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Abstract
Temporal graph regression is a frequently encountered research
problem in many studies of graph analytics. A temporal graph is
a sequence of attributed graphs where node features and target vari-
ables change over time, but network structure stays constant. The
task of temporal graph regression is to predict the target variables
associated with nodes at future time-points given historical snap-
shots of the graph. Existing methods tackle this problem mostly by
conducting structured regression for all target variables. However,
those methods have limited performance due to redundant informa-
tion. Although several techniques have been proposed recently to
learn lower dimensional embedding for the target space, the prob-
lem of how to effectively exploit the structure of the temporal graph
in such embeddings is still unsolved. Other recent works only study
node embedding of the stationary graphs only, and this is not appli-
cable to temporal attributed graphs.
In this paper, we introduced a Structure-Aware Intrinsic Represen-
tation Learning model (SAIRL) to jointly learn lower dimensional
embeddings of the target space and feature space via structure-
aware graph abstraction and feature-aware target embedding learn-
ing. To solve this problem, we have developed a derivative-free
block coordinate descent algorithm with closed-form solutions. To
characterize the quality of embedding-based learned with SAIRL,
we conducted extensive experiments on a variety of different real-
world temporal graphs. The results indicate that the proposed
method can be more accurate than the state-of-the-art embedding
learning methods, regardless of regressors.
Keywords: temporal graph, regression, network embeeding, repre-
sentation learning

1 Introduction
A temporal graph is represented as a sequence of graphs with
time-varying attributes and unchanging structure. Each node
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is associated with a set of real-valued features and a target
variable. Temporal graph analytics has drawn much atten-
tion recently, as such graphs are ubiquitous in a variety of
areas, such as remote sensing, healthcare, and information
retrieval. Because of the challenges in predicting target vari-
ables from multiple nodes and multiple snapshots, most stud-
ies on temporal graph analytics focus on temporal graph re-
gression. For example, document ranking score prediction
in information retrieval [18, 20], environmental factor pre-
diction in earth science [28, 29], disease admission predic-
tion in healthcare informatics [4], and aerosol optical depth
prediction in remote sensing [19, 20].

One way to tackle the temporal graph regression is to
build a regression model for each target variable indepen-
dently [10]. Though this approach is intuitive and straight-
forward, it ignores the structural dependency among target
variables in each snapshot. Recent work exploits the inter-
dependency information among target variables, either by
incorporating the structure from the prior knowledge [4, 19]
or by learning the structure from the data [7, 8, 29]. How-
ever, with the growth of the number of target and feature vari-
ables, these structured regression methods can hardly afford
the high computational cost brought by high dimensionality.

On the other side, many target space dimension reduc-
tion methods have been proposed to address the temporal
graph prediction problem efficiently [2, 9, 13, 23, 31]. These
methods typically perform a linear transformation to embed
the original target space into a lower dimensional latent tar-
get space, and then efficiently solve the prediction problem
on the reduced target space. Given the fact that informa-
tion from the original target space is redundant, those meth-
ods can significantly reduce the computational cost without
much loss in prediction accuracy. However, they do not
take into account the structural characteristics of the tempo-
ral graph, and they primarily solve classification problems.

Many studies proposed to learn node representations by
either utilizing node proximity [5, 16, 24] or graph convolu-
tional neural network [3, 11]. They typically focus on how
to generate better embeddings of nodes to benefit the stud-
ies on a single large-scale network since these complicated
can easily get overfitting with small graphs, and thus are not

Copyright c© 2019 by SIAM
Unauthorized reproduction of this article is prohibited



applicable to the setting of temporal graph regression where
there is a sequence of snapshots.

In this paper, we investigated the problem of represen-
tation learning for temporal graph regression and proposed
a novel Structure-Aware Intrinsic Representation Learning
(SAIRL) method which combines the strength of both la-
tent feature and latent target embeddings resulting in robust
solution regardless of regressor or amount of training data.
Contributions of this paper are:

1) Formally defined the problem of embedding learning
for temporal graph regression.

2) Proposed a novel method (SAIRL), which can jointly
learn intrinsic latent embeddings from feature space and
target space through structure-aware graph abstraction and
feature-aware target embedding learning respectively.

3) Proposed a derivative-free block coordinate descent
algorithm for efficiently solving SAIRL.

4) Demonstrated the effectiveness of embedding gener-
ated by SAIRL.

2 Related Work
Structured Regression. The most common method for
solving temporal graph regression is structured regression
which exploits the structural dependency among target vari-
ables. This type of method typically models the conditional
probability of target variables given the features as a multi-
variate Gaussian distribution, such that the structural depen-
dency is represented by the sparse inverse covariance ma-
trix. Gaussian Conditional Random Fields (GCRF) [18, 19]
have been proposed to conduct structured regression by pre-
calculating the similarities between multiple target variables
using the inverse geographical distance. Neural Gaussian
Conditional Random Fields [1, 20] extend GCRF by model-
ing nonlinear relationships between features and target vari-
ables. Other studies proposed to learn the sprase inverse co-
variance matrix among target variables [21, 29, 30] from the
data. They however do not consider the temporal dynamics.

Node Regression. Node regression predicts the target
variables of a subset of nodes given their features, other
nodes’ features and target variables, and graph structure.
Fused LASSO [26] enforces the smoothness of coefficients
of adjacent nodes. Network LASSO [6] is a generalization
of a fused LASSO that penalizes the Euclidean distance of
coefficients of similar nodes, such that nodes in the same
cluster have the same coefficients. Node regression has
a similar setting to graph regression, but it is a research
problem on a single graph.

Target Space Dimension Reduction. Target space di-
mension reduction, a new paradigm in the general multiple-
output prediction problem, reduces the dimensionality of tar-
get space and then efficiently performs prediction on reduced
target space. Compressing sensing [9] first reduces the orig-
inal target space into a lower dimensional latent space with

random linear projection and then learns a regression model
for each target variable in the reduced latent target space.
It evaluates an instance by projecting its estimated target
vector on reduced target space back to the original target
space. Instead of conducting random projection, principle
label space transformation (PLST) applies PCA to find the
optimal orthogonal linear transformation. It compresses the
original high dimensional target space to a low dimensional
space by optimizing the reconstruction error [23]. Condi-
tional label space transformation (CPLST) [2] is further pro-
posed to improve PLST by conducting feature-aware target
space dimension reduction. Besides minimizing the recon-
struction error, it also enforces the reduced target space to be
maximally correlated with the original feature space. Both
PLST and CPLST reduce the target space by finding a lin-
ear transformation, which is a strong assumption for many
real applications. Rather than finding the optimal linear
transformation, a feature-aware target space dimension re-
duction method [13] directly learns the the reduced target
space which is maximally correlated with the original fea-
ture space. While those methods work with temporal graphs
in reduced space, they do not take the structure characteris-
tics of data into account.

Node Embedding. Recent advances of word embed-
ding learning in natural language processing have inspired
the development of embedding learning methods in network
studies. Specifically, word2vec embeds the words by learn-
ing to predict the word from the context (CBOW), or vice
versa (skip-gram) [14, 15]. In the setting of graph, nodes
and random walks can be sampled in a way that words and
sentences are sampled in a document. Different word2vec
based strategies have been successfully applied to graphs
[5, 16, 24]. However, these methods are infeasible to tem-
poral graph regression, because the unchanging graph struc-
ture would results in producing unchanging node embed-
dings over time. Another series of works propose to learn the
embedding of nodes by applying graph convolutional neural
networks on graphs [3, 11]. They are typically applied for
problems on very large graph to avoid under-fitting, while
the graph size is relative small in our case.

3 Problem Statement
Notations are given in Table 1. While most of them are com-
monly used, mode-n unfolding and n-mode product are not
well known. The mode-n unfolding of B is concatenation
of fibers in n− th dimension which can be formally defined
as B(n) ∈ RJn×

∏N
i6=n Ji . The n-mode product of a tensor

B ∈ RJ1×J2×···×JN with a matrix A ∈ Rp×Jn is denoted by
B×nA and is of size J1× · · ·×Jn−1× p×Jn+1 · · · ×JN .
For more details, please refer to [12].

Definitions. Temporal Graph Regression: Given fea-
tures and targets of l − 1 consecutive snapshots Gi (i =
1, · · · , i − 1) for training, and the graph structure W , the
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Figure 1: Illustration of temporal graph regression. (a) Temporal graph example with l = 3 snapshots, p = 4 nodes and r = 5 features
in each node. xi is the vector of features of node i. yi is the target of node i. (b) Joint view of feature space and target space in G.

Table 1 Notations
Symbol Meaning

bold lowercase Vector
letter (e.g. x)

uppercase Matrix
letter (e.g. X)

uppercase Greek Tensor
letters (X )

Ir Identity matrix, dimension r
Xi ith frontal slice (matrix) of X tensor
xi ith row (a vector) of a matrix X

vec(X) Rows concatenation of matrix X
⊗ Kronecker product of two matrices
XT Transpose of matrix X
tr(X) Trace of X
‖·‖2F Frobenius norm of matrix
B ×n A n−mode product of B ∈ RJ1×···×JN

with a matrix A ∈ Rp×Jn
B(n) mode− n unfolding of B
l, p, r Number of snapshots, nodes and

features in the original space
k, t Dim. of latent feature/target space
G Graph in l snapshots.

X ∈ Rp×r×l Original feature space
B ∈ Rk×r×l Reduced feature space
Y ∈ Rl×p Original target space
S ∈ Rl×t Reduced target space

Abstraction Transforms original to reduced
mat. A ∈ Rp×k feature space (and vice-versa)
W ∈ Rp×r Constant adjacency matrix

aim is to predict the target variables yl of Gl given its fea-
tures Xl. Embedding learning for temporal graph regres-
sion: Given features X and targets Y of graph G, the aim is
find the both lower-dimensional features embedding B and
targets embedding S such that the essential information are
kept.

Figure 1(a) shows an example of a temporal graph with
l = 3 snapshots, p = 4 nodes and r = 5 attributes. Snapshot
is denoted by Gi =< Xi, yi,W >, where W ∈ Rp×p is an
adjacency matrix shared across all snapshots. The (i, j)th
entry of W , wij , indicates the similarity between node i
and node j. Missing edges in 1(a) indicate similarity zero.
Matrix Xi ∈ Rp×r is the feature matrix for p nodes at time
step iwith r features in each node. Vector yi ∈ Rp represents
target variables for all p nodes at time step i. Figure 1(b)
shows matrix representation of feature space X ∈ Rp×r×l
and target space Y ∈ Rp×l for graph G. An example of
temporal graph regression is also illustrated in Figure 1(a),
where G1 and G2 are for training, and the aim is to predict
the target variables y3 (with red questions marks) in G3 given
X3

4 Structure-Aware Intrinsic Representation Learning
(SAIRL)

Structure-aware intrinsic representation learning method
(SAIRL) for temporal graph regression can jointly learn
lower dimensional representations for both feature space and
target space such that: (1) The structure of the temporal
graph is leveraged; (2) Intrinsic information is kept in latent
spaces and (3) Temporal graph regression benefits the most.
SAIRL consists of two modules: (1) Structure-Aware Graph
Abstraction (SAGA) embeds the original feature space X to
a lower dimensional latent space B such that intrinsic in-

Copyright c© 2019 by SIAM
Unauthorized reproduction of this article is prohibited



formation in the original graph is abstracted into a fewer
virtual nodes; (2) Feature-Aware Target Embedding Learn-
ing reduces the dimensionality of target space by finding the
feature-aware maximum variance projection of target space
created latent target space S preserves intrinsic information
and maintains the predictability from latent feature space X .
We also developed a derivative-free block coordinate descent
algorithm which leads to efficient analytical solutions.

Figure 2(a) shows example of how SAIRL is executed
on snapshot G1 - red blocks.

4.1 Structure-Aware Graph Abstraction (SAGA)
Given p nodes in the original graph, we want to create an
abstraction with k (k < p) virtual nodes such that essential
information from the original graph is kept. Mathematically
speaking, if the original feature space X ∈ Rp×r lies in
the linear span of a lower dimensional latent feature space
B ∈ Rp×k, then B is a proper embedding. The abstraction
matrix (recovery matrix) A ∈ Rp×k transforms latent
feature space to original feature space. Virtual nodes in B
can also be regarded as the cluster’s centers of the original
nodes X .

4.1.1 Temporal Structure Preservation In this work, we
assumed the temporal smoothness of the graph (structure
does not change significantly between neighboring steps).
Therefore, for a relatively small amount of the snapshots, we
can assume that graph structure is constant. To preserve the
temporal structure, we imposed two assumptions: (1) The
abstraction matrixAmust be shared across the entire tempo-
ral graph; (2) The abstracted graphs Bi and Bi+1 should be
similar because node attributes are changing smoothly over
time.

In Figure 2(a), in snapshot G1, X1 can be reconstructed
via AB1. Features of node x1 ([3, 3, 4, 3, 3]) in the snapshot
G1 are linear combinations of two virtual nodes in B1and
weights of the first row in A. Matrix A is shared among G1,
G2 and G3 (Figure 2(b)). The graph abstraction with temporal
structure preservation is given by:

min
A,B
||X − B ×1 A||2F︸ ︷︷ ︸

Shared Abstraction

+δ

l−1∑
i=1

||Bi −Bi+1||22︸ ︷︷ ︸
Temporal Smoothness

where ×1 is the 1-mode product and δ is the hyperparameter
which controls the penalty on the temporal smoothness term.

4.1.2 Graph Structure Preservation In addition to the
temporal structure, we want to exploit the structure among
nodes in each snapshot. If node i and node j are adjacent,
then their corresponding abstraction vectors should also be
similar, i.e. the ai and aj should be similar. Graph structure

preservation can be enforced by optimizing:

min
A

α tr(ATLA)︸ ︷︷ ︸
Structure Preservation

where L = D − W is the Laplacian matrix of graph’s
adjacency matrix W , D is the degree matrix of the graph,
and α is the hyperparameter that controls the importance of
the structure preservation.

For example, in Figure 2(a), since node 3 and node 4 are
the closest (w34 is the largest), graph structure preservation
enforces a3 and a4 to be very similar.

4.2 Feature-Aware Target Embedding Learning
CPLST [2] and FAIE [13] are commonly adopted frame-
works for capturing the information in the target space. They
proposed linear dimension reduction methods to embed the
original target space Y ∈ Rl×p into a lower dimension latent
space S ∈ Rl×t such that it contains t virtual targets (t < p).
They, however, don’t utilize the structure of data and suffer
from the noise introduced in the original feature space. We
now discuss how to perform intrinsic embedding learning in
the target space given the latent feature embedding.

4.2.1 Maximum Variance Projection In order to guar-
antee that all essential information is included in the latent
target embedding, we want to find a linear transformation
S = Y V , V ∈ Rp×t that maximizes the variance of latent
targets in S. We also want the transformation to be orthog-
onal such that redundant information is maximally reduced.
Thus, the problem is modeled as:

(4.1) max
V TV=I

tr(STS) = min
V TV=I

−tr(V TY TY V )︸ ︷︷ ︸
Maximum Variance

4.2.2 Maximum Predictability To facilitate temporal re-
gression, we want the latent target embedding to be latent
feature-aware. We maximize the predictability of S given B
using linear transformation S = B(3)U , where U ∈ Rkr×t
and B(3) is mode-3 unfolding of B. It means that at time step
i, each entry of the latent target vector si could be predicted
from all of the entries in the latent feature embedding Bi.
The latent feature awareness is hence formulated as:

(4.2) min
S=Y V,U

||S − B(3)U ||2F = min
V,U
||Y V − B(3)U ||2F︸ ︷︷ ︸
Maximum Predictability

In Figure2(a) a lower dimensional target space s1 ∈ R3

is obtained by a linear transformation of the original target
space y1 ∈ R4.

4.3 Joint Representation Learning Framework The
joint representation learning framework for SAIRL is given
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Figure 2: Illustration of structure-aware intrinsic representation learning (SAIRL). (a) SAIRL on snapshot G1. (b) Joint view of collected
variables on entire temporal graph G.

by

f = ||X − B ×1 A||2F︸ ︷︷ ︸
Shared Abstraction

+δ

l−1∑
i=1

||Bi −Bi+1||22︸ ︷︷ ︸
Temporal Smoothness

+ ||B(3)U − Y V ||2F︸ ︷︷ ︸
Maximum Predictability

− tr(V TY TY V )︸ ︷︷ ︸
Maximum Variance

+ αtr(ATLA)︸ ︷︷ ︸
Structure Preservation

To efficiently solve the learning problem, we developed a
derivative-free block coordinate descent algorithm which
leads to closed-forms solutions for each sub-problem.

5 Optimization Algorithm for Learning
The optimization of the learning problem for joint represen-
tation learning is formulated as

(5.3) {A∗,B∗, U∗, V ∗} = argmin
A,B,U,V TV=I

f

We use Theorem 5.1 to solve some sub-problems listed
below. We skipped some details of derivation for simplicity.
For more details, please refer to matrix calculus[17].

THEOREM 5.1. Let D and E denote two symmetric ma-
trices such that DM + ME = F . Given eigen decom-
positions D = Q1Λ1Q

T
1 and E = Q2Λ2Q

T
2 , we have

M∗ = Q1CQ
T
2 , where ci,j =

(QT
1 FQ2)i,j

λ
(i)
1 +λ

(j)
2

, and λik repre-

sents the ith eigenvalue of Λk [32].

5.1 Solve A given B, U and V

(5.4)
min
A
||X − B ×1 A||2F + α · tr(ATLA)

= min
A
||X(1) −AB(1)||2F + α · tr(ATLA)

Using the first order optimality, ∂L
∂A = 0, we can develop

equation 5.5, which can be solved with Theorem 5.1.

(5.5) (αL)A+A(B(1)BT(1)) = X(1)BT(1)

5.2 Solve B given A, U and V By applying simple multi-
linear algebra, we have

||X − B ×1 A||2F = ||X(3) − B(3)(Ir ⊗A)T ||2F

where B(3) is the mode-3 unfolding of B and Ir ∈ Rr×r is
an identity matrix.

l−1∑
i=1

||Bi −Bi+1||22 =

l−1∑
i=1

||vec(Bi)− vec(Bi+1)||22

= ||BT(3)E||
2
F

where E is squared matrix with Ei,i = 1, Ei,i+1 = −1 and
0 otherwise. If Ar = Ir⊗A, this sub-problem is denoted as:

min
B(3)

||X(3) − B(3)ATr ||2F + δ||BT(3)E||
2
F + ||B(3)U − Y V ||2F

After applying the first order optimality and rearranging:
(5.6)
δEETB(3) + B(3)(ATr Ar + UUT ) = Y V UT + X(3)Ar

Analytical Solution: The closed from solution can be ob-
tained by applying Theorem 5.1 here.

THEOREM 5.2. Let H ∈ Rd×d be a symmetric matrix with
eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λd and the corresponding
eigenvectors U = [u1,u2, · · · ,ud]. We have λ1 +λ2 + · · ·+
λt = maxV TV=I tr(V

THV ). This problem admits optimal
solutions that V ∗ = [u1,u2, · · · ,ut][22].
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Algorithm 1 SAIRL Learning with derivative-free BCD

Input: X , Y , L, E, #latent factors{k, t} and hyperparam-
eters {α, δ}.

1: Initialization: t = 0, B0, U0 and V 0.
2: for t from 1 to maxIter do
3: Update At by solving (5.5) using Bt−1.
4: Update Bt by solving (5.6) using At, U t−1 and
V t−1.

5: Update V t by solving (5.7) using Bt.
6: Update U t by computing (5.9) using Bt and V t.
7: If At, Bt, U t and V t converge, break
8: Return At, Bt, U t and V t.

5.3 Solve V given B, A and U

(5.7) argmin
V TV=I

||B(3)U − Y V ||2F + ||Y − Y V V T ||2F .

Given the pseudoinverse matrix of B(3) is B+(3) =

(BTv Bv)
−1BTv , the hat matrix is expressed asK = B(3)B+(3).

The sub-problem can be rewritten as

argmin
V TV=I

||B(3)B+(3)Y V − Y V ||
2
F − tr(V TY TY V )

= argmin
V TV=I

||KY V − Y V ||2F − tr(V TY TY V )

= argmin
V TV=I

tr{−V TY TKY V } = argmax
V TV=I

tr{V TY TKY V }

Analytical Solution: According to Theorem 5.2, the closed-
form solution of V is the array of eigenvectors corresponding
to t largest eigenvalues of Y TKY .

5.4 Solve U given A, B and V

(5.8) argmin
U
||B(3)U − Y V ||2F

Analytical Solution: The closed-form solution can be ob-
tained by solving normal equation

(5.9) U∗ = (BT(3)B(3))
−1BT(3)Y V

The learning algorithm is summarized in Algorithm 1.

6 Embedding Inference
The latent feature embedding of testing graphs can be esti-
mated by solving the following problem:

(6.10) min
B(3)

||X(3) − B(3)ATr ||2F + δ||BT(3)E||
2
F

Solution can be obtained by applying Theorem 5.1. The
structure preservation term is removed under an assumption
that the structure stays the same as in training, i.e. matrix
A learned in training is also used in test. To infer the

Algorithm 2 Embedding Inference for Testing

Input: X Train, Y Train and X Test,.
1: Learn A, V and BTrain using Algorithm 1.
2: Infer the latent feature space BTest by solving (6.10).
3: Build a regressor R(·) over BTrain and Y TrainV .
4: Infer the original target space Y Test via R(BTest)V T .

latent target embedding STest on testing graphs, one can
build a regressor R(·) over the reduced feature space BTrain
and reduced target space STrain on training data, and then
apply the learned regressorR(·) on the reduced feature space
BTest of testing data to infer STest. The original target
space Y Test can be estimated via STestV T . The process
is summarized in Algorithm 2.

7 Time Complexity Analysis
In each iteration of Algorithm 1, the costs of solving d
eigenvectors in (5.5), (5.6) and (5.9) are O(d(k2 + p2)),
O(d(l2 + k2r2)) and O(dl2), respectively according to
Lanczos method[27]. Solving (5.7) takes O((kr)3) because
of the inversion. Embedding inference takes O(d(l2 +
k2r2)), so the total time complexity is O(k3r3 + d(l2 + p2))
per iteration.

8 Experiments
8.1 Datasets Precipitation data1 is collected from 124
U.S. cities in 708 snapshots in monthly resolution. The
task is to forecast monthly precipitation across 124 locations
based on nine given features. The adjacency matrix W is
calculated using the inverse distance between two locations.

Wind data2 is collected from 7 wind farms with 4 fea-
tures in each over 1080 days. The task is to predict hourly
wind power of all 7 farms in the next day. To model temporal
graphs, we assume that each snapshot contains the readings
from 7 farms within 24 hours, so 168 nodes. Weight wij is 1
if node j and node i are within the same hour or they corre-
spond to same nodes of neighboring hours and 0 otherwise.

8.2 Comparison Methods We used five comparison
methods whose implementations are released online3.

1) Raw: It corresponds to the scenario where no repre-
sentation learning is applied and temporal graph regression
is conducted in the original space.

2) SAGA: The proposed Structure-Aware Graph feature
Abstraction is solved by iteratively finding A∗ and B∗ until
convergence.

3) CPLST: A target space dimension reduction method
that is capable of learning a feature-aware low dimensional

1http://www.ncdc.noaa.gov/
2https://www.kaggle.com/c/GEF2012-wind-forecasting
3https://bit.ly/2EdX7ZV
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Table 2 Mean(standard deviation) of MSE for different representation learning methods and different training sizes
(l = 240) on precipitation dataset

LASSO as the Regressor
Method 20% ∗ l 40% ∗ l 60% ∗ l 80% ∗ l l

Raw 0.1940(0.006) 0.1815(0.007) 0.1825(0.009) 0.1723(0.005) 0.1621(0.005)

CPLST 0.1937(0.005) 0.1719(0.005) 0.1671(0.005) 0.1649(0.006) 0.1611(0.005)
FaIE 0.1952(0.009) 0.1787(0.006) 0.1711(0.006) 0.1673(0.008) 0.1632(0.007)

SAGA 0.2025(0.010) 0.1863(0.007) 0.1748(0.005) 0.1682(0.003) 0.1638(0.004)

SAIRL 0.1898(0.005) 0.1759(0.007) 0.1691(0.005) 0.1621(0.005) 0.1604(0.004)
SGCRF as the Regressor

Method 20% ∗ l 40% ∗ l 60% ∗ l 80% ∗ l l

Raw 3.4469(1.463) 0.9216(0.225) 0.6100(0.048) 0.5187(0.034) 0.4535(0.038)

CPLST > 10(> 10) 0.7689(0.164) 0.5258(0.110) 0.3371(0.100) 0.2774(0.025)
FaIE 0.2187(0.015) 0.2117(0.016) 0.1978(0.012) 0.1939(0.014) 0.1904(0.018)

SAGA 0.2045(0.008) 0.1848(0.010) 0.1734(0.006) 0.1674(0.006) 0.1670(0.006)

SAIRL 0.1981(0.008) 0.1813(0.005) 0.1711(0.006) 0.1669(0.008) 0.1627(0.005)

Table 3 Mean(standard deviation) of MSE for different representation learning methods and different training sizes
(l = 300) on wind dataset

LASSO as the Regressor
Method 20% ∗ l 40% ∗ l 60% ∗ l 80% ∗ l l

Raw 0.0398(0.013) 0.0362(0.006) 0.0482(0.027) 0.0363(0.005) 0.0338(0.007)

CPLST 0.0409(0.014) 0.0554(0.065) 0.0341(0.010) 0.0617(0.074) 0.0551(0.054)
FaIE 0.0507(0.021) 0.0754(0.103) 0.0442(0.017) 0.0498(0.027) 0.0510(0.024)

SAGA 0.0433(0.015) 0.0368(0.011) 0.0342(0.010) 0.0328(0.010) 0.0319(0.009)

SAIRL 0.0388(0.013) 0.0357(0.010) 0.0344(0.010) 0.0327(0.009) 0.0317(0.009)
SGCRF as the Regressor

Method 20% ∗ l 40% ∗ l 60% ∗ l 80% ∗ l l

Raw 1.0384(0.775) 1.1571(0.788) 0.3808(0.256) 0.0824(0.031) 0.0467(0.008)

CPLST > 10(> 10) 5.7257(6.832) 2.3457(1.747) 1.5216(0.647) 1.0693(0.862)
FaIE 0.1790(0.083) 0.1022(0.015) 0.0809(0.027) 0.0703(0.023) 0.0582(0.015)

SAGA 0.0469(0.015) 0.0421(0.011) 0.0407(0.011) 0.0379(0.009) 0.0357(0.010)

SAIRL 0.0491(0.015) 0.0413(0.012) 0.0391(0.010) 0.0371(0.009) 0.0356(0.009)

linear embedding of label space [2].
4) FaIE: A target space dimension reduction which

learns a feature-aware implicitly encoded label space [13].
5) SAIRL: The proposed method is composed of

structure-aware graph abstraction and feature-aware target
embedding learning.

8.3 Experimental Settings 1) Cross-validation setting:
Conventional train-test partitioning strategies such as n-fold
cross validation are not proper on temporal data. We use
a sliding window strategy to split the datasets into train,
validation and test set. Window size is 1.4∗ l, where l = 240
for the Precipitation data and l = 300 for the Wind data.
Models are trained on the first l snapshots in the window,
validated on the subsequent 0.2 ∗ l snapshots and tested on
the last 0.2 ∗ l snapshots. Then the window shifts forward by
0.2 ∗ l snapshots, and the process repeats. The forecasting
accuracy is measured using Mean Squared Error (MSE). We

report both the mean and the standard deviation of MSE.
2) Training size selection: To investigate the effect of

training size, we train each model with 5 different training
sizes [0.2 ∗ l, 0.4 ∗ l, 0.6 ∗ l, 0.8 ∗ l, 1.0 ∗ l]. We make
sure that validation and test are done on the same subset of
snapshots for each size of the training window by fixing the
start of validation and test windows.

3) Hyperparameter tuning: The number of latent fac-
tors k takes values [10%, 30%, 50%, 80%, 100%]∗min(p, r)
(guarantee B to have full row rank), and t is selected as
the number of top eigenvalues that can capture the most
variability. Hyperparameters α and δ are chosen from
[1e−3, 1e−2, 1e−1, 1, 1e1, 1e2].

4) Stopping condition and iterations number: Opti-
mization stops if the number of iterations comes to 500 or if
the difference between calculated variables in previous and
current time point is less than 10−5. For the given experi-
ments, the number of iterations was between 20 and 50 de-
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pending on the other settings.

8.4 Accuracy Evaluation These experiments aim to eval-
uate the accuracy of prediction in the temporal graph regres-
sion problem which is mainly influenced by the quality of
graph embedding. Proposed method prediction is compared
to the prediction produced given the state-of-the-art embed-
ding learning methods and raw method. In order to have a
fair evaluation, we conduct experiments with two different
regressors on two datasets with five different training sizes.
We choose nex regressors: LASSO [25] as representative of
unstructured methods and Sparse Gaussian Conditional Ran-
dom Fields (SGCRF) [21, 29, 30] as representative of struc-
tured methods.

The forecasting accuracies for two datasets are pre-
sented in Table 2 and Table 3, where the top parts in both
tables show the results evaluated with LASSO, and the bot-
tom parts show the results evaluated using SGCRF.

With LASSO as the regressor, the target space embed-
ding methods CPLST and FaIE consistently outperformed
feature space learning method (SAGA) on Precipitation data.
However, SAGA performs better than target space embed-
ding methods CPLST and FAIE on Wind data. Since LASSO
is an unstructured regressor, the results reflect that either fea-
ture space or target space learning can benefit the regression
as long as there is redundancy in either space. Our proposed
method SAIRL consistently achieves the best performance
on both datasets with LASSO regressor because it embeds
both feature and target space.

With SGCRF as the regressor, we noted that feature
space embedding learning method SAGA always performs
better than target space embedding learning methods, on
both datasets. As SGCRF is a structured regressor that
accounts for the inter-dependencies among target variables,
the benefit of the target space learning methods is weakened.
Because of joint embedding learning, our proposed method
can effectively absorb the strength from both parts and
hence still leads to better accuracy than alternatives on both
datasets.

In conclusion, there is no consistent winner between fea-
ture space embedding learning methods (SAGA) and target
space embedding learning methods (CPLST and FaIE), since
their performance is bounded by either the amount of redun-
dant information in the original space or the type of regressor
that is used. However, the proposed SAIRL overcomes those
limits by combining the strengths from both latent feature
embedding and latent target embedding. The results indicate
that the embeddings generated from SAIRL are more robust
with high quality regardless of regressor, dataset and amount
of training data.

8.5 Parameter Analysis The effect of dimensionality re-
duction rate (1 − k/min(p, r)) is shown in Figure 3. The
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Figure 3: Effect of dimensionality of latent spaces on Precipitation
data. (a) Reduced feature space. (b) Reduced target space.

effect is evaluated on Precipitation data. When considering
latent feature space (Figure 3) the MSE of both SAIRL and
SAGA decreases when the number of dimensions increases.
This indicates the information is not very redundant in the
original feature space. We also notice that SAIRL outper-
forms SAGA with increasing dimensionality, which reflects
the advantage of conducting target space dimension reduc-
tion inside SAIRL. For latent target space (Figure 3) the per-
formance of both CPLST and SAIRL drop further as the di-
mensionality increases. It suggests the importance of target
space reduction when the original space consists of redun-
dant target data.

Experiments achieve best results for high values of
temporal smoothness hyperparameter δ ∈ {10, 100} which
favors smooth changes of the graph parameters. Structure
preservation hyperparameter α is very sensitive to the other
experimental settings.

9 Conclusion
In this study, we proposed a novel method SAIRL for tempo-
ral graph regression, which can effectively learn intrinsic la-
tent embeddings of both feature and target spaces to facilitate
temporal graph regression. In order to efficiently solve this
problem, we also developed a derivative-free block coordi-
nate descent optimization algorithm with analytical solutions
for all sub-problems. The results of extensive experiments
conducted on challenging real-world datesets provided ev-
idence that our proposed method is superior to alternative
state-of-the-art methods.
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