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Abstract. The appropriate choice of a method for imputation of missing data
becomes especially important when the fraction of missing values is large and
the data are of mixed type. The proposed dynamic clustering imputation (DCI)
algorithm relies on similarity information from shared neighbors, where mixed
type variables are considered together. When evaluated on a public social
science dataset of 46,043 mixed type instances with up to 33% missing values,
DCI resulted in more than 20% improved imputation accuracy over Multiple
Imputation, Predictive Mean Matching, Linear and Multilevel Regression, and
Mean Mode Replacement methods. Data imputed by 6 methods were used for
test of NB-Tree, Random Subset Selection and Neural Network-based
classification models. In our experiments classification accuracy obtained using
DClI-preprocessed data was a lot better than when relying on alternative
imputation methods for data preprocessing.
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1 Introduction

A common approach to analyzing data with missing values is to remove attributes
and/or instances with a large fraction of missing values. Such data preprocessing is
appealing because it is simple and also reduces dimensionality. However, this is not
applicable when missing values cover a lot of instances, or their presence in essential
attributes is large [1].

Another common and practical way to address the problem of missing values in
data is to replace them as estimates derived from the non-missing values by a linear
function. The missing attribute j from an instance i, denoted as x;;™, is estimated as:
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>{T=f(xu,xz’j,...,xp,j,...,xp‘j) , (1)
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where f is a linear function of P; variables; P; is the number of instances in the data
with non-missing values for attribute j; and X,j is a non-missing attribute j from an
instance p.

A special case of (1), which is simple, fast, and often provides satisfactory results
when the number of missing values is relatively small and their distribution is
random, is mean (or mode for categorical attributes) value based imputation:
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The limitation of mean value based imputation and its variations is its focus on a
specific variable without taking into account the overall similarities between
instances. For example, consider the following 5 data points with 6 attributes, where a
categorical attribute (fifth column) is missing one value (denoted as “ms”):

1 102 1 1 ms 1]
1 98 1 1 2 1
0 1.1 00 1 Of. (3)
0 1.1 00 1 1
1 03 0 0 1 O]

Here, it would be reasonable to replace “ms” by “2” since the first two instances
are very similar. However, mean/mode value-based imputation methods would
replace “ms” by “1” as it is the most common value for this attribute in the dataset.

One of the most powerful approaches to missing values estimation is replacement
by multiple imputation [1, 2]. The idea is to generate multiple simulated values for
each incomplete instance, and iteratively analyze datasets with each simulated value
substituted in turn. The purpose is to obtain estimates that better reflect the true
variability and uncertainty in the data than are done by regression. Multiple
imputation methods yield multiple imputed replicate datasets each of which is
analyzed in turn. The results are combined and the average is reported as the estimate.
For continuous attributes and a fairly small fraction of missing values, reliable
estimates are obtained by combining only a few imputed datasets.

A clustering based approach for missing data imputation was considered as a local
alternative to global estimation [3]. The premise was that instances could be grouped
such that all the imputations in identified groups are independent from other groups.
However, previous distance-based [4] clustering work was focused mainly to
development of supervised clustering methods and mean/mode based imputations in
these clusters. Also, prior studies were based on a strict separation for objects within
clusters, such that it was assumed that there is no influence of instances in one cluster
to an imputation process in other clusters.



In our DCI approach an independent cluster of similar instances with no missing
values for a particular attribute is constructed deterministically around each instance
with a missing value. In contrast to a typical clustering method, we allow cluster
intersections such that the same instance may be included in many clusters. DCI relies
on a distance measure that considers together categorical and continuous variables
and is applicable for estimation of missing values in high dimensional mixed type
data.

2 Methodology

We assume that the given data consist of M instances with N attributes where N is a
mixture of tens to hundreds of categorical and continuous attributes. For the proposed
Dynamic Clustering based Imputation (DCI) we use a dissimilarity measure between
instances in a mixed type dataset described in Section 2.1. This measure is used in a
clustering algorithm for identification of similar instances as described in Section 2.2
to perform a dynamic cluster-specific imputation of missing values as described in
Section 2.3. An evaluation method and alternative imputation approaches were
described in Section 2.4.

2.1 Measuring Dissimilarity between Instancesin Mixed Type Data for DCI

The Minkowski distance, the Simple Matching Coefficient, the Jacquard Similarity
Coefficient or other metrics could be used separately to measure the distance between
instances for each type of attributes. However, such approaches are of limited
applicability for mixed type data consisting of categorical and continuous attributes in
the presence of many missing values [5]. In DCI given N dimensional data, to
measure the dissimilarity between two instances X and X of mixed type in the
presence of missing values, we compute [6]:
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where max and min are computed over all non-missing vales of the n-th attribute.

2.2 Clustering for Identification of Similar Instancesin DCI

To identify similar instances in DCI we employ a new clustering algorithm consists of
the following steps:



1. Computing the similarity matrix (SM) for all instances:

0o dst(X,%,) ... dst(x,x,)

M = dst(>:<2,x1) oo dSt(X:Z’XM) )
dst(X,, %) dst(Xy.%) ... oo
2. Computing the neighborhood matrix (NM):
nm, ... nm,
NM =| : , (6)
an,] an,M

where Nm; is the number of common neighbors among K nearest neighbors for
instances i and j, and M is the total number of instances in the dataset.

3. Constructing an ordered list (by ascending sort) of all neighbor instances with no
missing value in j-th attribute for each missing value x;"™:

list, ; =sort{dst()q"s,xp)/nm)p, p:ﬁ;nm,p >0} , (7

where ™ denotes i-th instance with missing value in j-th attribute, and X, denotes
p-th instance with no missing in j-th attribute. Here, if two instances have the same
dst/nmrate, one with less missing attributes is listed first in the list.

4. Constructing a cluster Cj; for each missing value x;™ by using first R elements of
list;;, where R s a user-specific parameter that defines a cluster size, and R<|list;|.

2.3 Dynamic Cluster-Specific Imputation Methods for Mixed Type Data

In a cluster constructed as described in Section 2.2 using similarity measure
introduced in Section 2.1 a missing value could be imputed based on (a) the mean
value of the corresponding attribute in other items contained in this cluster, or (b)
similarity to the nearest instance with a non-missing value. Averaging in (a) and
identification of the nearest instances from the same cluster in (b) could be based on
various metrics. In DCI, we use the following categorical and continuous data specific
metrics aimed to provide a balance in terms of imputation quality and computational
complexity:



Categorical variable: A missing value is estimated by the corresponding attribute in
an instance from the same cluster that has the largest number of common neighbors
with the imputed instance:

X7 =x5" : max{nm, ). ®

Continuousvariable: A missing value is estimated based on all instances in the same
cluster where each non-missing value is weighted by the appropriate entry of the
neighborhood matrix NM:
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2.4 Evaluation Measures and Alter native Imputation Methods

For evaluating imputation quality different measures were used when comparing
imputed categorical and imputed numerical data versus the corresponding true values.

The mean and absolute squared error measurements tend to be very sensitive to
outliers. So, for continuous attributes and for a given tolerance 7 we measured a
Relative Imputation Accuracy (RIA, also known as relative prediction accuracy [7])
defined as

RIA =%><100% : (10)

where n; is the number of imputed elements estimated within 7 percent of accuracy
from the true value of the corresponding missing value and Q is the total number of
imputed values in the data. RIA is very useful in practice as an absolute precision of
imputed continuous values is often not needed. A nice property of RIA measure is that
it is not affected by an individual incorrect imputation (e.g. large value instead of
small) that could affect considerably some statistical measures (e.g., MSE-based [8]).

In categorical attributes we measured a fraction of Correct Imputations (Cl)
defined as

cl =éxloo% : (11)

where Sis the number of correctly estimated imputed elements.

As a simple imputation alternative to DCI, we used a WEKA implementation [9]
of Mean and Mode Replacement (denoted here as MMR). We also compared DCI to
four statistically well-founded techniques: Multiple Imputation [1, 2], Predictive
Mean Matching [10] (denoted here as PMM), Linear Regression [11], and Multilevel
Regression [11] (denoted here as MLR).



The Multiple Imputation Method used for comparison and implemented in Amelia
II software [12] enables to draw random simulations from the multivariate normal
observed data posterior, and uses standard Expectation Maximization (EM) for
finding an appropriate set of starting values for data argumentation. Multiple
Imputation begins with EM and adds an estimation of uncertainty for receiving draws
from the correct posterior distribution followed by a resampling based on importance.
According to King et all [12], this way is faster than traditional multiple imputation
approaches, does not rely on Markov chains, produces the fully independent
imputations and allows the use of about 50% more information.

Predictive Mean Matching comparison method implemented in WinMICE
software [13] combines both parametric and nonparametric techniques. It imputes
missing values by means of the nearest neighbors where the distance is computed as
the expected values of the missing variables conditional on the observed covariates,
instead of directly on the values of the covariates.

Linear and Multilevel Regression models, also implemented in WinMICE, are well
known statistical approaches that allow variance in imputed variables to be analyzed
at multiple hierarchical levels, whereas in linear regression all effects are modeled to
occur at a single level.

3 Resaults and Discussion

We first performed experiments on a social science dataset with mixed-type attributes
to compare quality of imputation by the proposed method and alternatives in presence
of various fractions of missing values. In another set of experiments mixed-type data
preprocessed by various imputation methods was used for classification by several
algorithms to determine practical effects of an imputation method on classification
accuracy (reported in Section 3.2).

A public domain Adult dataset [14], from the UCI Machine Learning Repository
was used for comparing different data imputation methods. The dataset contained a
subset of records about the US population collected by the US Census Bureau. The
48,842 individuals in this database are described by 8 categorical and 6 continuous
attributes (with some missing data) related to prediction of annual income. In our
experiments etalon data with 46,043 instances was constructed by removing all
instances from the Adult dataset with missing values. To make the dataset balanced in
terms of different attribute types, two categorical attributes (“education” and “native
country”) were also removed.

Eight test datasets with missing values (“holes”) were constructed by randomly
hiding 0.2%, 0.5%, 1.1%, 1.8%, 5.4%, 10.9%, 16.3% and 32.6% of data elements in
both categorical and continuous attributes of the etalon data. Each test database was
fully independent from others, which means that places of “holes” were independent.

3.1 Evaluation of Imputation Quality on Mixed Type Data

The DCI and other imputation algorithms described in section 2.4 were compared
using eight datasets with different fraction of introduced missing values. Imputed



values were compared to the true values in Adult dataset. As to provide a comparison
to a trivial estimate, we also report the results obtained by using the corresponding
attribute value in one of randomly selected instances (denoted here as Random). The
imputation accuracy by DCI and alternative methods are summarized in Tables 1-4.
All reported DCI results were obtained for 50 nearest neighbors and 9 the most
common neighbors (K=50, R=9 defined in section 2.2). Very similar findings (within
10% of reported) were obtained for 40<K<60 and R=7 or R=11, but were less robust
for K<20 or R>15 (stability results are omitted due to lack of space).

Table 1. Fraction of correct imputation (Cl) in categorical attributes for 0.2%-32.6% imputed
values.

Cl for different fractions of missing values

I tati Method:
O OO 0 05% 1.1% 18% 54% 109% 163% 32.6%

DCI 66.0 69.2 67.5 70.0 71.0 71.5 70.6 65.6
MMR 54.5 38.0 53.7 56.2 54.4 54.7 54.7 54.7
PMM 342 37.8 35.9 36.1 36.8 35.9 35.6 352

Linear Regression 28.1 30.3 28.8 29.0 29.0 28.4 28.4 28.1
Multiple Imputation ~ 46.9  49.1 49.0 498 48.1 478 473 455
MLR 293 297 279 298 288 285 28.6 282
Random 19.1 20.8 193  21.1 199 203 19.7 202

Imputation accuracy results for estimation of categorical attributes (Table 1)
revealed that for all fractions of missing values DCI was a lot more accurate from
alternative five imputation methods (1.2-1.4 times more accurate than the best of the
remaining methods). Mean Mode Replacement approach was the second most
accurate imputation method for categorical attributes. The results of the remaining
imputation methods had more than 50% imputation error, but were still much better
than random replacements.

The Relative Imputation Accuracy of DCI for imputation of continuous attributes
(Tables 2-4) was also much better from alternative imputation methods. Here,
Predictive Mean Matching was the second most accurate method. For 5% tolerance
DCI provided 1.4-1.8 times better accuracy than PMM and was 6-9 times other better
than alternatives (Table 2). Still, even the weak imputation methods were significantly
more accurate than random replacements.

Table 2. Relative imputation accuracy (RIA) with 5% tolerance in continuous attributes for
0.2%-32.6% imputed values.

RIA (7= 5%) for different fractions of missing values

Imputation Methods

02% 05% 1.1% 1.8% 54% 10.9% 16.3% 32.6%
DCI 33.8 283  28.1 312 295 303 302 283
MMR 3.7 4.9 1.4 5.5 1.2 1.5 1.4 5.5
PMM 186 209 200 202 18.7 19.6 19.4 19.4
Linear Regression 3.7 4.5 4.4 4.5 4.2 43 44 4.2
Multiple Imputation 5.5 11.8 3.9 4.7 4.6 4.7 4.6 4.5
MLR 37 43 4.6 4.0 4.2 44 44 4.3

Random 1.8 2.1 2.9 3.3 3.0 3.2 3.0 3.0




Table 3. Relative imputation accuracy (RIA) with 10% tolerance in continuous attributes for
0.2%-32.6% imputed values.

RIA (7= 10%) for different fractions of missing values

Imputation Methods

02% 05% 1.1% 1.8% 54% 10.9% 16.3% 32.6%
DCI 387 354 356 374 367 372 372 356
MMR 10.2 11.8 12.0 11.9 11.5 11.6 11.6 12.0
PMM 256 300 292 288 27.6 285 282 282
Linear Regression 10.7 13.6 13.6 13.0 13.1 13.3 13.2 13.1
Multiple Imputation 133 204 134 13.5 13.3 13.3 134 13.3
MLR 10.7 12.9 13.9 13.0 13.1 13.2 13.3 13.2
Random 10.5 12.2 13.2 12.8 12.8 13.0 12.9 12.8

Table 4. Relative imputation accuracy (RIA) within 15% tolerance in continuous attributes for
0.2%-32.6% imputed values.

RIA (7= 15%) for different fractions of missing values

Imputation Methods

02% 05% 1.1% 1.8% 54% 10.9% 16.3% 32.6%
DCI 42.0 40.1 40.0 418 415 42.0 420 405
MMR 15.6 17.6 17.5 17.4 17.4 17.4 17.4 17.8
PMM 303 347 339 335 326 335 331 333
Linear Regression 154 183 184 177 18.1 18.3 18.2 18.1
Multiple Imputation 170 255 18.1 17.8 182 181 18.2 18.1
MLR 150  18.1 18.5 17.5 182 182 182 18.2
Random 15.8 17.7 18.0 17.9 18.2 18.3 18.2 18.2

Experiments with double and triple tolerance for allowed estimation error of 10%
and 15% (Tables 3 and 4) resulted in reduced differences in accuracy between
imputation methods. However, even for larger tolerance DCI was still 20-50% more
accurate (in relative difference) than the second best PMM method. These
experiments suggest that the Mean Mode Replacement, Regression methods, and
even Multiple Imputation methods are not appropriate for larger tolerance estimation
in continuous variables as the corresponding results were comparable to random
replacement. On the other hand, all methods outperformed the Mean Mode
Replacement, which is commonly used in practice due to its simplicity.

3.2 Effect of an Imputation Method on Classification Accuracy for Mixed Type
Data

The next stage of our experiments was devoted to practical comparison of how well
different imputation techniques would suit for real life classification tasks. The idea
was to explore a scenario where clean mixed type data was used for training a
classification model while it was applied to real data with various fractions of missing
values. For this purpose we built several kinds of classifiers by training them on the
first 16,043 subjects from etalon Adult database where for each instance all 12
attributes were available. For a test subject drawn from the remaining 30,000
instances the task was to predict if he/she makes over 50,000 U.S. dollars a year



where a fraction of variables was missing at random. Different fractions of missing
values were considered and preprocessing was achieved by 6 imputation methods
described in Section 2. As a measure of accuracy, the percent of correctly classified
instances was calculated.

As a classification method we applied three models implemented in WEKA: NB-
Tree [15], Random Subset Selection [16] and Multilayer Perceptron [17]. NB-Tree
was used as one of the best classification methods for Adult database according to
[14]. Random Subset Selection and Multilayer Perceptron were used as alternative
solutions that in other domains showed good speed and classification accuracy,
respectively. The classification results reported in Tables 5-7 are compared to the
upper bound obtained by testing on complete data without missing values.

Table 5. Classification Accuracy (CA) of NB-Tree classification model applied to datasets
with 0.2%-32.6% imputed values.

CA of NB-Tree for different fractions of missing values

Imputation Methods
02% 05% 1.1% 18% 54% 109% 16.3% 32.6%

DCI 86.1 86.1 86.0 86.0 858 854 848 83.6
MMR 86.1 86.0 859 859 851 842 8.0 79.6
PMM 86.1 86.1 85.9 859 8.0 845 83.6 81.0

Linear Regression 86.1 86.0 85.7 85.6 843 829 814 768
Multiple Imputation ~ 86.1  86.1 857 857 846 831 814 771
MLR 86.1 8.0 858 856 843 829 814 768
Upper bound 86.1 86.1 86.1 86.1 86.1 86.1  86.1 86.1

All imputation methods resulted in very similar accuracy for small fractions (0.2-
1.8%) of missing values (Table 5). However, the difference was substantial when
more than 10% of missing values were imputed. Though DCI provided the most
accurate NB-Tree classifier for all fractions of missing values, its advantage was the
most evident for the largest fraction of missing values (32.6%) where it had 14-22%
less relative difference in error than alternative methods.

Table 6. Classification Accuracy (CA) of Random Subspace Selection classification model
applied to datasets with 0.2%-32.6% imputed values.

CA of Random Subset for different fractions of missing values

Imputation Methods — = e o, 18%  54% 109% 163% 32.6%
DCI 849 849 849 848 848 850 847 848
MMR 849 849 849 848 845 843 838 816
PMM 849 849 848 847 844 842 841 831

Linear Regression 84.8 84.9 84.8 84.7 84.2 83.7 83.4 82.1
Multiple Imputation 849 849 848 848 845 842 837 826
MLR 849 849 848 847 843 83.8 833 81.8
Upper bound 849 849 849 849 849 849 849 849

When using Random Subset Selection classifier the overall results were consistent
to classification by NB-Tree classifier (Table 6). However, Random Subset Selection
classifier was more tolerant to increase in fraction of missing values. Once again, DCI



outperformed alternative approaches on the largest fractions of missing values for an
11-20% relative difference in error.

Neural Network based classifier, represented by a 3-layer Perceptron showed
similar characteristics to NB-Tree and Random Subspace Selection (Table 7). DCI
imputation resulted in more accurate classification in all datasets with a large fraction
of missing values. For 0.5%, 1.8%, 5.4% 10.9%, and 32.6% imputed values a neural
network achieved somewhat better accuracy than the upper bound obtained on etalon
data without missing values. This may be accounted to noise tolerant property of a
Multilayer Perceptron.

Table 7. Classification Accuracy (CA) of Multilayer Perceptron classification model applied to
datasets with 0.2%-32.6% imputed values.

CA of Multilayer Perceptron for different fractions of missing values

Imputation Methods
02% 05% 1.1% 1.8% 54% 10.9% 16.3% 32.6%

DCI 84.5 84.6 845 84.6 846 847 845 84.7
MMR 84.5 84.5 84.4 844 841 83.6 830 808
PMM 84.5 84.5 84.3 84.3 83.8 832 827 80.8

Linear Regression 84.5 84.5 84.2 84.1 83.2 82.0 81.0 77.4
Multiple Imputation 845 845 84.3 842 834 823 812 775
MLR 845 845 843 842 832 822 809 775
Upper bound 84.5 845 84.5 84.5 84.5 845 845 84.5

To address a considerable class misbalance for target variable in the Adult dataset
(34,621 subjects in one class vs. 11,422 in another) we also measured Kappa
coefficient [18] and F-score [19] for three classification models when imputing 32.6%
of missing values by six methods (Table 8).

Table 8. Kappa coefficient and F-score of NB-Tree, Random Subspace Selection, and
Multilayer Perceptron classification models applied to datasets with 32.6% of missing values
imputed by 6 methods and to complete data without missing values.

Imputation NB-Tree Rsangi 01:1 II:/I ultlliyer
Methods uDSC crceptron

K F K F K F
DCI 0.52 0.83 0.54 0.84 0.54 0.83
MMR 0.42 0.79 0.49 0.81 0.45 0.80
PMM 0.47 0.81 0.47 0.81 0.44 0.80
Linear Regression 037 077 044 080 037 0.77
Multiple Imputation 0.40 0.77 0.48 0.81 0.38 0.77
MLR 0.37 0.77 0.43 0.80 0.38 0.77
Upper bound 0.61 0.86 0.55 0.84 0.53 0.83

Here, Kappa coefficient is defined as:
poa—Pa (12)

1-Pa



where Ra is the relative observed agreement, and Pa is the hypothetical probability of
chance agreement, using the observed data to calculate the probabilities of each
classifier randomly choosing each category.

F-score is defined as:

_» precisionx recall

F — »
precision+ recall

(13)

where, in a classification context, precision denotes the number of true positive
predictions divided by the total number of items labeled as positive in the data set,
while recall denotes the number of true positive predictions divided by the total
number of items that were predicted as positive.

The obtained results clearly suggest that DCI based pre-processing results in the
nearest accuracy to the upper bound in the sense of both Kappa coefficient and F-
score statistics. We also observe that our results on imputed data confirms previous
findings obtained on complete data that NB-Tree based classifier is a good choice for
classification of Adult data. However, we also observe that the most stable results in
terms of accuracy were obtained by Random Subset classifier.

4 Conclusion

Data imputation to replace missing values is often an important preprocessing step in
data analysis. This study identified some limitation of a commonly used heuristic and
of four known statistical methods when applied to mixed type data with a large
fraction of missing values. In our approach, the main idea was to make all
replacements independently for data within clusters created around each missing
value. This is theoretically reasonable and is useful for a practical implementation.
Our experiments on a social science mixed type data provide evidence that the
proposed data imputation method is more accurate than the evaluated alternatives and
is effective when a large fraction of data is missing.

While the computational complexity of the proposed imputation method of
O(M’logM) could be a limiting factor in large scale applications, many possibilities
for improvements remain. For example, cluster-specific multiple imputation
techniques based on DCI idea could be developed. Also, specialized algorithms for
defining optimal size of specific clusters may be created. Finally, organizing data to
KD-trees may improve the overall matrix processing speed.
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