
Predicting Sepsis Biomarker Progression under Therapy

Ivan Stojkovic†‡ and Zoran Obradovic†
†Computer & Information Sciences Department, College of Science & Technology

Temple University, Philadelphia, PA 19122, USA
Email: zoran.obradovic@temple.edu

‡Signals & Systems Department, School of Electrical Engineering
University of Belgrade, 11120 Belgrade, Serbia

Email: ivan.stojkovic@temple.edu

Abstract—Sepsis is a serious, life-threatening condition that
presents a growing problem in medicine and health-care. It
is characterized by quick progression and high variability in
the disease manifestation, so treatment should be personalized
and tailored to fit individual characteristics of a particular
subject. That requires close monitoring of the patient’s state
and reliable predictions of how the targeted therapy will affect
sepsis progression over time. We have characterized predictive
capabilities of a graph-based structured regression approach
under hemoadsorption therapy by using a computational model
of sepsis biomarker progression in rats. Results suggests that
an extension of the model representational power by using a
dense graph and multiple-step predictors increases predictive
accuracy, allowing more appropriate choice of treatment.
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I. INTRODUCTION

Sepsis is a complication of pathogen infection that triggers
an uncontrolled systemic inflammatory response, often re-
sulting in dysfunction of multiple organs and even death [1].
It is a growing problem for modern society, as it affects
a large population [2]. Septic shock is a major contributor
to in-hospital deaths [3] and incurs significant costs on the
healthcare system, with over $20 billion spent in 2011 in
the United States alone [4]. Some of the main challenges
that impede the successful management of sepsis are het-
erogeneity of symptoms and fast progression [5]. Necessity
for a more effective treatment is apparent, and it seems that
precision medicine will be an important part of the solu-
tion [6]. Such a personalized approach requires customized
therapy based on accurate predictions and careful monitoring
of a subject’s state in order to track the disease progression
and quickly modify the therapy if needed. In this article, we
focus on prediction accuracy in the presence of treatment,
as it is a prerequisite for deciding an appropriate therapy.

II. RELATED WORK

An optimal therapy is the one that would provide maximal
benefits in driving the patient towards the healthy state.
The optimal effectiveness of two recent blood cleansing
approaches for sepsis treatment was recently assessed [7],
where a computational model of sepsis was extensively

tested under a number of possible therapy configurations,
and outcomes were compared to find the best treatment
policy. However, this requires repeated application of differ-
ent therapy configurations under the same initial conditions,
while in reality there is only one such event. In practice, the
effects of therapy could only be predicted based on previous
experience in other cases, and the optimal therapy would be
the one with the most favorable expected outcome.

A prediction-based therapy optimization for sepsis, which
used a differential equations sepsis model [8] was explored
in [9]. Later, the same Data Driven Model Predictive Control
(DD-MPC) approach was also applied [10], with a more de-
tailed computational model of sepsis biomarker progression
that included cytokines and neutrophils [11].

Even though the proposed DD-MPC framework achieved
improved therapy efficiency, it relied on a simple linear
regression model for obtaining the prediction of a subject’s
response to therapy. In order to further improve the effi-
ciency of treatment, more accurate predictions are needed.
Therefore, a more sophisticated prediction model for sepsis
progression, based on Gaussian Conditional Random Fields
(GCRF) [12], was proposed [13], [14].

In this article, we build upon the approach investigated
in [13], but using a more complex mathematical model
of sepsis dynamics proposed in [11]. We employ the GCRF
model for structured regression to predict levels of cytokines,
which are important biomarkers for sepsis. Furthermore, we
extend the previous efforts by generalizing the approach
into two directions. First, in this study we utilize a more
general dense graph of possible dependencies, instead of a
set of independent linear chains. Second, we explore a direct
multi-step-ahead prediction versus a more commonly used
approach of iterative one-step-ahead predictions.

We work under the assumption that measurements are
certain, always available and without delay, even though
the measuring technology is never ideal. In practice, mea-
surements are often sampled at non-uniform intervals [15],
and it often takes a non-negligible amount of time from
taking samples until the measured values are available. In
addition, observations are often missing in practice for some
variables, which requires adjustment in methodology [16].
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Figure 1: Progression of two cytokines in 30 virtual subjects (a) CRT without therapy, (b) CRT with therapy, (c) IL-10
without therapy and (d) IL-10 with therapy applied.

Also, accounting for the uncertainty in predicted values is
shown to be beneficial [17]. Measured data often require
proper normalization, to avoid the undesired effects that
outliers might introduce [18]. In many applications only the
most informative features should be selected [19] in order
to focus the computational efforts and to increase prediction
accuracy and interpretability of results. Some studies also
stress the importance of accounting for disease-disease [20]
and disease-gene [21] associations. However, for simplicity,
we will not account for nor address these issues in this paper.

III. APPROACH

A. Model

The computational model that we rely upon in this work
is a set of coupled Ordinary Differential Equations (ODE)
in the form of a nonlinear system (1) detailed in [7],
[11]. Formula f was manually configured using mass action
kinetics law, Hill functions and decay factors, based on the
known mechanisms of neutrophil trafficking and cytokine
dynamics during acute inflammation [11]. The system’s state
vector S(t) is comprised of 19 time evolving variables,
including pathogen levels B resulting from CLP (Cecal
Ligation & Puncture) procedure, different types of neu-
trophils (sequestered Ns, lung Nl, tissue Nt, resting Nr,
primed Np, activated Na) and cytokines (TNF , Il1b, Il6,
Il10, Lsel, HMGB1, CRT , ALT ). Additionally there are
conceptual variables like total tissue damage D and lumped

states of pro- and anti-inflammation (PI and AI). Vector
of observations O(t) contains only directly measured states
of 8 cytokines (2). An external binary control signal u(t) ∈
{ON,OFF} activates reduction of inflammatory mediators,
thus modeling hemoadsorption (HA) treatment [22]. The
system of ODEs can be simulated for various values of free
parameters θ and under different profiles of external signal
u(t) that mimic the effects of therapy.

dS(t)

dt
= f(S(t), u(t), θ) (1)

O(t) = [TNF, Il1b, Il6, Il10, Lsel,HMGB1, CRT,ALT ]
T

(2)

B. Data

Free parameters θ of the model (1) were optimized using
the Metropolis Hastings algorithm on the real measurements
from CLP septic rats [11], so that trajectories closely resem-
ble experimentally observed patterns. We have generated
the set of 30 virtual subjects, whose parameters θi were
sampled from a stationary distribution of the resulting Monte
Carlo Markov Chain (MCMC). Trajectories were designed
to resemble patterns observed in the death cohort, that is, the
rats that would die without a therapy applied. Examples of
hourly sampled time-series of cytokines’ values for the case
where no therapy is applied are given in Figures 1a and 1c.



We have generated training examples by applying 12 doses
of hourly HA therapy randomly scattered on the interval of
the initial 50 hours since the bacterial infection induction.
Examples of how applied therapy influenced observable
states are depicted in Figures 1b and 1d.

C. Prediction of biomarker progression

We pose the task of biomarker progression prediction
as an estimation of the future biomarker values based on
their historical observations. More specifically, measure-
ments (and control signal values) collected up to time t,
Xt:t−d = [Ot, ut, Ot−1, ut−1, ..., Ot−d, ut−d]

T should be
used to regress states over the future horizon Yt+1:t+p =
[Ot+1, ..., Ot+p]

T , where d is the number of past time-steps
and p is the number of future time-steps.

There are two main ways to predict time series over the
multiple p time steps in the future horizon. The first way is
to predict one step after another by including the previous
prediction into the time series, and we will refer to it here
as the iterative approach. The other way is to predict each
of the future time steps directly from the time series that is
observed so far, also known as the direct approach. In limited
time series the direct method possesses some theoretical
advantages over the iterative one, nevertheless it is not too
often advantageous in practice [23]. Because in the case of
the iterative method there is only a need to train one step of
the prediction model, the iterative approach is preferred over
the direct one, where one needs to train multiple models.

Nevertheless, iterative and direct approaches both use the
same predictive methods and learning algorithms, and differ
mainly in the data that is fed to their inputs. Here we
make use of two common machine learning approaches for
learning the needed functional mappings.

1) Linear Regression:

yi =WTXi + ε, ε N(0, σ2) (3)

Linear Regression (LR) model, in this particular applica-
tion, also known as auto regressive model with exogenous
input (ARX), assumes that single output yi depends linearly
on its input Xi. It is parametrized through a vector of
weights W , which has a closed form solution as a function
of training data X and Y .

Ŵ = (XTX)−1XY (4)

Predictions yLR are obtained by weighting the test obser-
vations Xt, with Ŵ learned on the training set.

yLR = ŴTXt (5)

2) Gaussian Process Regression:

yi = gp(m(X), k(X,X ′)) + ε, ε N(0, σ2) (6)

Gaussian Processes (GP) are a nonlinear kernel based re-
gression technique that models a finite set of observations as

a sample from the distribution over functions. It is specified
by a mean function m(X), commonly set to zero without
loss of generality, and a positive definite kernel function
k(X,X ′) that essentially determines the properties of the
functions [24]. Here we have adopted the superposition of
two common kernels (7), linear and exponential, as we
observed better generalization properties.

k(X,X ′) = a0 + a1e
(−a2(X−X′)T (X−X′)) + a3X

TX ′ (7)

Due to the modeling assumption that any number of
samples has a multivariate Normal distribution, inferring the
prediction in GP has a convenient analytical formulation.

yGP = KTC−1Y (8)

Where K = k(X,Xt) is the kernel matrix of training and
testing samples and C = k(X,X)+σ2I is the kernel matrix
of training and training samples augmented with variance on
the diagonal elements.

Presented linear (LR) and nonlinear (GP) regression ap-
proaches are utilized to learn mappings and give predictions
from vector inputs Xi for each of the output variable yi, and
also for different time-steps p ∈ {1, 2, ..., 10}, separately.
One disadvantage of this approach is that predictions are
made somewhat independently of each other, and in fact
the values of variables are very dependent between each
other and over the time. There exist structured approaches
that simultaneously take into account all predictions and
correct them to be more consistent. We adopt a Gaussian
Conditional Random Fields (GCRF) framework to improve
predictions from unstructured Linear Regression and Gaus-
sian Processes based models.

D. Structured Regression using GCRF

Gaussian Conditional Random Fields is a probabilistic
graphical framework that models the joint probability func-
tion of all variables in target vector Y , given the input
X , as an exponentiated weighted sum of association and
interaction potentials.

Pr(Y |X) =
1

Z
exp(−

∑
k

∑
i

αk
i (yi −Rk

i (X))2

−
∑
l

∑
(i,j)

βl
ijM

l
ij(yi − yj)2) (9)

Association potential is a quadratic function of the differ-
ence between the estimate of one output yi and its associated
prediction from k-th unstructured model Rk

i (X). Every such
potential is weighted with free parameter αk

i to be learned,
which regulates how close the estimate of the variable
should be to a particular unstructured prediction. Similarly,
interaction potential is a quadratic function that tries to bring
closer together the estimates of two related target variables
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Figure 2: Root mean square error (RMSE) graph for the six unstructured predictors (a) IL-10 iterative approach, (b) IL-10
direct approach, (c) CRT iterative approach, (d) CRT direct approach.

yi and yj , where M l
i,j is a connectivity (or similarity)

matrix and βl
ij is a free parameter corresponding to the

strength of relatedness. Normalization term Z assures that
joint probability function Pr(Y |X) is a proper probability,
i.e. it integrates to one. Presented version of the GCRF
model requires prior learned unstructured predictors Rk

i (X)
and similarity matrix M , and free parameters α’s and β’s
can subsequently be learned by minimizing the negative log-
likelihood.

The fact that joint probability is expressed as an expo-
nential of a sum of quadratic functions allows expressing
the objective in the form of a multivariate Gaussian func-
tion. Several convenient properties stem from that insight.
Inference has a closed form analytical solution (10), and
convexity of the objective allows the use of reliable and
efficient optimization algorithms.

YGCRF = Q−1B (10)

Where precision matrix Q = 2(Q1 + Q2) is composed
of two parts Q1 (the association potential part) and Q2 (the
interaction potential part):

Q1
i,j =


∑
k

αk
i , if i = j.

0, otherwise.
(11)

Q2
i,j =


∑
l

∑
(i,j)

βl
ik, if i = j.

−
∑
l

βl
ij , otherwise.

(12)

And elements of a vector B = [b1, b2, ..., bn]
T are ob-

tained as a linear combination of the unstructured predictions
Rk

i (X):
bi = 2

∑
k

αk
iR

k
i (X) (13)

In this way, GCRF prediction YGCRF simultaneously
takes into account individual predictions for different targets
yi and also different predictions Rk

i for a single target, thus
behaving as both an ensemble and multitask approach.

IV. RESULTS

The response of some of the observable states to the appli-
cation of various therapies is shown at Figure 1. Figures 1a
and 1c show progression of two cytokines, CRT and IL-
10, in virtual subjects which were not on a treatment, while
Figures 1b and 1d correspond to the same situations with a
therapy applied. It was evident that both states are affected
by the therapy. However, predicting in what way HA therapy
will affect the progression of IL-10 is a much more difficult
problem due to high variability in trajectories (Figure 1d).



In the case of CRT the task was much easier than for IL-
10, which can be also concluded from Figure 2, where
the performance is reported. In fact, out of the remaining
6 cytokines three of them, TNF, IL-1b and IL-6 follow
the pattern of IL-10 and the other three, Lsel, HMGB1
and ALT will be more like CRT. It is worth mentioning
that these more difficult states TNF, IL-1b and IL-6 are
directly influenced by the unobservable and conceptual Pro-
inflammatory state and IL-10 is influenced by the Anti-
inflammatory state. On the other hand, easier cytokines for
prediction, HMGB1, CRT and ALT are proxies for Tissue
Damage, and Lsel is a proxy for activated neutrophils Na.
Since CRT and IL-10 are the two most extreme cases here,
we are going to show comparison of the results just for the
two of them, as similar results hold for the other cytokines.

First, we compare the two approaches to temporal pre-
diction, indirect and direct, in terms of prediction error.
For that purpose we trained the six different unstructured
models, with three different lengths of historical observa-
tions d ∈ {0, 1, 2}, and for two algorithmic approaches LR
and GP. Models were trained on 30 virtual subjects’ time
series data which, along with the 19 states, also included
information about the applied therapy. Performances for
various setups were accessed on the new test set consisting
of 50 virtual subjects. Testing time series included hourly
observations up to the 75th hour after the sepsis induction.
At each time point, 9 therapy durations were evaluated and
predictive models were applied to estimate hourly values of
8 observable states over a 10 hour horizon. The results are
shown in Figure 2 on the examples of the two cytokines,
CRT and IL-10. In the case of CRT, small improvement
in accuracy can be observed in the case of the direct
approach, although there is not much difference between
the two approaches (bottom panels in Figure 2). For the
IL-10 cytokine it is much more emphasized that the direct
approach is beneficial for the reduction of the prediction
error. It is also interesting that performance of the direct
approach on the two cytokines yields comparable accuracy,
as can be seen from Figures 2b and 2d.

Second, we evaluate the structured regression GCRF [12]
approach that can utilize multiple independent predictions
from different predictors (e.g. LR and GP), and for different
tasks (e.g. CRT and IL-10), to generate more accurate joint
predictions. The GCRF model used in [13], is based on
the graph in which the dependency structure consists of 8
separate linear chains with 10 nodes, each node representing
one time step in the future horizon. This is a fair assumption
since the value of one cytokine should have the strongest
connection with the value of the same cytokine one time
step before. Now we have relaxed that assumption and have
allowed a fully connected graph where the value of each
cytokine at each step is connected to all other time steps as
well as all other cytokines at all time steps.

The graphics in Figures 3a and 3b are comparing the
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Figure 3: RMSE for GCRF model predictions over 10 hours
horizon in case of (a) CRT and (b) IL-10 cytokine, respec-
tively. BASELINE method is GCRF build on top of iterative
predictions with linear graph, DIRECT one utilizes direct
approach instead, while FULLY CONNECTED corresponds
to the case when GCRF contains fully connected graph and
is built on top of direct approach.

GCRF performance for the three different cases. Baseline
(BASE) is the setup with the linear chain graph and iterative
approach in generating unstructured predictors. The obtained
errors for this approach are the largest. When we replace
the iterative approach with the direct one we get clearly
improved results. We refer to that one as DIRECT in the
Figures 3a and 3b. When we also replace the linear graph
with the “FULLY CONNECTED” one we can observe
further reduction in the prediction error.

V. CONCLUSION

Performed experiments reveal that behavior of some
biomarkers in the presence of therapy might be easier to
predict, compared to others. Therefore, robust predictive
methods are needed in order to perform well for all biomark-
ers. Based on the results from testing the GCRF model under
different structural setups, highly expressive models with
more general connectivity structure and with a larger number



of multi-step predictors achieve better performance, in terms
of error minimization. Such an increased accuracy could aid
in the selection of more appropriate treatments. Potentially,
further improvement might be achieved using a structured
approach with a more general model of interactions [25].
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