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Abstract

Structured regression on graphs aims to predict response vari-
ables from multiple nodes by discovering and exploiting the
dependency structure among response variables. This prob-
lem is challenging since dependencies among response vari-
ables are always unknown, and the associated prior knowl-
edge is non-symmetric. In previous studies, various promis-
ing solutions were proposed to improve structured regres-
sion by utilizing symmetric prior knowledge, learning sparse
dependency structure among response variables, or learn-
ing representations of attributes of multiple nodes. How-
ever, none of them are capable of efficiently learning de-
pendency structure while incorporating non-symmetric prior
knowledge. To achieve these objectives, we proposed Con-
tinuous Conditional Dependency Network (CCDN) for struc-
tured regression. The intuitive idea behind this model is that
each response variable is not only dependent on attributes
from the same node, but also on response variables from all
other nodes. This results in a joint modeling of local con-
ditional probabilities. The parameter learning is formulated
as a convex optimization problem and an effective sampling
algorithm is proposed for inference. CCDN is flexible in ab-
sorbing non-symmetric prior knowledge. The performance of
CCDN on multiple datasets provides evidence of its structure
recovery ability and superior effectiveness and efficiency as
compared to the state-of-the-art alternatives.

Introduction

In many applications, like climate science and power en-
gineering, multiple continuous variables are observed over
time, which can be regarded as many independent observa-
tions of graph instances.Structured regression is proposed to
predict the values of response variables of multiple nodes
given their attributes, where it has been shown that discov-
ering and exploiting the graph structure do improve the pre-
diction. However, this problem is challenging due to the fact
that the dependency among nodes is unknown, and the prior
knowledge about structure is non-symmetric.

Many works have been proposed to improve regression
on graphs. A simple approach is to solve regression problem
for each response variable independently, where each regres-
sion problem can be solved using either linear or nonlinear
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model. This approach is efficient but it does not utilize the
structure among nodes.

Sparse inverse covariance estimation (Banerjee,
El Ghaoui, and d’Aspremont 2008), known as Graph-
ical Lasso (Friedman, Hastie, and Tibshirani 2008),
learns a sparse inverse covariance matrix of resid-
uals by modeling the joint distribution of response
variables as a multivariate Gaussian distribution. How-
ever, this generative model is not applicable to re-
gression. This limitation is addressed by Gaussian
Conditional Random Fields (GCRF) (Qin et al. 2009;
Radosavljevic, Vucetic, and Obradovic 2010), which
enables structured regression on graphs by modeling the
conditional distribution of response variables given node
attributes as a multivariate Gaussian distribution. Neural
GCRF(NGCRF) (Baltrušaitis, Robinson, and Morency
2014; Radosavljevic, Vucetic, and Obradovic 2014) models
nonlinear relationships between inputs and response vari-
ables by learning hidden variables via neural network. Both
GCRF and NGCRF incorporate prior knowledge about
graph structure in terms of a symmetric similarity matrix
and, therefore, do not learn the graph structure.

Sparse Gaussian Conditional Random Fields (SGCRF)
(Sohn and Kim 2012; Wytock and Kolter 2013; Yuan and
Zhang 2014), as a discriminative variant of Graphical Lasso,
is capable of conducting regression and learning sparse pre-
cision matrix simultaneously. SGCRF assumes that the re-
lation between attributes and response variables are lin-
ear. This assumption has been relaxed in a recently devel-
oped model called Representation Learning based Struc-
tured Regression (RLSR) (Han et al. 2016), which iteratively
learns the precision matrix and representation over attributes
jointly to model complex relations between attributes and
response. Although both SGCRF and RSLR can learn struc-
ture among response variables, they are suffering from de-
manding computational cost and are not able to incorporate
any prior knowledge.

The dependency network, which is modeled as a cyclic
Bayesian network (Heckerman et al. 2001), approximates
the joint distribution of response variables as a product of
multiple local conditional distributions. This allows directed
graph learning and approximating local distributions sepa-
rately. Unlike the Bayesian network, the graphical structure
in dependency network models is not required to be a di-
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rected acyclic graph. A generalization of dependency net-
work is proposed for infering graph structure of undirected
graphical models by decomposing the joint distribution as
the product of multiple univariate exponential family distri-
butions (Yang et al. 2013). Another conditional extension of
dependency network, which models the conditional distribu-
tion of labels given node attributes, is successfully applied
to multi-label classification problems (Guo and Gu 2011;
Guo and Xue 2013). Structured Output-Associative Regres-
sion (Bo and Sminchisescu 2009) also models both input-
dependency and self-dependency of outputs, but it is costly
in solving its non-convex structure learning. Motivated from
these aspects, in this work, we propose a flexible, effective
and efficient model for structured regression with structure
learning, called Continuous Conditional Dependency Net-
work (CCDN).

The proposed CCDN model assumes that the response
variable at each node is not only dependent on attributes
of the same node, but is also dependent on response vari-
ables from other nodes. Then, the conditional distribution
of the response variables is modeled as the product of all
local univariate conditional (Gaussian) distributions, which
allows regression.

Example. The intuition of CCDN is illustrated in Fig-
ure 1. The response variable y1 is assumed to be depen-
dent on response variables from all other nodes {y2, y3, y4}
and attributes x1 at the corresponding node by modeling
P (y1|x1, y2, y3, y4), where these directed dependencies are
marked as red edges.

Figure 1: Graphical representation of CCDN. The directed
dependencies toward y1, y2, y3 and y4 are marked as red,
blue, green and orange edges, respectively.

The key contribution of this work is summarized as the
following characteristics of the proposed CCDN model:
• Flexibility: CCDN is flexible in incorporating differ-

ent types of prior knowledge, e.g., symmetric and non-
symmetric, which can significantly improve the accuracy
of models with insufficient training data.

• Effectiveness: Parameter learning is formulated as a con-
vex optimization problem, which leads to a global optimal
solution. An effective sampling algorithm is proposed as
an inference algorithm.

• Efficiency: The joint modeling of local (independent)
univariate conditional distributions and incorporation of
prior knowledge makes CCDN efficient and scalable.

• Structure Recovery: CCDN is able to learn directed de-
pendencies among nodes, which is a good approximation
to the underlying precision matrix.
Furthermore, the effectiveness and efficiency of CCDN

are demonstrated in 3 real-world applications as compared
to state-of-the-art methods for structured regression.

Continuous Conditional Dependency Network

Suppose we are given m i.i.d. graphs, where each graph has
p nodes. Each node has one response variable yi and r at-
tributes, which are denoted as xi ∈ Rr. The response vari-
ables from all other nodes [y1, · · · , yi−1, yi+1, · · · , yp]T are
denoted as ȳi ∈ Rp−1. The goal of structured regression is
to (1) predict response variables over all nodes, denoted as
y ∈ Rp, and (2) discover the dependency among nodes. We
assume graph instances are i.i.d and the structure does not
change over time.

Modeling

In each graph, CCDN models the conditional probabil-
ity of each response variable given its attributes and all
other response variables as a univariate Gaussian distribu-
tion N (μi, σ

2
i ). The pdf of the conditional probability of the

ith response variable is given by

P (yi|ȳi,xi) = (2πσ2
i )
−1/2 exp{− (yi − μi)

2

2σ2
i

}, (1)

where μi ∈ R is the expectation and σ2
i ∈ R+ is the vari-

ance.
In the Gaussian graphical model(Friedman, Hastie, and

Tibshirani 2008; Banerjee, El Ghaoui, and d’Aspremont
2008), the joint distribution of y and x on one graph is as-
sumed to be a multivariate Gaussian distribution

P (y,x) ∼ N (0,

[
Λyy Λyx

Λxy Λxx

]−1

). (2)

The conditional Gaussian graphical model(Sohn and Kim
2012; Wytock and Kolter 2013; Yuan and Zhang 2014) was
proposed based on joint Gaussian assumption from Gaus-
sian graphical model. The conditional distribution P (y|x)
is hence modeled as

P (y|x) ∼ N (−Λ−1
yy Λyxx,Λ

−1
yy ). (3)

Inspired by this modeling, we come up with the following
theorem about local objective in CCDN.
Theorem 1. Given the assumption from the Gaussian
graphical model that the joint distribution is modeled as

P (yi, ȳi,xi) ∼ N (0,

[
Λyy Λyȳ Λyx

Λȳy Λȳȳ Λȳx

Λxȳ Λxy Λxx

]−1

)

the conditional distribution can be modeled as

P (yi|ȳi,xi) ∼ N (−Λ−1
yy (x

T
i Λyx + ȳi

TΛyȳ),Λ
−1
yy )

Proof Sketch. By utilizing properties of multivariate
Gaussian and applying simple linear algebra, the derivation

1963



can be reached. For more details see the supplementary ma-
terial.

Theorem 1 is essential in showing how the local con-
ditional probability of CCDN is formulated as an univari-
ate Gaussian. Based on this theorem, P (yi|ȳi,xi) can be
rewritten as

P (yi|ȳi,xi) ∼ N (−Λ−1
i (xT

i θi + ȳi
Twi),Λ

−1
i ) (4)

where θi = Λyx ∈ Rr models the dependency between yi
and xi, wi = Λyȳ ∈ Rp−1 models the dependency between
yi and its complement ȳi, and Λi = Λyy . Hence, the nega-
tive log-likelihood li for P (yi|ȳi,xi) is given by

li = − logP (yi|ȳi,xi)

= (yi + Λ−1
i (xT

i θi + ȳi
Twi))

2Λi − log Λi + c,
(5)

where c is a constant term.
Unlike GCRF (Radosavljevic, Vucetic, and Obradovic

2010) and SGCRF (Wytock and Kolter 2013), CCDN does
not model the joint conditional distribution of response vari-
ables, but minimizes the product of negative log-likelihood
of conditional probability for each node in the graph. The
global learning objective of CCDN can be expressed as

min
Λ,Θ,W

p∑
i=1

li =

p∑
i=1

− logP (yi|ȳi,xi), (6)

where Λ = [Λ1, . . . ,Λp], Θ = [θ1; · · · ;θp] and W =
[w1; · · · ;wp].

Example. An example of CCDN global learning objec-
tive is illustrated in Figure 1. Rather than modeling the joint
conditional probability P (y1, y2, y3, y4|x1,x2,x3,x4),
CCDN maximizes the product of local conditional
probabilities P (y1|ȳ1,x1), which are marked with red
edges, P (y2|ȳ2,x2) which are marked with blue edges,
P (y3|ȳ3,x3) which are marked with green edges, and
P (y4|ȳ4,x4) which are marked with orange edges. In
this example, the probabilistic dependencies of each node
are presented using directed edges with its corresponding
parameters, i.e., θ1 models the relation between y1 and x1,
and w1 = [w12, w13, w14] models the dependency between
y1 and ȳ1 = [y2, y3, y4].

Let Yi = [y1i , y
2
i , . . . , y

m
i ] ∈ Rm denotes the ith response

variable observed over m graphs, and Ȳi ∈ Rm×(p−1) and
Xi ∈ Rm×r denote the complementary response variables
and the attributes of node i, respectively. The global learning
objective of CCDN on m graphs is given by

min
Λ,Θ,W

p∑
i=1

Li =

p∑
i=1

− logP (Yi|Ȳi, Xi). (7)

Learning
Since P (Yi|Ȳi, Xi) is modeled as an univariate Gaussian
distribution with positive variance Λ−1

i , the parameter learn-
ing of CCDN is formulated as the a constrained optimization
problem

arg min
Λ,Θ,W

L =

p∑
i=1

− logP (Yi|Ȳi, Xi),

subject to Λi > 0, for i = {1, · · · , p}.
(8)

Given the constrained optimization problem of CCDN in
equation (8), we have the following theorem.

Theorem 2. The parameter learning of CCDN in (8) is a
convex optimization problem.

Lemma 1. For any symmetric matrix, M, of the form[
A B
BT C

]
(9)

if C is invertible, then we have M � 0 iff C � 0 and A −
BC−1BT � 0. In our problem, M is specified with

A =

[
∂2l

∂w∂w
∂2l

∂w∂Θ
∂2l

∂Θ∂w
∂2l

∂Θ∂Θ

]
, B =

[
∂2l

∂W∂Λ
∂2l

∂Θ∂Λ

]
and C =

∂2l

∂Λ2

Proof Sketch. By utilizing the Schur complement lemma
(Gallier 2010) in Lemma 1 and the positiveness constraint in
equation (8), the Hessian matrix w.r.t. parameters in each lo-
cal objective of CCDN can be proved to be positive definite.
Therefore the constrained optimization problem formulated
in equation (8) is convex. For more details see the supple-
mentary material.

Given the convexity of parameter learning as stated in
Theorem 2, any gradient based method can lead to a global
solution. We chose to apply Quasi-Newton as our learning
algorithm. The first derivatives of the local objective of the
ith subtask Li with respect to Λi, θi and wi are given by

∂Li

∂Λi
=

1

m
{Y T

i Yi − (Xiθi + Ȳiwi)
T (Xiθi + Ȳiwi)

Λ2
i

} − 1

Λi
,

∂Li

∂θi
=

1

m
{2XT

i (Xiθi + Ȳiwi)Λ
−1
i + 2Y T

i Xi},
∂Li

∂wi
=

1

m
{2Ȳi

T
(Xiθi + Ȳiwi)Λ

−1
i + 2Y T

i Ȳi}. (10)

Time Complexity. As there are p nodes in each graph,
there are q = p2 pairwise dependencies among nodes to
learn. If all dependencies are learned simultaneously as in
most existed works, the time complexity of one iteration of
a Quasi-Newton method is O(q2) = Q(p4). However, time
can be reduced to O(p ∗ p2) = O(p3) in CCDN because of
the joint modeling of p independent local objectives. That’s
why CCDN is efficient in model learning. Additional evi-
dence about efficiency is provided in experiments.

Inference

The aim of inference is to find the estimation of Y such that
the product of conditional probabilities can be maximized.
This goal is expressed as

Ŷ = argmax
Y

p∏
i=1

P (Yi|Ȳi, Xi) (11)

The inference is challenging in several aspects. First, Ȳi

is unknown in testing phase. Therefore, it is impossible to
do exact inference over Yi through P (Yi|Ȳi, Xi). Second,
it is neither possible to infer Y from X since there is no
closed-form expression of P (Y |X) from CCDN; however,
P (Y |X) can be approximated via Markov Chain Monte
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Algorithm 1 Iterated Conditional Mode
Input: {X1, · · · , Xp}, Θ, Λ and W .
Output: Estimation of response variables in the test data: Ŷ
1: Initialization: t = 0, Y 0

2: for t = 1 : T ∗ do � Stopping Criteria
3: Generating a semi-random ordering τ � S.R.O
4: for i in τ do
5: Composing Ȳi

t

Ȳi
t
= {Y T (1)

1 , · · · , Y T (i−1)
i−1 , Y

T (i+1)
i+1 , · · · , Y T (p)

p }
where T (j) = t, if τ (j) < i; T (j) = t− 1, otherwise.

6: Drawing Y t
i

Y t
i = argmax

Yi

P (Yi|Ȳi
t
, Xi,θi,Λi,wi)

= −Λ−1
i (Xiθi + Ȳi

t
wi))

7: end for
8: end for
9: Ŷ = Y T∗

Carlo algorithms if the posterior probabilities for each vari-
able are known, i.e. P (Y |X) is unknown but P (Yi|Ȳi, Xi)
is known. Gibbs sampling is hence a natural choice in this
case. However, Gibbs Sampling requires extensive iterations
to achieve a good estimation due to the uncertainties, which
makes it inefficient. In this paper, we adapt Iterated Condi-
tional Mode(Monaco, Viswanath, and Madabhushi 2009) as
a simpler and more efficient substitute for Gibbs sampling,
based on the fact that univariate Gaussian distribution has
closed form expression for its only mode. In each iteration
of Iterated Conditional Mode, rather than sampling instances
from a univariate Gaussian distribution, each instance is as-
signed exactly as the expectation of corresponding Gaussian
distribution E(Yi|Ȳi, Xi). In this way, the uncertainties in
sampling are avoided, and the times of simulation can be
saved. The product of probabilities

∏p
i=1 P (Yi|Ȳi, Xi) is

also guaranteed to be maximized. A detailed description of
Iterated Conditional Mode is presented in Algorithm 1.

Stopping Criteria The goal is to find the index of iter-
ation with draws that are closest to the ground truth when
testing, which is not easy. Thus, we find the best draw on
validation dataset. Then, the index of iteration with the best
draw is denoted as T ∗.

Semi-randomized Ordering (S.R.O) Semi-randomized
ordering is a strategy used to generate the ordering for sam-
pling Y in each iteration of Iterated Conditional Mode.
When there is no prior knowledge (see next section) avail-
able or the prior knowledge is symmetric, semi-randomized
ordering generates a fully randomized permutation over
variables Y . For example, the ordering generated for sym-
metric prior knowledge, which is illustrated at Figure 2a,
is {randperm(y1, y2, y3, y4)}. When the prior knowledge
is non-symmetric, there might exists directed dependency
between different subsets of response variables. For exam-
ple, the ordering for non-symmetric dependency illustrated
at Figure 2b is {randperm(y1, y2)}, {randperm(y3, y4)},
where variables of the same group are permuted randomly,

(a) CCDN-S (b) CCDN-N

Figure 2: Incorporation of prior knowledge: (a) CCDN with
symmetric prior knowledge (CCDN-S) and (b) CCDN with
non-symmetric prior knowledge (CCDN-N).

but groups are permuted in order.

Incorporation of Prior Knowledge

Prior knowledge about graph structure is important to struc-
tured regression because the valuable information within it
is always available but not easy to utilize. Effective exploita-
tion of prior knowledge can help the model to generalize
well, even with limited data for training. In this section, we
explain how CCDN is flexible in incorporating various
types of prior knowledge.

In this work, prior knowledge is defined as the presence of
directed dependencies among response variables in a single
graph. In a graph with p nodes, the prior knowledge about yi
toward all other response variables ȳi is encoded as a binary
column vector si ∈ {0, 1}p−1. Particularly, if yi is indepen-
dent to yj in the prior knowledge, then sij = 0. Otherwise
sij = 1. The prior knowledge s is incorporated in CCDN
by wi = si ◦ wi, where the ◦ operator is the element-wise
product. Generally, the prior knowledge can be represented
as real numbers, which weight the belief of directed depen-
dencies. But in this study, we only consider the binary rep-
resentation.

As we know, the prior knowledge about dependency
structure may existed as either a symmetric matrix or a non-
symmetric matrix. The symmetric dependency is defined as,
∀i, j, i �= j, sij = 1 ⇒ sji = 1. The non-symmetric depen-
dency is defined as ∀i, j, i �= j, sij = 1 � sji = 1.

Example. An example of symmetric prior knowledge is
illustrated in Figure 2a, where directed dependencies with
opposite directions always exist together. For example, we
have s21 = s12 = 1, s31 = s13 = 1, s24 = s42 = 1
and s34 = s43 = 1. The CCDN model with symmetric de-
pendency prior knowledge is referred as CCDN-S. The non-
symmetric prior knowledge is illustrated in Figure 2b, where
we assume y3 is dependent on y1, and y4 is dependent on y2,
but not vice versa. Namely, directed dependencies with op-
posite directions are not necessary to exist simultaneously.
This is why we have s31 = 1, s42 = 1, but s13 = 0 and
s24 = 0. The CCDN model with non-symmetric depen-
dency is referred as CCDN-N.
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(c) Effectiveness evaluation on Energy Data
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(d) Efficiency comparison on Wind Data.
RLSR spent more than 5000 sec.
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(e) Efficiency comparison on Precipitation
Data. RLSR spent more than 3000 sec.
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(f) Efficiency comparison on Energy Data.
RLSR spent more than 4500 sec.

Figure 3: Performance comparison of all baselines on 3 datasets.

Experimental Results

In this section, we empirically demonstrate the characteris-
tics of CCDN, including effectiveness, efficiency and struc-
ture recovery. The benefits brought by flexibility are vali-
dated in experiments about efficiency and effectiveness .

Real datasets

We used 3 real-world datasets in our experiments for struc-
tured regression. The brief description of datasets are as fol-
lowing. For more detailed description see the supplemen-
tary material. Wind Power Forecasting. Wind power data
is obtained from the Global Energy Forecasting 2012 com-
petition1. The task is to predict hourly wind power at 7
nearby wind farms for the next 24 hours. Each graph has
168 nodes and each node has 4 attributes. Both symmetric
and non-symmetric prior knowledge assume that each farm
is dependent on other farms at same time point. Symmet-
ric prior knowledge also assumes that each farm is depen-
dent on same farm from neighbouring time points. But non-
symmetric prior knowledge assumes that each farm is only
dependent on the farm of previous time point.Precipitation
Forecasting. The task is to forecast daily precipitation
across multiple locations based on several climatological
features. It can be downloaded from NOAA’s NCDC web-
site2. The observation from each month is modeled as a
graph with 124 nodes and each node has 9 attributes. Solar
Energy Forecasting. The task is to predict the daily solar

1https://www.kaggle.com/c/GEF2012-wind-forecasting
2http://www.ncdc.noaa.gov/

energy income at 98 Oklahoma Mesonet sites. The data is
available on kaggle 3. Each day is modeled as a graph with
98 nodes with each node having 19 features. On both pre-
cipitation and energy datasets, symmetric prior knowledge
connects two stations if they are among 4 nearest neighbors
of each other. Non-symmetric prior knowledge connect each
station to its 4 nearest neighbors.

Comparison Methods. We compare our proposed mod-
els (CCDN-S and CCDN-N) to the following structured re-
gression models:
• MLR (Multiple Linear Regression). Building indepen-

dent linear regression models for different response vari-
ables.

• GCRF: Gaussian Conditional Random Fields that is de-
veloped in (Radosavljevic, Vucetic, and Obradovic 2010),
which exploits prior knowledge about similarity among
response variables for structured regression without learn-
ing structure.

• SGCRF: Sparse Gaussian Conditional Random Fields
that are developed in (Sohn and Kim 2012; Wytock and
Kolter 2013; Yuan and Zhang 2014). We only compare to
the most recent work (Wytock and Kolter 2013). The λ of
SGCRF is picked from {1e−4, 1e−3, 1e−2, 0.1, 1} via
8 folds cross-validation.

• RLSR: A structured regression model that jointly learns
representation over attributes and structure among re-

3https://www.kaggle.com/c/ams-2014-solar-energy-prediction-
contest
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sponse variables. (Han et al. 2016). The λ of RLSR is
tuned the same way as in SGCRF. The neural network is
set with one hidden layer with 20 hidden neurons.

Effectiveness Evaluation

In the experiments, we evaluated the effect of increasing the
training size on the predictive accuracy for all methods. Each
experiment is evaluated in terms of mean square error (MSE)
over 8 consecutive windows. The result on Wind Data is
presented in Figure 3a. We considered 4 different training
sizes r = {60, 120, 180, 240}, and fix validation and test-
ing sizes as 60. We noticed that CCDN-N performs the best
when training data is limited. This is because incorporat-
ing prior knowledge removes useless information, and thus
helps the model to generalize better. RLSR and SGCRF per-
form comparable to CCDN-N when more training data is
available, but with the sacrifice of efficiency. The better per-
formance of CCDN-N over CCDN-S, also reflects that the
non-symmetric prior knowledge on wind data makes more
sense. The results on Precipitation Data are shown in Fig-
ure 3b. We set both validation and testing size as 24. Our
proposed methods are still performing the best with limited
data. In addition, the prior knowledge imposed on this data
is sparse. It may explain why structure models don’t work
well, but independent models perform better. The results of
Energy data are presented in Figure 3c, where we show the
effect of training with large amount of data. In the exper-
iment, both validation size and testing size are set as 365.
As we can see, CCDN-S slightly outperforms SGCRF with
less data, but it is outperformed by RLSR with more and
more data added. It still meets our expectation, because all
models are supposed to fully converge with sufficient train-
ing data. Therefore, we can conclude that proposed models
with prior knowledge can generalize better with limited data,
and they are also comparable with the best alternatives when
data is sufficient. Most importantly, we will see that pro-
posed model is simultaneously effective and efficient, while
other models always need demanding computational cost.

Efficiency Evaluation

In the experiments, we demonstrated the efficiency of struc-
ture learning by evaluating the learning time of all meth-
ods when they achieved best performance. MLR is not com-
pared, because it is fast but not effective as evident in previ-
ous experiments. RLSR is not reported, because it spent at
least 3000 seconds on all dataset. The experiments on differ-
ent data were running on different nodes of cluster. The set-
tings are same as previous experiment. In Wind Data (Fig-
ure 3d), both CCDN-S and CCDN-N are the fastest models.
GCRF is slow because the running time increases linearly
with the increment of training sizes. The efficiency evalu-
ation on Precipitation Data is shown Figure 3e. CCDN-N
and CCDN-S are more than 4 times faster than other models.
The results on Energy Data are shown in Figure 3f. In this
experiment, CCDN-N and CCDN-S also outperforms other
models. SGCRF takes more time because the learned struc-
ture is dense. Although SGCRF performed comparable to
proposed models in terms of effectiveness, it is about 9 times
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Figure 4: Visualization of (a) true precision matrix and (b)
learned precision matrix from CCDN.

slower. The results showed that our proposed models are sig-
nificantly faster than other alternatives. The benefit in terms
of efficiency, brought by joint modeling and incorporation of
prior knowledge, is hence demonstrated. The efficiency of
proposed models can be further improved if all local proba-
bilistic models are learned in parallel. The time consumption
of inference is not reported, because it converges within less
than 0.1 second in each repetition in average.

Structure Recovery on synthetic data

Precisely recovering structure is challenging when structures
are learned from multiple independent models. In this sec-
tion, we want to demonstrate that CCDN is also able to dis-
cover structure. From Theorem 1, we know that learned w is
actually an approximation of Λyy . However, as wij and wji

are learned from different local distributions, how to guaran-
tee that they have similar values and be close to [Λyy]ij and
[Λyy]ji of true precision matrix? Therefore we designed an
experiment on synthetic data to answer this question. In this
experiment, we generated 1600 independent graphs based
on equation (3), with 1000 used for training, 300 for vali-
dation and the 300 for testing. For the simplicity of visual-
ization. We generated 10 response variables per graph, and
3 attributes per node. Λyy ∈ R10×10 and Λyx ∈ R10×30

are generated with random structure. We applied CCDN-S
with symmetric prior knowledge as fully connected graph
for learning. The true precision matrix is visualized in Fig-
ure 4a, and the learned precision matrix is visualized in Fig-
ure 4b. Obviously, we can see that the learned precision ma-
trix (w) is close to the true precision matrix (Λyy). The Eu-
clidean distance between two matrices is as small as 9e− 4.
Therefore, we can conclude that: (1) any pair of directed de-
pendencies with opposite directions, e.g., wij and wji, are
similar to each other. (2) The estimated precision matrix,
even though they are learned from different local models,
can still accurately approximate the true precision matrix

Conclusion

We proposed continuous conditional dependency network
for structured regression from theory to practice. It is flexi-
ble in incorporating different types of prior knowledge, effi-
cient in model learning and inference, effective on structured
regression and able to recover dependency structure. All ex-
periments provide evidence that the proposed method have
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better or at least comparable performance than other struc-
ture regression models in terms of MSE, but our proposed
models is superior as it is flexible, always efficient and able
to precisely discover structure.
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