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Abstract—We present a Gaussian Conditional Random Field
model for aggregation of Aerosol Optical Depth (AOD) retrievals
from multiple satellite instruments into a joint retrieval. The
model provides aggregated retrievals with higher accuracy and
coverage than any of the individual instruments, while also
providing an estimation of retrieval uncertainty. The proposed
model finds an optimal, temporally-smoothed combination of
individual retrievals that minimizes Root Mean Squared Error of
AOD retrieval. We evaluated the model on five years (2006 - 2010)
of satellite data over North America from 5 instruments (Aqua
and Terra MODIS, MISR, SeaWiFS, and OMI), collocated with
ground-based AERONET ground-truth AOD readings, clearly
showing that aggregation of different sources leads to improve-
ments in accuracy and coverage of AOD retrievals.

Index Terms—Remote sensing, Aerosol Optical Depth, Gaus-
sian Conditional Random Fields, Data aggregation.

I. INTRODUCTION

erosols have been recognized among the most important
A quantities in understanding the Earth’s climate [1]. Con-
sequently, accurate retrieval of Aerosol Optical Depth (AOD or
T), a measure of an extinction of Solar radiation by scattering
and absorption between the top of the atmosphere and the
surface, is of great importance to characterize their effect on
Earth’s radiation budget [2]. Currently, a number of satellite-
borne sensors monitor the Earth’s atmosphere and report their
AOD measurements on a daily basis, such as Moderate Reso-
lution Imaging Spectroradiometer (MODIS) aboard Terra and
Aqua satellites [3], Multi-angle Imaging SpectroRadiometer
(MISR) aboard Terra [4], Ozone Monitoring Instrument (OMI)
aboard Aura [5], or Sea-viewing Wide Field-of-view Sensor
(SeaWiFS) aboard SeaStar [6].

The coverage and quality of AOD retrievals from different
instruments can vary for a number of reasons. For example,
swath of MODIS is 2,330km, allowing MODIS to cover the
entire Earth’s surface every day, as opposed to 360km swath
of MISR which results in global coverage only every 9 days.
Quality of AOD estimates from different instruments also
varies with atmospheric and surface conditions [7]. In addi-
tion to satellite sensors, AOD is measured by ground-based,
highly accurate sensors from AErosol RObotic NETwork
(AERONET) [8]. AERONET instruments are placed at several
hundred unevenly distributed locations across the globe, and
their measurements are considered a ground-truth. However,
AERONET cannot provide global estimation of AOD required
for climate models due to limited spatial coverage.
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Different spatial and temporal coverage, design, and specific
mission objectives of the instruments mean that they observe
and measure different, possibly complementary, aspects of the
same phenomenon. Instead of considering various data sources
in isolation, combining retrievals from different sources into
a unique, aggregated AOD retrieval might be the best path
towards obtaining a higher-quality AOD data product. This
was observed in [7], where simple average of collocated Terra
MODIS and MISR retrievals led to an improved accuracy of
AOD retrieval. This result indicates that further improvements
might be possible if more powerful schemes were used.
Equally important issue in remote sensing of aerosols, in
addition to obtaining point-estimate of AOD, is estimation of
retrieval uncertainty. Since AOD retrievals are used as inputs
to complex climate models [9], adequate knowledge about
the uncertainty and quality of AOD retrievals from satellite
instruments is of extreme importance for climate studies.

Several issues need to be considered for the task of ag-
gregation of AOD retrievals. Namely, AOD distribution is
characterized by strong temporal and spatial correlation, which
could be used to improve the accuracy of aggregated retrievals.
Furthermore, due to a number of reasons (e.g., limited cov-
erage of sensors, sensor maintenance, sunglint), it is common
that satellite or ground-based retrievals are missing. In this
paper we propose an aggregation approach that handles these
issues. The method is based on Gaussian Conditional Random
Field (GCRF) [10], which assumes that AOD follows Gaussian
distribution conditionally dependent on satellite retrievals. The
GCRF model can utilize correlations in the values of AOD,
while allowing learning and inference in a presence of missing
retrievals. Finally, the approach provides an easy-to-calculate
point estimate of AOD, as well as estimation uncertainty.

II. GAUSSIAN CONDITIONAL RANDOM FIELD (GCRF)

GCREF is a special type of Conditional Random Field (CRF)
that provides a probabilistic framework for incorporation of
various aspects of complex data into a single model. Let us
denote by x a vector of covariates, and by y = [y1,...,yn]"
an N-dimensional vector of real-valued output variables. For
example, y; can be an actual AOD at a particular time and
place, while x are all available measurements related to AOD
at different times and locations. The conditional distribution
P(y|x) for CRF can be represented in a convenient form as

1 N
P(Y|X) = m exp (—; Ale, ymx)—;j (8, yuyj,X)),
(D
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where A(a, y;,X) is an association potential with weights
I(B, vi, y;, x) is an interaction potential with weights 3, ¢ ~ j
denotes that y; and y; are assumed correlated (referred to as
neighbors), and Z(x, a, B) is a normalization function.

In general, both learning and inference with model defined
in (1) can be difficult due to integration over real-valued y
in Z(x, a, 3). However, the potentials could be designed in
a way which allows efficient learning and inference. First, let
us define the association potential as follows,

M

Al i, x) = Z am(yi -

m=1

0 ()7, )

where 6,,,(-) is the m™™ baseline predictor, c,, is weight of the
b predictor, X! is a vector of covariates used by the m™
predictor to predict y;, M is the number of prediction models,
and o = [y, ..., ap]T. Baseline predictor 6,,(-) can be any
predictor of y; (e.g., operational aerosol retrieval algorithm for
a particular instrument). Quadratic function is easy to interpret:
value of y; close to 8, (x7") is more likely by the model in (1).
We can introduce an arbitrary number of baseline predictors
and their relevance will be determined during training: relevant
predictors will be given bigger o weights, whereas irrelevant
ones will get weights close to 0, thus reducing their influence.
Further, let us define the interaction potential as follows,

Zﬁlél y;)%, 3)

where L is the number of interaction (or, neighborhood)
definitions, each assigned a different weight /3, 6fj isa0/1
indicator function describing whether the i and the 7" outputs
are connected according to the [ neighborhood definition, and
B = [B1,--.,8.]T. If two outputs are neighbors (e.g., AOD
at the same location for two consecutive days), the interaction
potential (3) will force them to have similar values.

When the potentials are defined as in (2) and (3), it can
be shown that the resulting CRF model corresponds to a
multivariate Gaussian distribution A/ (p(x), 3(x)) [10]. For
this reason, we call the resulting model the Gaussian CRF. It
is important to observe that both mean and covariance matrix
are not constant and that they depend on x. However, for the
simplicity of notation, we will use ¥ = ¥(x) and p = p(x).

To obtain explicit expressions for p and 32, let us first define
an N-dimensional vector b = [by,...,by]T with elements

1(1372/1‘7%‘,

b—2Zamm (4)

and N x N matrices Q1 and Q- with elements

M
Quij = 2= O
ij =

0, otherwise,
Q2ij — {ij—Ll Zlell Blé'ﬁ?ﬁ lf Z = ]:7
=221 Bidijs if 7 £ 3.
As shown in [10], the inverse of the covariance matrix (i.e.,
precision matrix) of P(y|x) can be calculated as

1 =2(Qi + Qa), (©)
and the mean of P(y|x) as u = Xb.

if i = j,

&)

A. Training and inference in the GCRF model

Given the model from (1) and a training set D = (x,y) =
{(x4,¥i) }i=1,....N, the training task is to find & and 3 such
that the conditional log-likelihood £(«a, 3) is maximized,

,B), where L(a, 8) = log P(y[x),
(7
solved using gradient descent [10]. On the other hand, given a
trained GCRF model with parameters o and 3, the inference
task is to find the point estimate ¥ of outputs y for given
inputs x. We select y that maximizes P(y|x), equal to the

expected value p,

(&,3) = arg max £(a

)

y =p=3Xb. ()

An important property of the GCRF model is that the un-
certainty of the calculated point estimates is easily computed.
More specifically, 95%-confidence intervals of outputs y are
estimated from the mean and the covariance matrix as

P(y—1.96-diag(X) < y < y+1.96-diag(X)) = 0.95, (9)

where diag(3) denotes the main diagonal of 3 matrix.

B. Handling the missing predictors

In many real-world applications, it is often the case that
some baseline predictors 6,,(x;) might not be available. To
address this issue, we define the association potential as

«Q, Y, X Z O5m6m

where we introduced 0/1 functions 4™ equal to 1 if the m™
baseline predictor provided predlctlon for the i™ output, and
0 otherwise. This results in slightly modified expressions (4)
and (5) for b and Q;, where «, is replaced by «,,0;".

2

Om(x7")",  (10)

III. GCRF FOR AGGREGATION OF AOD RETRIEVALS

We address the problem of aggregation of satellite AOD
retrievals. More formally, we assume we are given training set
D= {Q?qua, 9,?"”, ef’u)’ 05/67""@7 H;misr’ yi}i:l,...,N» where N is
size of the data set, index ¢ corresponds to AOD at particular
time and location, y; is an AERONET retrieval taken as a
ground-truth due to instrument’s high accuracy, and, to make
the notation more intuitive, instead of covariates x and baseline
predictors 6, (x") introduced in (2), m = 1,...,5, we used
0794, gomi, gsw, gierra gmisT respectively, which denote op-
erational AOD retrievals from Aqua MODIS, OMI, SeaWiFS,
Terra MODIS, and MISR, respectively. Furthermore, training
points with available AERONET retrieval are referred to as
labeled, otherwise they are referred to as unlabeled points.

Due to the limitations of the sensors, such as limited cover-
age and sensitivity to atmospheric conditions, it is common
that D has large number of missing satellite and ground-
based retrievals. As an example, let us consider a typical
spatial coverage of Terra and Aqua MODIS, MISR, and
AERONET instruments in the USA during a single day, given
in Figure 1. We can see that different areas may have very
different coverage. For most of labeled data points (e.g., data
with AERONET retrieval from locations A, B, and E) and
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Fig. 2: Graphical representation of GCRF for retrieval aggregation
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Fig. 1: Coverage of instruments over the USA

unlabeled data points (e.g., data without AERONET retrieval
from locations C, D, and F'), AOD retrievals from some of
the satellite instruments are missing. Locations A and C' have
retrievals from all 3 satellite sensors, while B and D are
just outside MISR’s swath and do not have its AOD retrieval.
Locations E and F' are outside the swaths of all instruments,
and do not have any satellite retrieval available. Moreover, we
note that even when a location is covered by an instrument,
availability of retrievals also depends on sensitivity of the
instruments to technical, atmospheric, and surface conditions,
further exacerbating the problem of limited coverage.
Satellite sensors considered in this study can be divided
into two groups, one that collocates with AERONET sites
around 10:30am local time (comprising Terra MODIS and
MISR instruments), and another that does so around 1:30pm
local time (comprising Aqua MODIS, OMI, and SeaWiFS
instruments). We choose to provide aggregated AOD retrievals
at these two discrete time-points every day at every location.
Thus, each location for each day contributes two data points to
D, one with AOD retrievals from two satellite instruments with
morning overpass, and the other data point with AOD retrievals
from three satellite instruments with afternoon overpass.

A. GCRF aggregation model

The graphical representation of the GCRF model for AOD
retrieval aggregation, derived from the GCRF model from
Section II-B, is shown in Figure 2. We did not consider
spatial correlations due to sparse distribution of AERONET
sites in our data set, and we set all interaction weights /3
between ™ and j™ outputs to zero if i and j correspond to
different locations. As a result, different AERONET sites are
independent, and Figure 2 corresponds to a single location.
We note that the same « and 3 parameters are used for all
locations. As we consider retrievals from 5 satellite sensors,
we set M = 5 in equation (2) for the association potential,
and represent influence of satellite retrievals on outputs with
a dashed line in Figure 2. For the interaction potential, we
assume AOD values are temporally correlated. To encode
this assumption, we linked within-day outputs at 10:30am

and 1:30pm, and associate weight §; with these links (thick
lines in Figure 2). We also linked 10:30am outputs from
two consecutive days, as well as 1:30pm outputs from two
consecutive days, and associate weight 8o with these day-to-
day links (thin lines in Figure 2). The resulting potentials are

A, i, x) = 16} (yi — 077")? + aad? (yi — 07™)?
+ a35§°’(yi — efw)2 + 0445?(3/1‘ _ ezterra)Q
+as6; (yi — 072,
(11)
L(B,yiyj,%) = P10y - (9i = y;)* + Badly - (s = 43)%,

where 6", m € {1,...,5} are 0/1 indicator functions re-
turning 1 if, for the i output, there is an available retrieval
from Aqua MODIS, OMI, SeaWiFS, Terra MODIS, and
MISR, respectively, and 0 otherwise, while 5}j and 5% are
0/1 indicator functions returning 1 if y; and y; are within-
day neighbors or between-day neighbors, respectively, and 0
otherwise. We note that indicator functions 6}, 07, and &;
always return 0 for odd-indexed y;, while J} and 7 always
return O for even-indexed outputs.

GCRF aggregation model has very useful properties. In
particular, it can aggregate baseline retrievals even when
an arbitrary number of baseline predictors are unavailable
for some output y;. GCRF model learns the importance of
different baselines by assigning higher o weight to more
accurate ones, and can also utilize temporal correlations in
AOD values, where strength of temporal correlations is learned
and quantified through § weights. Moreover, GCRF readily
provides uncertainty estimates of output retrievals. Lastly,
assuming we use indexing of data points shown in Figure 2, the
resulting matrix X! in (6) is pentadiagonal. Consequently,
inverse of X!, required in the gradient-based optimization,
can be found in very favorable O(N) time [11].

B. GCRF training with missing AERONET AOD retrievals

As discussed previously, it is possible to have unlabeled data
points in training data. In this case the aggregation of satellite
retrievals becomes a semi-supervised task. In particular, let us
denote the joint probability of labeled and unlabeled points as
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TABLE II: RMSE of instruments and GCRF (upper part shows 1:30pm, middle part 10:30am, bottom part labeled data results)

Coverage No. of points Individual sensors Only 5 Only S5 All B

All MODIS Aqua 7,246 0.0872 0.0822 0.0825 0.0756
All OMI 10,142 0.2390 0.1930 0.1482 0.0934
All SeaWiFS 2,205 0.0739 0.0630 0.0642 0.0607
MODIS Aqua alone 2,102 0.0889 0.0850 0.0773 0.0741
OMI alone 4,528 0.2934 0.2744 0.2010 0.1114
SeaWiFS alone 237 0.0800 0.0771 0.0784 0.0753
MODIS + OMI 3,868 0.0893 | 0.2123 0.0886 0.0925 0.0827
MODIS + SeaWiFS 222 0.0982 | 0.0747 0.0665 0.0655 0.0634
OMI + SeaWiFS 692 0.1011 | 0.0837 0.0758 0.0760 0.0691
MODIS + OMI + SeaWiFS 1,054 0.0717 | 0.0715 | 0.0650  0.0475 0.0506 0.0495
All MODIS Terra 8,725 0.0905 0.0826 0.0819 0.0800
All MISR 2,165 0.0652 0.0664 0.0735 0.0725
MODIS Terra alone 7,552 0.0863 0.0845 0.0822 0.0806
MISR alone 992 0.0618 0.0636 0.0657 0.0677
MODIS + MISR 1,173 0.1142 | 0.0680 0.0686 0.0795 0.0763
All labeled 44,445 — 0.1634 0.1328 0.1080
All labeled with any satellite 22,420 - 0.1430 0.1158 0.0852
All labeled without satellites 20,025 — 0.1817 0.1481 0.1271

TABLE I: Coverage of baseline predictors in the 5-year data

Instrument No. of days Coverage
Terra MODIS 20,286 20.37%
MISR 4,906 4.93%
Aqua MODIS 16,711 16.78%
OMI 23,332 23.43%
SeaWiFS 4,567 4.59%

P(yr,yu|x) ~ N(w,X), and let us separate prediction vector
p and precision matrix X! into labeled and unlabeled parts
as p = [pr,pup)" and 71 = [Qrr, QLu; Qur, Quul.
Then, the marginal distribution of the labeled part is equal to
P(yL|x) ~ M(pr, (Qrr — QruQpyQur)~t). To obtain a
semi-supervised training procedure, we redefine the likelihood
as L(a, B) = logP(y|x) and maximize modified (7).

IV. EXPERIMENTS

We used ground-based AERONET data [8] and data from 5
satellite instruments from 2006 to 2010, collected over North
America, and considered AOD at 550nm wavelength. If a
source did not provide AOD retrievals at this wavelength, we
performed a linear interpolation or extrapolation in the log-
scale of retrievals at two closest wavelengths to 550nm [3].
There were, on average, 56 working AERONET sites each
year, and we estimated AOD twice a day at every AERONET
location, resulting in a total of 199,134 data points in the
collected data set. In all experiments we report results after
leave-one-year-out cross-validation. After 5 repetitions, test
data were pooled together and Root Mean Squared Error
(RMSE) on labeled test points was calculated and reported.

For the AERONET sensors we downloaded data for all
sites from AERONET website!, and used the highest-quality
Level 2.0 AOD data. For the satellite sensors, we down-
loaded data from Multi-sensor Aerosol Products Sampling
System (MAPSS) website’>. We only used research-quality
AOD data products: 1) MODIS - Daily Level 2 aerosol data
product, MODIS collection 5.1 (MODO04_L2 and MYDO04_L2,
for Terra and Aqua, respectively); 2) MISR - MIL2ASAE
data product, a MISR Level 2 aerosol product; 3) OMI

laeronet. gsfc.nasa.gov/cgi-bin/combined_data_access_new, March 2014

2disc.sci.gsfc.nasa.gov/aerosols/services/mapss/mapssdoc, March 2014

- OMAERUY, a Level-2 near-UV aerosol absorption and
extinction optical depth and single scattering albedo OMI data
product; 4) SeaWiFS - SWDB_L.2, Deep Blue Aerosol Optical
Depth Daily Level 2 data product. Coverage of operational
retrievals is given in Table I. We see that MISR and SeaWiFS
instruments cover less than 5% of days during the 5-year
period, while OMI has the highest coverage of nearly 24%.

We report RMSE only on subsets of labeled points, summa-
rized in Table II. For example, row "MODIS + OMI”’ reports
results on a subset of labeled points that have both Aqua
MODIS and OMI retrieval, but not SeaWiFS retrieval. In the
bottom part we do not list RMSE when a model did not have
a complete coverage on test data.

Let us first discuss results of baseline predictors shown
in the ”Individual sensors” column. The results indicate that
the performance of different instruments varied significantly,
both in accuracy and coverage. Regarding 1:30pm results, we
see that SeaWiFS retrievals overall were more accurate than
both Aqua MODIS and OMI retrievals. It is interesting to
observe that OMI accuracy was particularly low when MODIS
and SeaWiFS retrievals were not available. Whenever OMI
provided AOD retrieval along with some other instrument, its
accuracy improved significantly, which indicates there could
be certain issues with the quality checks of OMI retrievals. We
can also see that SeaWiFS consistently outperformed Aqua
MODIS, but that it had around 3 times smaller coverage.
Regarding 10:30am results, MISR achieves 38% lower RMSE
than Terra MODIS, while having 4 times smaller coverage.
Interestingly, the accuracy of MODIS in the absence of MISR
was much higher than its accuracy when MISR was available,
explained by larger MODIS sensitivity to sunglint [4].

Further, we considered GCRF models with increasing levels
of complexity, and investigated how the introduction of 3 pa-
rameters influences performance. For that purpose, we trained
GCREF with different combinations of 3 parameters: (1) model
without interactions (81 = B2 = 0); (2) model with diurnal
interaction (81 # 0, B2 = 0); (3) model with day-to-day
interaction (51, = 0, B2 # 0); (4) model with both interactions
(B1 £ 0, B2 # 0). In the bottom three rows we see that the
overall RMSE on all labeled points dropped significantly when
we included more temporal interactions in the model. Overall
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Fig. 3: GCRF uncertainty estimate for AERONET site located at Maryland Science Center, Baltimore, for year 2007 (colored
dots denote that satellite AOD retrieval is available for that particular day; dashed vertical line denotes day 185)

RMSE on labeled points with at least one satellite retrieval
dropped from 0.1430 to 0.0852 when both day-to-day and
diurnal interactions were included, an improvement of 41%.

Compared to the RMSE of individual instruments, GCRF
accuracies for 1:30pm have improved. In the case of 10:30am
results, RMSE on data points with MISR retrievals increased
due to temporal averaging enforced by (; and (3. Thus,
it seems that we should use retrievals from very accurate
MISR retrievals when available, and use the power of temporal
smoothing when MISR retrieval is missing. However, it is
important to note that only 4.76% of data points had high-
quality MISR or SeaWiFS retrievals. Moreover, results shown
in upper and middle parts of Table II cover only 22,420 labeled
points that had retrievals from at least one of the instruments.
This amounts to 11.2% coverage of the whole data set, while
GCRF model provides aggregated retrieval for all 199,134
points due to its ability to leverage temporal correlation.

In Figure 3 we give an example of daily uncertainty
estimates for the AERONET site at Maryland Science Center
in Baltimore, USA. Colored circles represent availability of
individual satellite retrievals. We see that uncertainty gradually
increases with distance from the nearest satellite retrieval, an
example of the influence of the B parameter modeling the
daily interaction between retrievals. It is interesting to observe
a drop in uncertainty at day 185 in Figure 3b, although no
instrument retrieved AOD at 1:30pm on that or any of the
neighboring days. This can be explained by the Terra MODIS
retrieval observed at 10:30am that day, as seen in Figure
3a. This is an example of the influence of the (5; parameter,
which models the interaction between 10:30am and 1:30pm
retrievals. Influence of o parameters is also visible in Figure
3; the availability of MISR or SeaWiFS retrievals always
results in sharp drops in uncertainty, as these instruments were
assigned the largest o parameters (omitted for lack of space).

V. CONCLUSION

We presented a GCRF model for fusion of AOD retrievals
from multiple instruments. Ease of modeling interaction be-
tween outputs, ability to handle missing data, high-quality of
the aggregated AOD retrievals, as well as the interpretability

of its outputs, strongly suggest that the GCRF model can
represent an important tool in remote sensing applications.
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