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Abstract

This paper describes the implementation of a
prediction model for real-time assessment of weather
related outages in the electric transmission system. The
network data and historical outages are correlated with
a variety of weather sources in order to construct the
knowledge extraction platform for accurate outage
probability prediction. An extension of the logistic
regression prediction model that embeds the spatial
configuration of the network was used for prediction.
The results show that the developed model manifests
high accuracy and is able to differentiate an outage area
from the rest of the network in 1 to 3 hours before the
outage. The prediction model is integrated inside a
weather testbed for real-time mapping of network
outage probabilities based on incoming weather
forecast.

1. Introduction

Weather conditions present a major threat to
electricity networks as 75% of power outages are either
(1) directly caused by weather-inflicted faults (e.g.,
lightning, wind impact causing surrounding vegetation
to contact transmission lines), or (2) indirectly by
failures of equipment, caused partially by weather
exposure (e.g. prolonged overheating or exposure to
lightning-induced over-voltages) [1].

Due to recent weather trends, the number and
frequency of power outages has dramatically increased
[2]. This growth of grid outages and associated
reliability deterioration is primarily due to severe
weather caused by high wind, lightning, snow/storm,
floods, etc., which is often driven by increased
variability and extremes in seasonal weather patterns.
The atmospheric conditions most conducive to severe
weather are expected to increase [3-5], triggering
increases in outage frequency and finally resulting in
huge economic, social, and environmental risks to
power systems and its customers.
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Variety of studies have addressed the impact of
extreme [6-8] and catastrophic [9,10] weather on power
system infrastructure. The impacts of large-scale storms
and hurricanes have been evaluated [6], while risk
analysis has been performed for evaluation of wind
storm impacts [7]. The work in [11] provides a statistical
analysis of the spread of outages over an electric
transmission network during severe weather events. The
time-varying weight factors were introduced as a
measure of weather impact on component failure rates
and restoration times [12]. Historical weather data were
correlated with historical outage data in order to develop
a damage forecast model for restoration in [13].

Recently, the focus was on trying to improve the
outage area prediction. The solution developed by the
Weather Company [14] calculates the probability of an
outage area based on the unfolding weather conditions.
The UConn Outage Prediction Model [15] provides
prediction for up to 3 days with 6-hour resolution.
However, there are still many challenges in combining
weather forecast with utility outage prediction as
pointed out in [16]. The mentioned solutions are
accurate in detecting outage areas, or predicting the
number of expected outages in an area, but they are
rather imprecise in identifying the exact outage
locations. Obtaining a solution that is not only more
accurate but also more stable remains a major challenge.
To address the inaccuracy issue, the logistic regression
model was used to predict weather related outage
probabilities [17]. The solution in [17] was a good step
to demonstrate the potential of using logistic regression
to improve outage probability prediction, but it did not
take advantage of the integration of real-time weather
forecast or spatial information to improve the
knowledge source.

The proposed method utilizes the knowledge from
historical outage and weather data to provide accurate
predictions 1-3 hours ahead. However, since spatial
proximity plays an important role when it comes to
outage occurrence prediction, the data holds a certain
spatial structure that needs to be taken into account.
Recently, ensembles that learn from structured data
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have shown to be quite effective [18, 19]. Moreover,
collaborative ensembles [20, 19] were proposed to
enhance the performance of ensemble models by
allowing their constituent components to interact.
Therefore, the proposed method relies on a collaborative
structured ensemble scheme [19] and extends its
capabilities by: a) Adapting the objective function
proposed in [19] to handle binary classification
problems such as outage occurrence prediction. This
objective strives to meet a proper balance between
underfitting and overfittting, which is a fundamental
challenge in machine learning; b) Employing multiple
“local” Logistic Regression models (ensemble
components) to learn different substructures and
exchange information across their substructures in a
manner that minimizes the objective function; and c)
Providing probability estimates for outage occurrences
in addition to the outage occurrence predictions.

This novel solution not only improves the accuracy
when predicting outage occurrences, but also provides
high accuracy in separating the areas in which outages
did not occur.

2. Weather Testbed Architecture

To properly capture the continuously evolving
weather impact on power systems, insights into the
geographical layout of an electricity grid, as well as the
evolving weather conditions need to be presented in a
granular spatiotemporal framework. Moreover, spatially
and temporally correlated measurements, coming from
both utility infrastructure and weather data sources,
need to scale to the temporal dynamics of the knowledge
extraction process [17].

The Weather Testbed that supports integration of
Big Data sources related to weather impacts on electric
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transmission and distribution is depicted in Fig. 1. The
platforms in Fig. 1 are loaded with electric utility data
and environmental data from a variety of data sources.
The testbed is aiming at emulating the utility control
center capabilities by providing the following
components: 1) Storage and manipulation of the Big
Data using iRODS [21]; 2) Spatial integration of
heterogeneous data using ArcGIS [22]; 3) Temporal
integration of real-time measurements using OSISoft PI
[23]; 4) Supercomputing capabilities for execution of
data processing, prediction algorithms, and optimization
solutions; and 5) Visualization of real-time progression
of weather threats and their impact on the network using
an integrated ArcGIS and OSISoft Pl platform, and
Activu display [24].

For managing the big data access within the testbed,
the Integrated Rule-Oriented Data System (iRODS) data
management software is used. This system enables the
following capabilities: 1) setting up iIRODS zones for
hosting the data, 2) project-wide data management for
policy enforcement, 3) logging activities for later
auditing, 4) sharing local and remote data for ease of
access from a single user interface, and 5) data exchange
between iRODS and public software repositories for
optimization of resources.

ESRI ArcGIS is used for the spatial correlation of
data. The data preprocessing and extraction of
parameters for the prediction model is done using
existing and custom-made ArcGIS tools and scripts. The
visualization of results is done using both ArcGIS
(spatial representation of results) and OSISoft PI
(temporal  representation of real-time results)
visualization capabilities. The extensions to ArcGIS
developed for our purposes allow integration and
spatiotemporal correlation of standard data types and
models describing power systems in addition to novel
data sources such as weather data.
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Figure 1. Weather testbed architecture.
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The PI Historian platform is used for temporal
analysis and visualization. Some of the data such as the
weather station data (coming with resolution up to 1
min) and utility measurements are collected in real-time.
This data is integrated using the OSISoft Pl system. The
goal of this study is prediction of weather related
outages. Thus, the focus of the temporal data processing
is to extract the parameters during the historical outages
from the data collected in real-time.

The Activu wall display is used for visualization of
the prediction model’s results in real-time, emulating
the real utility control center environment. The weather
testbed allows for visualization of real-time weather risk
maps that can enable transmission and distribution
operators to follow the consequences of the unfolding
environmental events on the severity of the impacts on
the network.

This testbed demonstrates how the traditional
sources describing different attributes of the power grid
can be spatiotemporally associated with external
sources of data and with the GIS and GPS features for
improving decision-making capabilities. Such an
architecture is capable of supporting a variety of
weather related studies relevant to power system
operation and planning, as well as to outage and asset
management.

What  differentiates  this  decision-making
environment from the conventional utility solutions is
the real-time processing and extraction of knowledge
from unfolding weather forecasts for real-time
interpretation of the impacts.

3. Data Sources and Processing

A variety of data sources was used for this study: 1)
data from the utility geographical information system

(GIS), 2) utility historical outage records, 3) historical
weather measurements, 4) historical weather forecast
data, and 5) elevation data.

Elevation data was extracted for the locations of all
transmission substations using Elevation API provided
by the Google Maps Platform [25]. The description of
other data sources is provided in the following
subsections.

3.1. Historical Outages. We used historical outage
data from Bonneville Power Administration (BPA)
[26]. The information for the transmission line outages
caused by weather was extracted for the period from
January 1%, 1999 to May 10%, 2018. A total of 16,806
weather related outages was identified. The following
parameters were collected for each historical outage: 1)
outage location, 2) outage time and date, 3) operating
voltage, and 4) outage cause (lightning, ice, tree, tree
cut, tree blown, tree growth, wind, earth slide, weather).

The geographical data for the BPA service area was

obtained from [27]. As presented in Fig. 2, the following
shapefiles were used: 1) BPA_TransmissionLines, 2)
BPA_Substations, and 3) BPA_ServiceArea. A total of
639 substations were selected for the study. The network
area spans over five states: Washington, Oregon, Idaho,
Montana, and California.
3.2. Weather Data. For the extraction of weather
parameters we used historical land-based weather
station data collected by the Automated Surface
Observing Systems (ASOS) program [28]. ASOS is a
network of surface weather observations operating 24-
hours a day with maximum temporal resolution of
measurements of 1 min. The lowa Environmental
Mesonet (IEM) [29] was used for data download. A total
of 84 weather stations were selected in the Pacific
Northwest Area.

Table I. Fractions of missing data from ASOS observations.

Temperature | DewPoint | RelHumidity | WindDirection

WindSpeed

Precipitation | Pressure WindGust | WeatherCode

0.146 0.148 0.148 0.145 0.134

0.312 0.265 0.378 0.336

@ Weather Stations

©  Substations

Transmission Lines

E Service Area

Esri, HERE, DeLorme, A y © 0| S P and

the GIS user community

Figure 2. Locations of ASOS weather stations and network componehts.
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The map of locations of weather stations across the
network area is presented in Fig. 2. The following
parameters were extracted from the ASOS data:
Temperature [F], Dew Point [F], Relative Humidity
[%], Wind Direction [degrees], Wind Speed [knots],
Pressure [mb], Precipitation/Hour [inch], Wind Gust
[knots], and Present Weather Codes. If there was no
measurement of a parameter within 1 hour of the
targeted time the value was declared missing. Table |
lists the fractions of missing data, for each of the
extracted parameters, out of a total of 34633 observation
points (16806 with outages and 17827 without outages).

Weather forecast data was used for the construction
of real-time outage probability maps. Historical weather
forecast data was obtained from the National Digital
Forecast Database (NDFD) [30]. The data was extracted
using the NDFD GRIB Decoder - degrib [31]. The
following elements were extracted: Temperature [F],
Dew Point [F], Relative Humidity [%], Wind Direction
[degrees], Wind Speed [knots], Precipitation Probability
[%], and Wind Gust [knots]. The weather forecast for a
time interval of 1-3 hours was extracted from the dataset
for the time interval of 1-3 days from the Pacific
Northwest NDFD Sector. An exception was the
precipitation probability which is forecasted every 12
hours. The spatial resolution of forecast data is 5 km.

Before preprocessing, the total size of the historical
weather dataset was ~14 GB (the weather stations in the
vicinity of the network were selected for a period of 20
years). Weather forecast generates about 100 MB of
data per day, which reaches about 35 GB for one year of
testing.

__________________________________

ASOS i
STATION LIST| |

4. Spatiotemporal Correlation of Data

The prediction model’s input requires all the data
sets to be spatiotemporally correlated. Fig. 3 presents
the overview of this process. The first stage includes
preprocessing and extraction of the ASOS, Outage, and
Forecast tables individually. The second stage
spatiotemporally correlates these tables into training,
testing, and mapping datasets for further use by the
prediction model.

The BPA geodatabase, containing locations of
network substations, transmission lines and service area,
was used as a spatial reference for the dataset extraction.
The ASOS dataset was extracted from the IEM by
selecting the required parameters for the weather
stations in the network area, for the 1/1/1999-5/10/2018
period. The weather stations were selected based on
their proximity to the network substations. The
elevation data was extracted from the Google Maps
Elevation API for the set of substation coordinates, and
added to the outage table as an additional parameter.

The outage locations were extracted from the BPA
outage table and correlated with the BPA map of
transmission lines. The exact locations of outages are
not known to the authors. The available transmission
line historical outage dataset specifies the portion of
transmission line where an outage occurred, but not the
exact coordinates. For the purpose of easier processing
and visualization of outage locations, every outage
location was associated with its closest substation. This
does not mean that the outage occurred in that
substation, it means that the outage occurred in the close

NDFD DATABASE

SELECT WEATHER
STATIONS IN THE AREA

REDUCE BASED ON
SUBSTATIONS
PROXIMITY

ASOS DATABASE I

ELEVATION API
(SUBSTATION
COORDINATES)

SELECT FROM IEM BASED ON:

1. STATION LIST

2. DATES: 1/1/1999 -5/10/2018

3. PARAMETERS: TEMP, DEWP,
HUMID, WDIR, WSPD, PRESS,
PRECIP, WGST, WCODE

SPATIAL JOIN
(ASOS STATIONS
TO SUBSTATIONS)

1. DOWNLOAD FROM NDFD

[ BPA OUTAGE DATABASE | ARCHIVE FILES FOR

CORRELATE TRANSMISSION
LINE WITH AN OUTAGE
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WITH OUTAGE

1/1/2017 - 5/10/2018,
PARAMETERS: TEMP,
DEWP, HUMID, WDIR,
WSPD,, PRECIP, WGST

2. DEGRIB ALL FILES BASED
ON LIST OF SUBSTATION
COORDINATES

3. NORMALIZE THE TABLE

[ asoscsv | |

OUTAGES.CSV

] [ rorecastcsv |

I

EXTRACT NON-QUTAGE
'WEATHER PARAMETERS

FOR EACH OUTAGE EXTRACT
'WEATHER STATION PARAMETERS

FOR EACH TIMESTEP IN
2017/2018 EXTRACT WEATHER
FORECAST PARAMETERS

[ TRAINING SET (1999-2016) AND TESTING SET (2017-2018) | |

REAL-TIME MAPPING PREDICTION SET I

Figure 3. Spatiotemporal correlation of data.
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vicinity to that substation (the selected substation is the
closest substation to the outage).

For the spatiotemporal correlation of ASOS and
outage data, the locations of ASOS stations were
spatially joined to the substation locations and the
associated ASOS station was added to every outage.
Historical weather forecast data was used for the
mapping of real-time outage prediction. For the number
of time steps in 2017/2018 we downloaded the
parameters of interest. Then the exact parameters for the
times and locations of interest were extracted using the
degrid function and the list of substation coordinates.
The outcome of this first stage of processing are tree
datasets, each containing detailed spatial and temporal
reference: historical weather data from ASOS, 2)
historical outage data from BPA, and 3) historical
weather forecast from NDFD.

The second stage of processing creates training and
testing datasets by extracting the ASOS parameters for
each historical outage. In addition, a number of
historical time steps without outages was extracted from
the ASOS data so as to construct a balanced input
dataset for the prediction model. The final training and
testing datasets contain the following parameters: date
and time, substation 1D (location code), operating
voltage, weather parameters from ASOS, presence of
outage, and outage cause code. For the real-time
mapping, the system weather forecast data was
correlated with the historical outages. For multiple
timesteps (some without outages, and some with
different types of outages), we extracted the weather
forecast made between 1 and 3 hours before the outage
event based on the availability of NDFD data. For the
probability of precipitation, the 12-hour forecast was
extracted. The weather forecast does not contain
pressure and weather codes. These parameters were
removed from the prediction datasets for the purpose of
real-time mapping.

The last part of the spatial analysis is visualization
of results. For this purpose, the predicted outage
probabilities for each substation were converted into a
shapefile using the substation coordinates.

5. Prediction Model

The objective of this study is to estimate the
probability of an outage event, given its location
properties, time, operating voltage, and various
weather-related parameters. Having an insight about the
probability of such an event, action towards preventing
an outage can be taken in a proactive manner. For this
purpose, Logistic Regression [32], a probabilistic
discriminative classifier, is considered for the task at
hand. Formally, a Logistic Regression classifier models

the posterior probability of an outage event occurrence
(y = 1), given a vector of measurements x, as

P(y = 1|x;w) = o(wTx),

where w are the model’s coefficients, and o is the
logistic sigmoid function:

1

T e ———
o(W'x) 1+ exp(—wTx)’

For the particular application of interest, let X =
[x4,..,xy]7 be a matrix in which each x; € R¢
(observation) contains features associated with the i-th
substation. Moreover, let y = [yy,..,yy]" be their
corresponding class labels such that y; € {0,1} is the
label of x;. If y; = 0 an outage event did not occur,
whereas y; = 1 indicates an outage occurrence, near the
i-th substation.

A Logistic Regression model is fitted using the
conditional distribution of the labels y, given the
observations X:

N

PO w) = | |ow™0(1-ow™x))" "
i=1

The model is fitted by determining the optimal
coefficients w that maximize the logistic loss function,
i.e.

w* = argmax L(w); L(w) = log P(y|X;w)
w

N
= Z yiloga(wTx;) + (1 —y)log(1 —o(w'x))).

i=1
The above optimization can be carried out by gradient-
based methods [33] since L(w) is convex and its
optimization is not constrained.
5. 1. Accounting for spatial proximity by
substation embedding. The described logistic
regression model is aimed at learning the relationship
between the outage outcomes y; and the substations’
features x;. However, a limitation of such a model is that
it cannot account for the dependencies among the
substations such as their spatial correlations described
by the distances between them. For instance, if an
outage occurs on a transmission line leaving a certain
substation, it is likely that a nearby substation will
record an outage as well. Such information is not
captured by traditional probabilistic models such as the
Logistic Regression model.

In our study, this limitation is addressed by learning
representations of substations based on their spatial
proximity. More precisely, the modularity approach
[34] is used to generate vector representations
(embeddings) in a K-dimensional space such that two
substations that are spatially close to each other have
similar representations.
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Following a weighed graph-based formulation,
nodes represent the substations while the links’ weights
are computed as distances between substations.
Assuming that G is a uniform random graph, the
expected number of links between nodes i and j whose

. didj .
degrees are d; and d; is 2‘ L where m is the total number

m

of links in G. Therefore, the modularity matrix B for the
adjacency matrix A is determined as

1
B=A-—dd’.
2m

The matrix B is then decomposed using SVD and the
top K eigenvectors are used to embed the nodes
(substations) in G.

These embeddings are appended to the original
substations’ features and the extended feature vectors
are used to learn a Logistic Regression model as

w* = argmax log P(y|[X,V']; w),
w

where the rows in V' are the substations’ embeddings.
This change in the input representation essentially adds
an implicit spatial-awareness to the model’s capability.
5. 2. Collaborative Logistic Ensemble Classifier
(CLEC). A classification model built upon
embeddings that incorporate the spatial proximity of
substations, in addition to their original features, may
capture the overall structure among them. However,
such a model is not aware of useful substructures within
the network of substations. An ensemble-based model
was proposed in [19] to further capture hidden
substructures within networks and, at the same time, aim
at attaining the proper balance between bias and
variance, and thus between underfitting and overfitting,
by accounting for specific generalization insights in
structured regression. Here, we extend the capabilities
of this approach to the Collaborative Logistic Ensemble

Classifier (CLEC) which can handle binary
classification problems.
Consider the training dataset D ={z, =

(X1, ¥1), -, 2y = (Xn, yn)} in which the constituents of
X and y are organized into pairs. The bias-variance
balancing objective function of CLEC is defined as

Ropj(h D) = JRemp(h, D)2 + dCorr(£(, h), z)?

where Ry (h, D) = 1/N XX, £(z;, h) is the empirical
risk of a model h w.r.t. D and dCorr(£(:, h), Zt,) is the
distance correlation [35], a measure of statistical
dependence between a value outputted by a given loss
function #(-,h) and a random training example
(observation) z,,,. Essentially, minimizing the first
term in R,,;(h, D) protects against underfitting, while
minimizing the second term indirectly prevents from
overfitting ([19] explains this in more detail). Although

Ropj(h, D) has been initially proposed for structured
regression problems, it can be easily generalized to a
different supervised learning problem by defining
£(-,h) to suit the problem at hand. As this study
concerns a binary classification problem, the loss
function is chosen to assess misclassifications, i.e.
2(z;,h) = I(y; # h(x;)), where I is an indicator
function.

To discover hidden data substructures, CLEC
employs multiple “local” Logistic Regression models.
For this purpose, D is sampled uniformly M times using
stratified sampling without replacement, thus generating
M data subsets D1, ..., DM of size nN, where n € (0,1).
Thereafter, each D™ is used to train a single Logistic
Regression component Fpm. Upon training all M
components, the label of an unobserved substation x; =
[x,v'] can be predicted as

®p(x,) = sign (Z FDm(xa) .

As for the probability scores of &4, they are taken
to be the average (median can also be used) of the
probabilities estimated by the components Fpm.

Further, the components’ subsets are modified by
allowing the components to exchange information
across their subsets. Essentially, the observations (each
corresponding to a single substation) are exchanged
among the components in a way that maximizes the
difference between the values of R,,;,;, calculated before
and after each exchange, i.e.

(% k™) = argmax Aj,
(%))
= ar%n_;ax Ropj(@p,D) — Ropj (P, D) .
ij

6. Evaluation and Results

6.1. Data Preprocessing. The original data contained
missing values in several, mostly weather-related,
features (Table | provides the exact fractions of
missingness per feature). To cope with this challenge, a
nearest-neighbor imputation technique was used.
Moreover, several features were constructed in addition
to the original ones so as to better capture temporal
dependencies among the substations. These include:
days between ad-hoc measurements at substations; hour
of day when measurements were performed, along with
the season that day falls in. The hour of measurements
was categorized within [0,23], while a one-hot
representation was used to binarize the season feature.
In addition, the elevation of each substation was pulled
out and added as a separate feature. The rest of the
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features (weather-related) were normalized using a min-
max normalization, thus scaling them between 0 and 1.
6. 2. Experimental Setup. The experiments were
conducted in a rigorous manner in terms of the horizon
set for prediction. Namely, all models were trained
using the data from 1999 to 2010, while future data up
to 2018, totaling a prediction horizon of 9 years, was
used for testing.

In all of the following experiments, the information
from the spatial distance graph of substations has been
embedded into a 50-dimenstional space using the
modularity-based approach described in Section 5.1.
6.2.1. Baseline Methods: The prediction performance
of CLEC was evaluated and compared against the
following alternatives:

e Logistic Regression (LR): The use of this model
for estimating the probability of outage occurrences
was initially suggested in [17]. Moreover, since the
proposed model incorporates multiple LRs as its
components, LR was considered as a primary
baseline.

o Logistic Regression with spatial information:
This alternative utilizes the substations’ spatial
information by extending the original substations’
feature vectors with spatial embeddings learned
from the substation distance graph. Spatial
information has also been shown to be beneficial
when applied to similar tasks [36].

6.2.2. Evaluation Metrics: To assess the classification

performance of predicting outage occurrences and the

quality of their corresponding probability scores, the
following metrics were considered: (1) Accuracy (ratio
of correctly classified outages), (2) Area under the

Receiver Operating Characteristic curve (AUC), (3) F1

score (harmonic average of a model’s accuracy w.r.t.

both prediction of an outage occurrence when it did not

occur, and vice-versa) and (4) Bias (expected
misclassification error). The greater the value of

Accuracy, AUC and F1, the better, while Bias gets

better as it approaches 1.

6.3. Outage Occurrence Prediction. The

prediction capability of CLEC was assessed for the task

of classifying whether an outage event occurred at a

certain substation or not based on the probability

estimates of its occurrence. Its performance was
assessed using the aforedescribed metrics. The obtained

results are summarized in Table II.

First, from Table I, LR (spatial) obtains greater
classification performance compared to LR which is
consistent across all measures. This supports the
hypothesis that spatial information is truly relevant to
this task. Moreover, it can be observed that CLEC
outperforms its alternatives, yielding higher values for
Accuracy, AUC and F1. The large lift in Bias shows the
benefit of using an ensemble-based model whose

components focus on multiple data subsamples. The
Bias of CLEC can be interpreted as having 232 expected
misclassifications, out of a 1000, while LR (spatial),
which is the next-best performing model, is expected to
have 293. Thus, in theory, CLEC is expected to avoid
~61 outage occurrence misclassifications on every 1000
predictions.

6.4. Logistic Model Coefficient Analysis. To
inspect the impact that spatial information has on
prediction, the coefficient weights of LR and LR
(spatial) were compared and presented in Fig. 4. It can
be seen from the left hand side of the figure that the most
relevant features to LR, w.r.t. their coefficients’
magnitudes, are the last 3 features that correspond to
precipitation, air pressure and wind gust. This is not a
surprise, since these features are related to occurrence of
severe storms that are one of the most dominant factors
affecting the power outages. Once the spatial features
are added (right hand side of Fig. 4), one can observe
that their coefficients vary similarly to the coefficients
of the original features. Finally, it was observed that
spatial features contribute to 3 out of the top 10 largest
coefficients of LR (spatial), thus showing that spatial
information is significantly relevant.

6.5. Performance Variability across Seasons.
The prediction performance of all models was also
evaluated across different seasons (see Table IIl). The
obtained results in terms of Accuracy indicate that
CLEC consistently outperforms LR and LR (spatial),
demonstrating improvements ranging from ~0.25-9.5%
and ~0.33-6.2%, respectively. Improvements of CLEC
in AUC and F1 are manifested in 3 out of 4 seasons. As
for Bias, CLEC manifests improvements across all
seasons. When compared to LR and LR (spatial), the
expected outage occurrence misclassifications that can
be avoided by CLEC range from 31-126 and 24-89 on
every 1000 predictions, respectively. Overall, the
largest improvements were achieved for the Winter
season, while the smallest ones being recorded for the
Summer season which reflects the volatility of the
climate conditions of the region for which the data was
collected and considered in this study.

6.6. Real-time outage prediction mapping. Fig. 5
shows the predicted real-time outage probability maps
generated using weather forecast and a trained predictor.
The maps were created for the timesteps presented in
Table IV. The figures on the left show the results
obtained using logistic regression, while the figures on

Table Il. Prediction performance w.r.t. different
evaluation metrics.

Model Acc. AUC F1 Bias

LR 0.8467 | 0.9278 | 0.8097 | 0.6821
LR(spatial) | 0.8624 | 0.9292 | 0.8242 | 0.7075
CLEC 0.8919 | 0.9313 | 0.8532 | 0.7685
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Figure 4. Coefficients (or feature weights) assigned by a Logistic Regression model trained without (left) and
with (right) spatial features; the magnitude of each coefficient value represents the importance of the feature
it corresponds to w.r.t. predicting outage occurrences. The coefficient values corresponding to the original
features are depicted using light blue, while the values corresponding to the spatial features are depicted
using dark blue color.

the right present the maps created using the proposed
prediction model. The high risk locations in the network
with over 80% outage probability (red color in Fig. 5)
were enlarged for more convenient visualization.

The following observations can be made from the
maps: 1) for the case when there was no outage in the
network, the predicted outage probability was smaller
than 60% for all substations; 2) for the cases when there
was an outage, the area around the outages had points
with very high probability (over 80%) and the rest of the

Table I11. Prediction performance w.r.t. different
evaluation metrics across different seasons.

Model [Acc. |AUC [F1  |Bias
Winter

LR 0.9089 | 0.8358 | 0.7340 | 0.5862

LR spatial) | 0.9176 | 0.8451 | 0.7533 | 0.6272

CLEC 0.9305 | 0.8634 | 0.7803 | 0.7128
Spring

LR 0.8597 | 0.9361 | 0.8221 | 0.6687

LR(spatial) | 0.8792 | 0.9325 | 0.8419 | 0.6932

CLEC 0.9164 | 0.9363 | 0.8822 | 0.7463
Summer

LR 0.7849 | 0.8860 | 0.8770 | 0.8540

LR(spatial) | 0.7841 | 0.8843 | 0.8753 | 0.8613

CLEC 0.7874 | 0.8914 | 0.8766 | 0.8851
Autumn

LR 0.8132 | 0.8906 | 0.6855 | 0.5130

LR(spatial) | 0.8462 | 0.8967 | 0.7211 | 0.5429

CLEC 0.9080 | 0.8874 | 0.7961 | 0.6312

network had no points with outage probability higher
than 60%; 3) both logistic regression and the proposed
prediction model are very good at guessing the area of
the outage for all types of outages; 4) the proposed
prediction model is better than logistic regression in
terms of making prediction precession better on the
spatial level (the number of high risk areas far away
from the outage locations was much smaller).

Ideally, we would like to see red color at the location
of outages, and dark green color everywhere else in the
network. This is because we want to perform preventive
actions only in the area of the outage, and not have to
send maintenance crews all over the network. The
proposed prediction model is closer to this goal than the
logistic regression alone as can be seen by comparing
the figures on the left and right in Fig. 5.

7. Conclusion

Following are the contributions of this work:

e Logistic regression is extended with a
generalization-aware structured learning of an
ensemble in which the components interact by
exchanging substations in a manner that strives to
achieve a proper balance between underfitting and
overfitting.

e The obtained solution is not only more accurate
than the alternatives but is also more stable. It
achieves improved accuracy of predicting outage
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Figure 5. Probabilities and locations of outages for: a) no outage - logistic regression, b) no outage -
proposed method, c) lightning - logistic regression, d) lightning - proposed method, €) vegetation - logistic
regression, ) vegetation - proposed method, g) ice - logistic regression, h) ice - proposed method.

locations as well as of identifying areas without an

outage.

The spatial structure of the utility network is
embedded into the logistic regression prediction

model for

improved

spatial

granularity of

prediction and localization of outages.
e The proposed model shows high accuracy of

identifying outage

locations for the weather

forecast of 1 to 3 hours in advance of an event.

Table IV. Historical cases for the real-time mapping example.
Timestep | Start timestep time | End timestep time | Presence of outage | Outage cause Figure
5 5/1/2017 12:00 5/1/2017 15:00 0 NA a) b)
32 5/4/2017 21:00 5/5/2017 0:00 1 lightning c) d)
1133 9/19/2017 12:00 9/19/2017 15:00 1 vegetation e) f)
1866 12/20/2017 3:00 12/20/2017 6:00 1 ice g) h)
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The weather testbed environment for integrati on of
weather datasets into the utility control center is
developed and described. This kind of environment
allows seamless integration of weather data into all
applications of interest to utility operation.
Methods for extraction and spatiotemporal
correlation of variety of datasets are implemented,
including BPA outage and GIS data, ASOS weather
station data, and NDFD weather forecast data.

A real-time mapping system is developed for
observing outage probabilities in the network using
weather forecast.
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