 
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where nmi,j is the number of common neighbors among K nearest neighbors for 
instances i and j, and M is the total number of instances in the dataset. 
 

3. Constructing an ordered list (by ascending sort) of all neighbor instances with no 
missing value in j-th attribute for each missing value xi,j

ms: 
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where xi

ms denotes i-th instance with missing value in j-th attribute, and xp denotes 
p-th instance with no missing in j-th attribute. Here, if two instances have the same 
dst/nm rate, one with less missing attributes is listed first in the list. 
 

4. Constructing a cluster Ci,j for each missing value xi,j
ms by using first R elements of 

listi,j, where R is a user-specific parameter that defines a cluster size, and R < |listi,j|. 

2.3   Dynamic Cluster-Specific Imputation Methods for Mixed Type Data  

In a cluster constructed as described in Section 2.2 using similarity measure 
introduced in Section 2.1 a missing value could be imputed based on (a) the mean 
value of the corresponding attribute in other items contained in this cluster, or (b) 
similarity to the nearest instance with a non-missing value. Averaging in (a) and 
identification of the nearest instances from the same cluster in (b) could be based on 
various metrics. In DCI, we use the following categorical and continuous data specific 
metrics aimed to provide a balance in terms of imputation quality and computational 
complexity: 



Categorical variable: A missing value is estimated by the corresponding attribute in 
an instance from the same cluster that has the largest number of common neighbors 
with the imputed instance:  
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Continuous variable: A missing value is estimated based on all instances in the same 
cluster where each non-missing value is weighted by the appropriate entry of the 
neighborhood matrix NM:  
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2.4   Evaluation Measures and Alternative Imputation Methods 

For evaluating imputation quality different measures were used when comparing 
imputed categorical and imputed numerical data versus the corresponding true values. 

The mean and absolute squared error measurements tend to be very sensitive to 
outliers. So, for continuous attributes and for a given tolerance τ we measured a 
Relative Imputation Accuracy (RIA, also known as relative prediction accuracy [7]) 
defined as 

100%
n

RIA
Q

τ
τ = ×  , (10) 

 
where nτ is the number of imputed elements estimated within τ percent of accuracy 
from the true value of the corresponding missing value and Q is the total number of 
imputed values in the data. RIA is very useful in practice as an absolute precision of 
imputed continuous values is often not needed. A nice property of RIA measure is that 
it is not affected by an individual incorrect imputation (e.g. large value instead of 
small) that could affect considerably some statistical measures (e.g., MSE-based [8]). 

In categorical attributes we measured a fraction of Correct Imputations (CI) 
defined as 

100%sCI
Q

= ×  , (11) 

 
where s is the number of correctly estimated imputed elements. 

As a simple imputation alternative to DCI, we used a WEKA implementation [9] 
of Mean and Mode Replacement (denoted here as MMR). We also compared DCI to 
four statistically well-founded techniques: Multiple Imputation [1, 2], Predictive 
Mean Matching [10] (denoted here as PMM), Linear Regression [11], and Multilevel 
Regression [11] (denoted here as MLR). 



The Multiple Imputation Method used for comparison and implemented in Amelia 
II software [12] enables to draw random simulations from the multivariate normal 
observed data posterior, and uses standard Expectation Maximization (EM) for 
finding an appropriate set of starting values for data argumentation. Multiple 
Imputation begins with EM and adds an estimation of uncertainty for receiving draws 
from the correct posterior distribution followed by a resampling based on importance. 
According to King et all [12], this way is faster than traditional multiple imputation 
approaches, does not rely on Markov chains, produces the fully independent 
imputations and allows the use of about 50% more information.  

Predictive Mean Matching comparison method implemented in WinMICE 
software [13] combines both parametric and nonparametric techniques. It imputes 
missing values by means of the nearest neighbors where the distance is computed as 
the expected values of the missing variables conditional on the observed covariates, 
instead of directly on the values of the covariates. 

Linear and Multilevel Regression models, also implemented in WinMICE, are well 
known statistical approaches that allow variance in imputed variables to be analyzed 
at multiple hierarchical levels, whereas in linear regression all effects are modeled to 
occur at a single level. 

3   Results and Discussion 

We first performed experiments on a social science dataset with mixed-type attributes 
to compare quality of imputation by the proposed method and alternatives in presence 
of various fractions of missing values. In another set of experiments mixed-type data 
preprocessed by various imputation methods was used for classification by several 
algorithms to determine practical effects of an imputation method on classification 
accuracy (reported in Section 3.2). 

A public domain Adult dataset [14], from the UCI Machine Learning Repository 
was used for comparing different data imputation methods. The dataset contained a 
subset of records about the US population collected by the US Census Bureau. The 
48,842 individuals in this database are described by 8 categorical and 6 continuous 
attributes (with some missing data) related to prediction of annual income. In our 
experiments etalon data with 46,043 instances was constructed by removing all 
instances from the Adult dataset with missing values. To make the dataset balanced in 
terms of different attribute types, two categorical attributes (“education” and “native 
country”) were also removed. 

Eight test datasets with missing values (“holes”) were constructed by randomly 
hiding 0.2%, 0.5%, 1.1%, 1.8%, 5.4%, 10.9%, 16.3% and 32.6% of data elements in 
both categorical and continuous attributes of the etalon data. Each test database was 
fully independent from others, which means that places of “holes” were independent.  

3.1   Evaluation of Imputation Quality on Mixed Type Data 

The DCI and other imputation algorithms described in section 2.4 were compared 
using eight datasets with different fraction of introduced missing values. Imputed 



values were compared to the true values in Adult dataset. As to provide a comparison 
to a trivial estimate, we also report the results obtained by using the corresponding 
attribute value in one of randomly selected instances (denoted here as Random). The 
imputation accuracy by DCI and alternative methods are summarized in Tables 1-4. 
All reported DCI results were obtained for 50 nearest neighbors and 9 the most 
common neighbors (K=50, R=9 defined in section 2.2). Very similar findings (within 
10% of reported) were obtained for 40<K<60 and R=7 or R=11, but were less robust 
for K<20 or R>15 (stability results are omitted due to lack of space). 

Table 1.  Fraction of correct imputation (CI) in categorical attributes for 0.2%-32.6% imputed 
values. 

CI for different fractions of missing values Imputation Methods 
0.2% 0.5% 1.1% 1.8% 5.4% 10.9% 16.3% 32.6% 

DCI 66.0 69.2 67.5 70.0 71.0 71.5 70.6 65.6 
MMR 54.5 38.0 53.7 56.2 54.4 54.7 54.7 54.7 
PMM 34.2 37.8 35.9 36.1 36.8 35.9 35.6 35.2 
Linear Regression 28.1 30.3 28.8 29.0 29.0 28.4 28.4 28.1 
Multiple Imputation 46.9 49.1 49.0 49.8 48.1 47.8 47.3 45.5 
MLR 29.3 29.7 27.9 29.8 28.8 28.5 28.6 28.2 
Random 19.1 20.8 19.3 21.1 19.9 20.3 19.7 20.2 
 
Imputation accuracy results for estimation of categorical attributes (Table 1) 

revealed that for all fractions of missing values DCI was a lot more accurate from 
alternative five imputation methods (1.2-1.4 times more accurate than the best of the 
remaining methods). Mean Mode Replacement approach was the second most 
accurate imputation method for categorical attributes. The results of the remaining 
imputation methods had more than 50% imputation error, but were still much better 
than random replacements.  

The Relative Imputation Accuracy of DCI for imputation of continuous attributes 
(Tables 2-4) was also much better from alternative imputation methods. Here, 
Predictive Mean Matching was the second most accurate method. For 5% tolerance 
DCI provided 1.4-1.8 times better accuracy than PMM and was 6-9 times other better 
than alternatives (Table 2). Still, even the weak imputation methods were significantly 
more accurate than random replacements.  

Table 2.  Relative imputation accuracy (RIA) with 5% tolerance in continuous attributes for 
0.2%-32.6% imputed values. 

RIA (τ = 5%) for different fractions of missing values Imputation Methods 
0.2% 0.5% 1.1% 1.8% 5.4% 10.9% 16.3% 32.6% 

DCI 33.8 28.3 28.1 31.2 29.5 30.3 30.2 28.3 
MMR 3.7 4.9 1.4 5.5 1.2 1.5 1.4 5.5 
PMM 18.6 20.9 20.0 20.2 18.7 19.6 19.4 19.4 
Linear Regression 3.7 4.5 4.4 4.5 4.2 4.3 4.4 4.2 
Multiple Imputation 5.5 11.8 3.9 4.7 4.6 4.7 4.6 4.5 
MLR 3.7 4.3 4.6 4.0 4.2 4.4 4.4 4.3 
Random 1.8 2.1 2.9 3.3 3.0 3.2 3.0 3.0 



Table 3.  Relative imputation accuracy (RIA) with 10% tolerance in continuous attributes for 
0.2%-32.6% imputed values. 

RIA (τ = 10%) for different fractions of missing values Imputation Methods 
0.2% 0.5% 1.1% 1.8% 5.4% 10.9% 16.3% 32.6% 

DCI 38.7 35.4 35.6 37.4 36.7 37.2 37.2 35.6 
MMR 10.2 11.8 12.0 11.9 11.5 11.6 11.6 12.0 
PMM 25.6 30.0 29.2 28.8 27.6 28.5 28.2 28.2 
Linear Regression 10.7 13.6 13.6 13.0 13.1 13.3 13.2 13.1 
Multiple Imputation 13.3 20.4 13.4 13.5 13.3 13.3 13.4 13.3 
MLR 10.7 12.9 13.9 13.0 13.1 13.2 13.3 13.2 
Random 10.5 12.2 13.2 12.8 12.8 13.0 12.9 12.8 

Table 4.  Relative imputation accuracy (RIA) within 15% tolerance in continuous attributes for 
0.2%-32.6% imputed values. 

RIA (τ = 15%) for different fractions of missing values Imputation Methods 
0.2% 0.5% 1.1% 1.8% 5.4% 10.9% 16.3% 32.6% 

DCI 42.0 40.1 40.0 41.8 41.5 42.0 42.0 40.5 
MMR 15.6 17.6 17.5 17.4 17.4 17.4 17.4 17.8 
PMM 30.3 34.7 33.9 33.5 32.6 33.5 33.1 33.3 
Linear Regression 15.4 18.3 18.4 17.7 18.1 18.3 18.2 18.1 
Multiple Imputation 17.0 25.5 18.1 17.8 18.2 18.1 18.2 18.1 
MLR 15.0 18.1 18.5 17.5 18.2 18.2 18.2 18.2 
Random 15.8 17.7 18.0 17.9 18.2 18.3 18.2 18.2 
 
Experiments with double and triple tolerance for allowed estimation error of 10% 

and 15% (Tables 3 and 4) resulted in reduced differences in accuracy between 
imputation methods. However, even for larger tolerance DCI was still 20-50% more 
accurate (in relative difference) than the second best PMM method. These 
experiments suggest that the Mean Mode Replacement, Regression methods, and 
even Multiple Imputation methods are not appropriate for larger tolerance estimation 
in continuous variables as the corresponding results were comparable to random 
replacement. On the other hand, all methods outperformed the Mean Mode 
Replacement, which is commonly used in practice due to its simplicity.  

3.2   Effect of an Imputation Method on Classification Accuracy for Mixed Type 
Data 

The next stage of our experiments was devoted to practical comparison of how well 
different imputation techniques would suit for real life classification tasks. The idea 
was to explore a scenario where clean mixed type data was used for training a 
classification model while it was applied to real data with various fractions of missing 
values. For this purpose we built several kinds of classifiers by training them on the 
first 16,043 subjects from etalon Adult database where for each instance all 12 
attributes were available. For a test subject drawn from the remaining 30,000 
instances the task was to predict if he/she makes over 50,000 U.S. dollars a year 



where a fraction of variables was missing at random. Different fractions of missing 
values were considered and preprocessing was achieved by 6 imputation methods 
described in Section 2. As a measure of accuracy, the percent of correctly classified 
instances was calculated. 

As a classification method we applied three models implemented in WEKA: NB-
Tree [15], Random Subset Selection [16] and Multilayer Perceptron [17]. NB-Tree 
was used as one of the best classification methods for Adult database according to 
[14]. Random Subset Selection and Multilayer Perceptron were used as alternative 
solutions that in other domains showed good speed and classification accuracy, 
respectively. The classification results reported in Tables 5-7 are compared to the 
upper bound obtained by testing on complete data without missing values. 

Table 5.  Classification Accuracy (CA) of NB-Tree classification model applied to datasets 
with 0.2%-32.6% imputed values.  

CA of NB-Tree for different fractions of missing values Imputation Methods 
0.2% 0.5% 1.1% 1.8% 5.4% 10.9% 16.3% 32.6% 

DCI 86.1 86.1 86.0 86.0 85.8 85.4 84.8 83.6 
MMR 86.1 86.0 85.9 85.9 85.1 84.2 83.0 79.6 
PMM 86.1 86.1 85.9 85.9 85.0 84.5 83.6 81.0 
Linear Regression 86.1 86.0 85.7 85.6 84.3 82.9 81.4 76.8 
Multiple Imputation 86.1 86.1 85.7 85.7 84.6 83.1 81.4 77.1 
MLR 86.1 86.0 85.8 85.6 84.3 82.9 81.4 76.8 
Upper bound 86.1 86.1 86.1 86.1 86.1 86.1 86.1 86.1 
 
All imputation methods resulted in very similar accuracy for small fractions (0.2-

1.8%) of missing values (Table 5). However, the difference was substantial when 
more than 10% of missing values were imputed. Though DCI provided the most 
accurate NB-Tree classifier for all fractions of missing values, its advantage was the 
most evident for the largest fraction of missing values (32.6%) where it had 14-22% 
less relative difference in error than alternative methods. 

Table 6.  Classification Accuracy (CA) of Random Subspace Selection classification model 
applied to datasets with 0.2%-32.6% imputed values. 

CA of Random Subset for different fractions of missing values Imputation Methods 
0.2% 0.5% 1.1% 1.8% 5.4% 10.9% 16.3% 32.6% 

DCI 84.9 84.9 84.9 84.8 84.8 85.0 84.7 84.8 
MMR 84.9 84.9 84.9 84.8 84.5 84.3 83.8 81.6 
PMM 84.9 84.9 84.8 84.7 84.4 84.2 84.1 83.1 
Linear Regression 84.8 84.9 84.8 84.7 84.2 83.7 83.4 82.1 
Multiple Imputation 84.9 84.9 84.8 84.8 84.5 84.2 83.7 82.6 
MLR 84.9 84.9 84.8 84.7 84.3 83.8 83.3 81.8 
Upper bound 84.9 84.9 84.9 84.9 84.9 84.9 84.9 84.9 
 
When using Random Subset Selection classifier the overall results were consistent 

to classification by NB-Tree classifier (Table 6). However, Random Subset Selection 
classifier was more tolerant to increase in fraction of missing values. Once again, DCI 



outperformed alternative approaches on the largest fractions of missing values for an 
11-20% relative difference in error. 

Neural Network based classifier, represented by a 3-layer Perceptron showed 
similar characteristics to NB-Tree and Random Subspace Selection (Table 7). DCI 
imputation resulted in more accurate classification in all datasets with a large fraction 
of missing values. For 0.5%, 1.8%, 5.4% 10.9%, and 32.6% imputed values a neural 
network achieved somewhat better accuracy than the upper bound obtained on etalon 
data without missing values. This may be accounted to noise tolerant property of a 
Multilayer Perceptron. 

Table 7.  Classification Accuracy (CA) of Multilayer Perceptron classification model applied to 
datasets with 0.2%-32.6% imputed values. 

CA of Multilayer Perceptron for different fractions of missing values Imputation Methods 
0.2% 0.5% 1.1% 1.8% 5.4% 10.9% 16.3% 32.6% 

DCI 84.5 84.6 84.5 84.6 84.6 84.7 84.5 84.7 
MMR 84.5 84.5 84.4 84.4 84.1 83.6 83.0 80.8 
PMM 84.5 84.5 84.3 84.3 83.8 83.2 82.7 80.8 
Linear Regression 84.5 84.5 84.2 84.1 83.2 82.0 81.0 77.4 
Multiple Imputation 84.5 84.5 84.3 84.2 83.4 82.3 81.2 77.5 
MLR  84.5 84.5 84.3 84.2 83.2 82.2 80.9 77.5 
Upper bound 84.5 84.5 84.5 84.5 84.5 84.5 84.5 84.5 
 
To address a considerable class misbalance for target variable in the Adult dataset 

(34,621 subjects in one class vs. 11,422 in another) we also measured Kappa 
coefficient [18] and F-score [19] for three classification models when imputing 32.6% 
of missing values by six methods (Table 8). 

Table 8.  Kappa coefficient and F-score of NB-Tree, Random Subspace Selection, and 
Multilayer Perceptron classification models applied to datasets with 32.6% of missing values 
imputed by 6 methods and to complete data without missing values. 

NB-Tree Random 
Subset 

Multilayer 
Perceptron Imputation  

Methods 
κ F κ F κ F 

DCI 0.52 0.83 0.54 0.84 0.54 0.83 
MMR  0.42 0.79 0.49 0.81 0.45 0.80 
PMM 0.47 0.81 0.47 0.81 0.44 0.80 
Linear Regression 0.37 0.77 0.44 0.80 0.37 0.77 
Multiple Imputation 0.40 0.77 0.48 0.81 0.38 0.77 
MLR  0.37 0.77 0.43 0.80 0.38 0.77 
Upper bound  0.61 0.86 0.55 0.84 0.53 0.83 

 
Here, Kappa coefficient is defined as: 

1
Ra Pa

Pa
κ −=

−
 , (12) 

 



where Ra is the relative observed agreement, and Pa is the hypothetical probability of 
chance agreement, using the observed data to calculate the probabilities of each 
classifier randomly choosing each category. 

F-score is defined as: 

2 precision recallF
precision recall

×=
+

 , (13) 

 
where, in a classification context, precision denotes the number of true positive 
predictions divided by the total number of items labeled as positive in the data set, 
while recall denotes the number of true positive predictions divided by the total 
number of items that were predicted as positive. 

The obtained results clearly suggest that DCI based pre-processing results in the 
nearest accuracy to the upper bound in the sense of both Kappa coefficient and F-
score statistics. We also observe that our results on imputed data confirms previous 
findings obtained on complete data that NB-Tree based classifier is a good choice for 
classification of Adult data. However, we also observe that the most stable results in 
terms of accuracy were obtained by Random Subset classifier. 

4   Conclusion 

Data imputation to replace missing values is often an important preprocessing step in 
data analysis. This study identified some limitation of a commonly used heuristic and 
of four known statistical methods when applied to mixed type data with a large 
fraction of missing values. In our approach, the main idea was to make all 
replacements independently for data within clusters created around each missing 
value. This is theoretically reasonable and is useful for a practical implementation. 
Our experiments on a social science mixed type data provide evidence that the 
proposed data imputation method is more accurate than the evaluated alternatives and 
is effective when a large fraction of data is missing. 

While the computational complexity of the proposed imputation method of 
O(M3logM) could be a limiting factor in large scale applications, many possibilities 
for improvements remain. For example, cluster-specific multiple imputation 
techniques based on DCI idea could be developed. Also, specialized algorithms for 
defining optimal size of specific clusters may be created. Finally, organizing data to 
KD-trees may improve the overall matrix processing speed. 
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