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Abstract— Typical data mining algorithms follow a so called “black-box” paradigm, where the
logic is hidden from the user not to overburden him. We show that “white-box” algorithms
constructed with reusable components design can have significant benefits for researchers, and
end users as well. We developed a component-based algorithm design platform, and used it for
“white-box” algorithm construction. The proposed platform can also be used for testing
algorithm parts (reusable components), and their single or joint influence on algorithm
performance. The platform is easily extensible with new components and algorithms, and allows
testing of partial contributions of an introduced component. We propose two new heuristics in
decision tree algorithm design, namely removal of insignificant attributes in induction process at
each tree node, and usage of combined strategy for generating possible splits for decision trees,
utilizing several ways of splitting together, which experimentally showed benefits. Using the
proposed platform we tested 80 component-based decision tree algorithms on 15 benchmark
datasets and present the results of reusable components’ influence on performance, and statistical
significance of the differences found. Our study suggests that for a specific dataset we should
search for the optimal component interplay instead of looking for the optimal among predefined
algorithms.
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1. Introduction

Many decision tree algorithms have been developed, but there is no evidence that any
algorithm outperforms all others in every situation. Strong support for this claim is given by No
Free Lunch (NFL) theories [27] where authors prove that there is no classification algorithm that
outperforms others on every dataset, but one can always find an algorithm that is optimal for a
dataset. Therefore, it can be important to broaden the space of available algorithms. Component-
based algorithms, derived by combining components from known algorithms or partial algorithm
improvements, support this goal.

One problem in using machine learning algorithms is that most users are limited to several
available algorithms either incorporated in popular software or frequently used in the research
community. Another problem is that algorithms are typically designed in a black-box manner
with limited adaptability to datasets through a set of parameters. According to [23] the black-box
approach slows down development of data mining algorithms, because new algorithms are
developed incrementally and become more complex, therefore reimplementation takes a lot of
time. This fact caused a large time gap between the development of algorithms and their
application in practice.

The need for standardized algorithm components that can be interchanged between algorithms
is reported [23]. The same article also supports the development of open source frameworks that
will serve the machine learning and data mining community for fast algorithm development and
fair performance comparison between algorithms and their parts. It is also emphasized that such
an approach would speed up the development and application of new data mining algorithms
because it would enable:

¢ (Combining advantages of various algorithms,



Reproducing scientific results,

Comparing algorithms in more details,

Building on existing resources with less re-implementation,
Faster adaption in other disciplines and industry,
Collaborative emergence of standards.

The question of whether the combination of components could improve algorithm

performance was asked previously [23]. A positive answer to this question is suggested in our

study. Our research supports this problem in three ways:

1.

We proposed a framework for storing reusable decision tree algorithm components as well as
a structure for combining these components into a generic decision tree (GDT) algorithm.

We implemented the components, the GDT algorithm structure, and also a testing framework
as open source solutions for a white-box component-based GDT algorithm design which
enables efficient interchange of decision tree algorithms components. Our platform (WhiBo)
is intended for use by the machine learning and data mining community as a component
repository for developing new decision tree algorithms and fair performance comparison of
classification algorithms and their parts.

We provided statistical evidence that component-based algorithms can outperform, on

specific datasets, some commonly used classification algorithms.

2. Related work

A lot of work is being done in developing platforms for machine learning and on software

engineering based on reusable components. A brief review of prior work related to our study is

contained in this section.

2.1. Machine learning software tools and algorithms



Among the most famous open-source machine learning platforms are Weka [26], R [20] and
Rapid Miner [16]. These platforms support various data mining tasks and have capabilities in
data preprocessing, model generating, model evaluation, and model exporting. The machine
learning algorithms are usually implemented as black boxes, although some effort can be noticed
in generalizing algorithms. For example, the authors of Rapid Miner implemented a decision tree
which can use different split evaluation criteria (ratio gain from C4.5 [19], information gain from
ID3 [18], the Gini impurity measure from CART [4] etc).

In [29] authors propose a DMTL (data mining template library) which consists of generic
containers and algorithms for frequent pattern mining. They show that “the use of generic
algorithms is competitive with special purpose algorithms”.

Some comparison of decision tree design can be found in [17,21]. Key topics important for
decision tree construction are discussed in these papers, although no effort is being made towards
identifying generic structures and reusable components. There are also many hybrid algorithms
in the literature that combine various machine learning algorithms [13, 30]. A popular hybrid
approach consists of combining two or more black-box algorithms into one. Frameworks for
combining components are, however, rarely found in the literature. One such framework is
proposed in [8].

In [11] a framework for fast decision tree construction of large datasets is proposed. The
authors analyzed well-known algorithms and improved their performance, but the main goal of
their proposed generic decision tree was to improve the scalability of these algorithms on large
datasets.

2.2. Reusable components in software engineering



There is no precise way to identify reusable components. Still, reusable design is not new, as it
is widely used in software engineering. In software engineering reusable components are defined
as triplets consisting of concept, content and context [24]. The concept is the description of what
a component does; it describes the interface and the semantics represented by pre and post
conditions. The content describes how the component is realized, which is encapsulated and
hidden from the end user. The context explains the application domain of the component, which
helps to find the right component for a specific problem.

Reusable components, as described at [24] allow, not just the decomposition of an algorithm
into smaller units, but also better description of what the component does and when it should be
used. This is done better than in classical algorithms that are implemented as a whole, i.e. black
boxes, where it is more difficult to describe when the algorithm should be used. Additionally, the
user of a white-box algorithm has the ability to adapt and modify an algorithm to specific data or
constraints. Here, we believe, further research can be done towards automatic data-driven
composition of reusable components into algorithms.

The theory of reusable design, more popularly known as the pattern theory, is grounded in
architecture [1], software engineering [10], organizational design [5] and many other areas. The
main purpose of these researches is sharing of good ideas and easier maintenance of built
systems.

An open list of features that every reusable component should have is proposed in [25], but
this list can be used merely as a guideline, and not as a formal tool for components identification.
Because there are still no unique agreements of what a reusable component is, we can not imply

that the components we identified are the last word in decision tree design.



3. Generic decision trees based on reusable components

In our study, the main principle of component identification was to discriminate algorithm
design structure from specific algorithm solutions. The design structure was saved in a generic
algorithm shell while the specific solutions were identified as reusable components.

Reusable components (RCs) were identified in well-known algorithms as well as in partial
algorithm improvements. We analyzed several decision tree induction algorithms, namely ID3
[18], C4.5 [19], CART [4], and CHAID [12]. The choice of these algorithms was guided by how
much they are available within popular software, together with a survey that points out more
popular algorithms [28]. Further, we analyzed partial algorithm improvements in [14] and [15].
We identified reusable components classified according to frequently occurring sub-problems in
decision tree design. RCs are solutions for sub-problems within the process of inducing the
decision tree. For each of these sub-problems, we isolated several solutions as RCs from the
original algorithms. The sub-problems play an important role in the decision tree design because
for each sub-problem there are many possible solutions, i.e. RCs, and the designer of the
algorithms can choose which RC should be used for solving a specific sub-problem.

Table 1 shows basic RCs for tree growth from four algorithms analyzed in this paper which
have the same generic structure, but differ in specific solutions for certain sub-problems. The
components identified in cells of Table 1 are reusable because there are no barriers for
interchanging these components for a sub-problem, as RCs have the same input and output
specifications.

From Table 1 we can notice that algorithms can be easily upgraded to handle sub-problems

they couldn’t originally. For example, the CHAID algorithm cannot handle numerical



(continuous) data, but in a component-based design it can easily adapt RCs for creating possible
numerical splits from algorithms that include this feature.

Benefit from the component-based approach includes identifying RCs in algorithms and
providing these for use in other algorithms. For example, CHAID includes a RC that groups
attribute categories and splits tree nodes on grouped categories. In decision tree growth, instead
of trying to branch a categorical attribute on all categories (as in ID3 or C4.5), or make binary
groupings (as in CART), CHAID tries to estimate the optimal grouping of attribute categories
using the chi-square test for estimating category differences. For an attribute with 5 values,
CHAID can decide to group the values into 2, 3, 4 or 5 separate value groups, based on the
difference in class distribution.

This behavior can be used independently within any decision tree induction algorithm, as a
RC. It could solve the problem of an overly detailed number of categories of an attribute that are
not informative for a decision. Nevertheless, we are not aware of any algorithm, beside CHAID,
that uses this reasoning to calculate near-optimal category grouping. This approach apparently
has been forgotten by the machine learning community.

RCs are combined following a GDT structure presented in Fig. 1. This structure, we believe,
suits the analyzed algorithms soundly. It is important to notice that the units in Fig. 1 should not
be regarded as algorithmic steps, but as sub-problems that define an algorithm structure.

In Table 2 we show RCs identified in algorithms and partial algorithm improvements we’ve
analyzed and grouped according sub-problems they belong to. The last column in Table 2 shows
whether RCs are currently implemented in the open-source platform we propose, and that will be

explained later.



The sub-problem “Remove insignificant attributes” (RIA) was inspired by attribute selection
in [14]. Although in their paper only one attribute is selected for splitting, we modified this idea
to opt out attributes that should not be candidates for tree nodes, thus improving the speed of an
algorithm. The component “F test/ Chi square test” uses statistical tests to heuristically find
statistically insignificant attributes in every tree node separately.

For “Create split (numerical)” (CSN) we identified one RC, namely “binary”, that is used to
divide numerical attribute values into two distinct subsets as proposed at [9]. This RC can be
found in C4.5 and CART.

For “Create split (categorical)” (CSC) three RCs were identified. “Binary” is used in CART
for generating all possible binary splits, and “Multiway” in ID3 and C4.5 for generating splits on
as many branches as there are categories in the attribute. “Significant” was proposed in CHAID
and it is used to find near-optimal groupings of categories.

For “Evaluate split” (ES) we identified five RCs. “Chi square” was used in CHAID,
“information gain” in ID3, “gain ratio” in C4.5, and “gini” in CART. We also identified the
component “distance measure” in [15] which represents a partial algorithm improvement.

For “Stop criteria” we used typical RCs identified in most decision tree algorithms.

The “Prune tree” (PT) components were found in CART and C4.5 algorithm. “Reduced error
pruning”, “pessimistic error pruning” and “error-based pruning” prune algorithms are employed
in C4.5 while “cost-complexity pruning” is used in CART.

The proposed GDT structure allows the reproduction of analyzed algorithms, although it is not
the main goal of the generic algorithms design. A structure which doesn’t allow replication of the
original algorithms, but allows idea sharing could still be quite useful. Fig. 2 illustrates how C4.5

can be reproduced using RCs.



Inputs and outputs for every sub-problem are defined at Table 3. These definitions allow
generic tree design. In fact, similar to existing algorithms on a higher level of granularity, RCs
are also specified by their inputs, outputs, and parameters.

The GDT algorithm is shown in Fig. 3. The proposed GDT can be extended with more RCs or
with additional sub-problems that could fit the GDT structure.

4. WhiBo: an open-source framework

We implemented the proposed component-based framework, WhiBo, as a plug-in for Rapid
Miner that enables the creation of generic decision tree algorithms for classification. In this
platform every constructed algorithm represents one Rapid Miner operator that can be used in the
environment together with other operators. That means that algorithms generated from WhiBo are
fully integrated with other Rapid Miner operators like IO, data preprocessing, performance
evaluation, visualization, learners etc.

The WhiBo generic tree user interface (shown at Fig. 4) contains four panels:

The left panel contains an array of buttons. Every button represents a concrete sub-problem in

decision-tree algorithms construction.

e The central panel allows users to choose an RC for solving a selected sub-problem.
Additionally, users can choose multiple RCs in certain sub-problems (e.g. multiple “Stop
criteria” RCs, multiple “Create splits” RCs). This panel also enables users to define
parameters for selected components.

e The right panel shows the designed GDT structure (selected RCs and their parameters).

e The top panel contains options for creating new, saving current or opening existing

component-based algorithms.



For illustration purposes, we will construct two component-based algorithms that differ in a
single component. The algorithms will then be applied on the “car” dataset from UCI repository
[3].

Fig. 5 shows the definitions of these two algorithms: the one shown on the left panel is the
classical CART algorithm and on the right is CART with “multiway” instead of “binary” split
for “Create split (categorical)”.

The question is will this “slight” difference in algorithm design have effect on the resulting
tree model? Fig. 6 shows tree models generated with algorithms defined in Fig. 5.

The complexity of the tree models is obviously affected by this change. This complexity
differences can be attributed to change in a single RC. In section five we give evidence that
changes in a single component can result in statistically different classification accuracy.

To illustrate the robustness of WhiBo environment, in the next subsection we provide an
example of extending a repository by a new RC and sub-problem.

WhiBo can be found at the following web page http://whibo.fon.bg.ac.rs. Data mining and
machine learning researchers are invited to join our efforts to exchange components of decision
trees and other machine learning algorithms in an open way based on the proposed WhiBo
platform, as to establish a standard for interchange of components among decision tree based
classification algorithms, as well as other machine learning algorithms.

5. Experiments

Using WhiBo we designed 80 component-based algorithms. The algorithms were created

varying RCs from four sub-problems (RIA, CSC, ES, and PT) while the RC used for CSN was

constant in all algorithms (“bin”). Algorithms were created by combining RCs shown in Table 4.
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Two parameters for splitting and merging in the ‘“chs” component were set to 5% in all
algorithms. Sixteen of these eighty algorithms include the RC “all”. It is a RC that uses, in each
induction step, several methods for splitting categories (in our experiment: “bin” + “mul” +
“sig”). In our experiments we wanted to test if broadening the space of candidate splits improves
the accuracy of the decision tree algorithms.

We performed three types of experiments in which we tested:

1. Statistical significant differences among 80 component-based algorithms on 15 datasets

with a total of 3160x15 pair-wise comparisons,

2. Accuracy, time, tree complexity (weighted average tree depth, number of nodes, etc) of 80

algorithms on 15 datasets, and

3. The “chs/anf” RC’s trade-off between time and accuracy.

We conducted these experiments on benchmark datasets chosen from the UCI repository [3].
Acknowledging existing critiques for the usage of such a repository [22], this study still uses the
repository since it doesn’t try to find a superior algorithm, but merely shows differences in
accuracy among components on different datasets. The goal of our research is fundamentally
different from what’s criticized, since our aim was to find the best algorithm for a single dataset,
rather than a superior algorithm that suits all needs. The chosen datasets are shown in Table 5
(column labeled as “Significant differences” will be explained in Section 5.1), while Table 6 lists
some basic properties of the datasets.

5.1. Statistical significance of component interchange

The goal of the first set of experiments was to determine if there are statistically significant

differences in accuracy among component-based algorithms on a selected dataset. If differences

were significant, this would provide evidence that component exchange between algorithms can
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help significantly improve accuracy. So, this would suggest that for a specific dataset we should
search for the optimal component interplay instead of looking for the optimal among predefined
algorithms.

For this experiment we used combined 5 iterations 2-fold cross-validation F-test [2] because it
was shown to have considerable statistical power, while keeping the type I error low [7]
compared to other popular significance tests.

We compared pair-wise accuracy of 80 algorithms on 15 datasets. In other words, for each
dataset we made 3160 pair-wise comparisons searching for a statistically significant difference in
prediction accuracy. Significant differences in accuracy were noticed on 13 datasets, while
differences above 5% were noticed on six datasets. Datasets in Table 5 are sorted according to
the fraction of significant differences found on classification accuracies between algorithms. For
example, in car 58% of algorithms pairs showed statistically significant difference in accuracy.
On the remaining 2 datasets no statistically significant differences in algorithm accuracy were
noticed. In 3160x15= 47,400 tests a total of 15% significant differences between algorithm
accuracy were found. This significance was measured with 95% of confidence causing at most
5% false positives.

We were searching for the significantly most accurate algorithm on each dataset, i.e. the
winner algorithm on a dataset. We compared algorithms in pairs and calculated a summary score
for each algorithm. Algorithms, compared in pairs, received 1 point if there were no significant
differences in algorithms accuracy (“a draw”). If there were significant differences the more
accurate algorithm got 2 points (“a victory”), and the beaten algorithm O points (“a loss”). This
way we made for each dataset a scoring for all algorithms. Algorithms had an average score of

79 with 6.4 standard deviation and 83.03 median. The distribution of the algorithms accuracy
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scores is shown in Fig. 7. Two groups of algorithms scores are clearly visible where differences
within groups are no more than 5 points (i.e. the group on the left achieved from 82 to 87 points,
and the group on the right from 69 to 74 points), whereas scores between groups differ at least 8
points.

We grouped algorithms in two classes:

1. Best algorithms, scored in range [82, 87] points, and

2. Worst algorithms, scored in range [69, 74] points.

We labeled each of the 80 algorithms with the class the algorithm belongs to, according to
significance scoring, and performed a decision tree algorithm to find rules by which algorithms
were assigned to a class. In Table 7 we show extracted rules that can soundly describe the
scoring classes with 100 % accuracy.

From Table 7 we see which components were parts of “best” and “worst” class of algorithms.
We can conclude that “Remove insignificant attributes” and “Prune tree” have no influence on
algorithms being classified as “best” or “worst”. Algorithms containing “multiway” are always
part of the “worst” algorithms assembly, and also algorithms that combine “all” with “chi-
square”, “gini” or “information gain”.

Popular algorithms reconstructed with RCs are classified according rules in Table 7:
1. C4.5 (I-M-GR-P, I-M-GR-!): worst

2. CART (!-B-G-!): best, and

3. CHAID (!-S-C-!): best.

This picture, though, can be hugely changed on a specific dataset. An algorithm (!-M-C-!)
including “multiway” is part of the best algorithms on “aba” dataset, although on average it is

classified as “worst”.
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Table 8 illustrates ten interesting examples of significant differences found in algorithms that
differ in only one RC. In row 4 we can see that an algorithm significantly looses accuracy when
it uses the “chi-square/anova f test” RC. On the other hand, in rows 7 through 10 algorithms
improve accuracy when using this RC.

In our experiments, the ‘“car”, “nur”, and “tic” datasets showed the largest fraction of
significant differences in pair-wise accuracies among 80 algorithms. What’s more interesting is
that these differences occur between the same algorithms. The statistically significant differences
found in “car” are 78% similar to those found in the “nur” dataset, and 70% to those found in
“tic”. This suggests that algorithms behave similarly on these datasets, which could be due to
some intrinsic dataset properties.

Significant differences observed when replacing RCs motivate analysis of classification
algorithms on the level of components.

5.2. Performance analysis

In the previous experiment we showed that changing RCs in algorithms can result in
statistically significant differences in algorithm accuracy. Our second experiment aims to explore
these differences. Here, besides accuracy, we have also recorded additional properties that
describe the complexity of the resulting tree model (weighted average tree depth, number of
nodes, run time, etc).

These experiments follow a similar scheme to the previous ones, only this time we explore the
overall accuracy of component-based algorithms, rather than score from significance of the pair-

Wwise comparisons.
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The 80 algorithms’ accuracies are distributed as on Fig. 8. The accuracies vary in average
between 83.22% and 79.37%. The results are reported for 10-fold cross-validation test with
stratified sampling.

The 80 algorithms’ average achieved accuracy on all datasets was 81.45, with standard
deviation 1.17. We classified algorithms’ accuracies into three classes using average accuracy
and standard deviation, as algorithms were in average similarly accurate and there weren’t well-
separated groups of algorithms accuracy:

1. The best algorithms (accuracy > 82.62 (average + stand. deviation)),

2. Average algorithms (accuracy [80.28, 82.62]), and

3. The worst algorithms (accuracy < 80.28 (average — stand. deviation)).

We then used a decision tree algorithm on the dataset (inputs 80 algorithms components,
output accuracy class) and discovered 8 rules for the three classes of algorithms, shown in Table
9. The tree showed an accuracy of 97.25 %, with two average algorithms being misclassified as
the best.

From Table 9 we can also notice that the PT component had no influence on classification
accuracy of algorithms. We see that the RC “chi-square/anova f test” (chs/anf) improves
algorithms accuracy in general. Also we notice that “multiway” (mul) algorithms perform badly
on average, as do “all” combined with “chi-square” (chs), “gini” (gin), and “information gain” (inf).
The best algorithms used for RIA are “chs/anf”, for CSC “binary” (bin) and “significant” (sig), or for

CSC “all” with ES RCs “distance measure” (dis) and “gain ratio” (gai). This indicates that some RCs
are more preferable than others on average.

Using this rule we classified the popular algorithms reconstructed with RCs as:

1. C4.5 (I-M-GR-P, I-M-GR-!): worst

2. CART (!-B-G-!): average, and

15



3. CHAID (!-S-C-!): average.

We notice that the three famous algorithms are not part of “the best” algorithms class in
general and that C4.5 performed on the selected 15 datasets in average very bad. Although the
“chs/anf” RC raises accuracy in general, according to the results presented in section 5.1, this
raise of accuracy is not statistically significant. We must also keep in mind that average accuracy
is not representative for all datasets.

The distribution of “car” dataset accuracies is shown on Fig. 9. Algorithms achieved average
accuracy 94.48% with standard deviation 3.63%. We classified algorithms by accuracy into three
classes: [98,09 — 96.76], [91.84-91.49], and [89-88.71] where accuracies inside groups differ no
more than 1.33, and accuracies between neighboring groups differ at least 2.49.

We present rules from a decision tree model (100% accurate) in Table 10. Using this rules we
classified the popular algorithms reconstructed with RCs as:

1.C4.5 (!-M-GR-P, !-M-GR-!): worst
2.CART (!-B-G-!): best, and
3.CHAID (!-S-C-!): best.

On the “car” dataset the component “chs/anf”, which was in average part of the best accuracy
group, had no influence on an algorithm being classified in the best accuracy group.

Accuracy of algorithms varies between datasets. A RC performing well on one dataset can
perform poor on another dataset. However, we noticed that 80 algorithms had similar accuracy
patterns on “nur”’, “car”, and “tic” dataset. We show accuracy patterns for algorithms using
“chs/anf” (Fig. 10) and for algorithms not using this RC (Fig. 11).

On these three datasets, and possibly some other datasets, algorithms behavior could follow

the same pattern. This opens the question whether these datasets are somehow similar. If they
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were similar in some measurable way, it would be possible to predict algorithms’ performance,
based on the performance on similar datasets. This could potentially be used to aid the algorithm
selection process.

Algorithms using “mul” RC on these three datasets results in accuracy loss. Similar accuracy
loss was observed for “chs” and ‘“gin” when combined with “all”. We can also notice that
“chs/anf” reduces accuracy when used with “mul”, and “all” on “tic”, but improves accuracy on
“car”.

We showed that effectiveness of using a RC in an algorithm is dataset dependent, and that
there are datasets where algorithms perform similarly. This indicates that RC performance
should be related to dataset properties.

One further point in our research was that component-based design enables easier analysis of
partial algorithm improvements. We only give some indications for this. Figs 12 (a) and (b) show
average accuracy and average run time of algorithms using CSC RCs. Run time was measured
on the level of algorithms.

From Figs 12 (a) and (b) we notice that algorithms including “bin” had the best accuracy in
average, but second worst run time. We expected benefit in average accuracy using “all” because
it generates the widest space of candidate splits. However, there wasn’t. Moreover, “all” only
outperformed “mul”, and in addition had the longest processing time. Fig. 12 (a) show that “sig”
has comparable accuracy with “bin”, but computes faster as shown at Fig. 12 (b).

Although algorithms using “all” showed on average not as the best alternative there are,
however, datasets where “all” is part of the top ranking algorithms. On the “car” dataset “all”
belongs to the group of most accurate algorithms when combined with “distance”, while when

combined with “chi”, “inf”, or “gin”, was performing bad, or average when combined with
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“chs/anf”, on this dataset (Table 10). This indicates biases present in evaluation measures
towards “deep” or ‘““shallow” trees.

The “sig” RC seems as an excellent choice in average, because it performs similar to “bin” but
requires less computational time.

We explored interactions between “Create splits (categorical)” RCs and “Evaluate split” RCs.
These are shown on Fig.s 13-14. We used “all” to test if there are biases between ES RCs and
CSC RCs. As Fig. 13 shows, “all”, combined with “chs”, “gin” or “inf”, performs similarly to
“mul”, while “all” combined with “dis” or “gai” performs similarly to “bin” and “sig”.

This indicates that “chs”, “gin”, and “inf” are biased towards choosing “mul” splits, while
“gai” is biased towards bin. This is also indicated by the results summarized in Fig. 14, where a
similar pattern of behavior can be noticed on the average number of tree nodes.

We measured tree complexity, also, with weighted average tree depth (WATD) which can be
calculated as the average product of leaf’s depth and their corresponding number of cases

(instances)

idi*ci
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where d; is a leaf’s depth, ¢; is the number of cases in leaf i, and [ is the total number of leafs.
This measure indicates the average length of the tree path needed to classify an example. The
results are shown in Fig. 15. We see that “gai” is consistently part of the “deepest” trees while
“inf” produces the “shallowest” trees.

In Fig. 16 we show that algorithms that evaluate split based on “gai” consistently required
most processing time, but they were also accurate. On the other hand algorithms with split

evaluation based on “dis” were fast and accurate (Fig. 13).
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Finally, we show algorithms’ average accuracies on fifteen datasets. The datasets in Table 11
are sorted according to the number of significant differences found in the previous section. The
column “Max-Min” shows the difference between the best performing algorithm and worst
performing algorithm on a dataset. These differences must be used with caution, because they
tell as not much about significant differences between algorithm accuracy found in data (Table
5).

5.3. Analysis of tradeoff between accuracy and speed when removing insignificant
attributes

Algorithms including the “chs/anf” RC performed better in average by accuracy. We wanted to
test how this RC influences accuracy and computational speed. This time we didn’t remove
attributes that were insignificant at a predefined threshold (e.g. 5%) but sorted all attributes by
significance, in each induction step, and removed a defined percentage of the least significant
attributes. We tested the 80 algorithms with four experiments:

1. Experiment 1: In each node we removed 40% of the least significant attributes. They

weren’t used further for split evaluation.

2. Experiment 2: In each node we removed 60% of the least significant attributes.

3. Experiment 3: In each node we removed 80% of the least significant attributes.
4. Experiment 4: In each node we found only the most significant attribute like in [13] and
used it for splitting.
In Tables 12 and 13 we show the averaged results of our experiments. The best average values
for each dataset, i.e. row are bolded, while the worst values are underlined. On one hand, we can
make the conclusion that reducing the number of attributes in each induction step reduces on

most datasets computational speed. It would be expected that Experiment 4 needs the least
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computational time, while Experiment 1 should need the most time. This, however, doesn’t
happen on all datasets because the time needed to calculate the significance of attributes was not
compensated by reduced calculations performed after usage of this RC. A more detailed analysis,
which is out of the scope of this paper, would be needed to analyze these findings more
thoroughly.

On the other hand, RIA reduces average accuracy of decision tree classifiers (Table 11). The
difference between the best and poorest accurate average accuracy achieved on experiments is
shown in the rightmost column in Table 13. These differences are small compared to the results
shown in Table 11.

In contrary to what would be expected, there are some datasets where accuracy improves when
choosing only the most significant attribute (e.g. “tic”, “cmc”, and “adv”). So, using this RC is
recommended on most datasets, because it can reduce computational time, but still not
decreasing accuracy too much.

Obviously, one can always find a dataset where this doesn’t hold, so it is important to find for
each dataset an appropriate RC interplay.

6. Conclusion and future research

Reusable component design is a relatively new research topic in data mining. Although
classical algorithms are well-established and widely used, we show that there are still many
insufficiently exploited research possibilities within these algorithms when looking at the
components level.

We proposed a white-box decision tree design approach that is aimed to help the cost-effective

design of classification algorithms that could perform better in specific situations. We showed
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that there is significant statistical evidence that such a white-box approach can produce more

useful algorithms.

Three experiments reported in this article provide evidence that a component-based approach

can outperform existing decision tree algorithms on specific datasets.

We conclude that:

1.

Component-based algorithms are useful for testing of performance influences of each
algorithm part, and enables easy construction of new algorithms, that can show better
performance.

Algorithm (and component) performance is influenced by the interplay between the
components on a specific dataset, so using the same “black-box” algorithms generally does
not give the best results. Experimentally, well known algorithms also did not rank best on
average, which should inspire usage of component-based algorithms.

“Remove insignificant attributes” RC (when used with 5% threshold), that is used in each
induction step, improves algorithms accuracy in average.

It can be beneficial to use “all” RC (as a union of “binary”, “multiway”, and “significant’)
in algorithms design.

RCs “sig” and “dis” seem as the best alternative for algorithms design if the trade-off
between accuracy and time is compared.

“Remove insignificant attributes” RC (when used for removing a defined percentage of
least significant attributes) has a good trade-off between accuracy and time reduction, so it

is recommended to be used.

One can always find a dataset where the previous conclusions do not hold.
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The big question “why” a particular RC performs better on specific datasets remains an issue
for further research. Solving this could help better describe and improve parts of algorithms.
Further experiments are needed to explore the relationship between dataset properties and RC
performance. There is also the possibility of analyzing how RCs are interacting to improve
performance.

This study was focused on decision trees, but it is also applicable to other kinds of
classification models and other families of machine learning algorithms. For example, a generic
algorithm for partitioning clustering is already proposed in [6].

Another research direction for the future is to solve the problem of finding the most
appropriate algorithm for a problem when the number of possible algorithms is huge. By
expanding the number of RCs and sub-problems of a generic algorithm, finding the most
appropriate algorithm will a challenging task. We believe that meta-heuristics, like genetic
algorithms or variable neighborhood search, could be used in further research.

Our research supports the call for standardization of components and algorithms [23].
Standardization would enable easier and faster interchange of algorithm ideas and
implementations. We offer WhiBo as a framework towards this standardization.
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Algorithm
ID3 C4.5 CART CHAID

Sub-problem

Create split Multi-  Multi . Signi-
. Binary .
(numerical) way -way ficant
Create spht None Binar Binary None
(categorical) y
Infor- Gain
Evaluate split mation . Gini Chi®
. ratio
gain

Table 1. Basic sub-problems and reusable components for tree growth of ID3, C4.5, CART, and

CHAID
Abbreviation Available in
Sub-problem Reusable component and code (in .
WhiBo
brackets)
Remove
insignificant ~ CHI SQUARE/ANOVA F TEST chs/anf (C) X
attributes
Create split .

(Numerisal) BINARY bin (B) X
Create split BINARY bin (B) X
(Categorical) MULTIWAY mul (M) X
SIGNIFICANT sig (S) X
CHI SQUARE chs (C) X
INFORMATION GAIN inf (I) X
Evaluate split GAIN RATIO gai (GR) X
GINI gin (G) X
DISTANCE MEASURE dis (D) X

MINIMAL GAIN mga
Stop criteria MAXIMAL TREE DEPTH mtd X
MINIMAL NODE SIZE mns X
MINIMAL LEAF SIZE mls X

REDUCED ERROR PRUNING rep
PESSIMISTIC ERROR pep (P) X

Prune tree PRUNING
ERROR-BASED PRUNING ebp
COST COMPLEXITY cop

PRUNING
Table 2. Sub-problems and RCs identified for GDT
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Sub-problem Input Qutput
Remove . Dataset in
e Dataset in
insignificant current node current node
attributes (reduced)
. Dataset in A split
Create split .
pi current node candidate
. A split The best split
Evaluate split . .
vaid pi candidate in current node
Signal for
. Current tree stopping tree
Stop criteria 4 ppng ¢
model growth in

current node

Prune tree

Current tree
model

Pruned tree
model

Table 3. Sub-problems with their inputs and outputs

Sub-problems

Reusable components

RIA chs/anf  none (!)

CSC mul bin sig all
ES gai inf gin dis chs
PT pep none (!)

Table 4. RCs used for creation of 80 algorithms

ID Dataset S?gnificant
differences
car Car evaluation 58 %
nur Nursery 43 %
tic Tic-tac-toe endgame 39 %
aba Abalone 19 %
cmc  Contraceptive method choice 18 %
spe SPECT Heart 18 %
con Connect-4 5%
cre Credit approval 5%
cov Cover type 5%
adu Adult 4 %
kin King-rook vs. king-pawn 4 %
len Lenses 2%
vot Congressional voting records 1 %
thy Thyroid disease 0%
adv Internet Advertisements 0%

Table 5. Fifteen benchmark datasets
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No. No.

No. No.
ID cat. num.
attrib.  attrib. records classes

Car 6 0 1728 4
Nur 8 0 12960 4
Tic 9 0 958 2
Aba 1 7 4177 3
cmc 2 7 1473 3
Spe 22 0 187 2
Con 42 0 67557 3
Cre 9 6 690 2
Cov 10 44 581012 7
Adu 8 6 32561 2
Kin 36 0 3196 2
Len 5 0 24 3
Vot 16 0 435 2
Thy 22 6 2800 3
Adv 1555 3 2369 2

Table 6. Basic properties of benchmark datasets

Rule CSC ES Class
1 '"bin", "sig" best
2 "all" "dis", "gai" best
3 "all" "chs", "gin", "inf" worst
4 "mul" worst

Table 7. Rules extracted from decision trees that classified algorithms according to significance

scores
Winner Looser Dataset

1 1-A-D-! 1-A-I-! car
2 1-A-D-! 1-A-G-! car
3 C-S-C-! C-B-C-! nur
4 1-S-G-! C-S-G-! nur
5 I-M-GR-! C-M-GR-! tic
6 1-A-GR-! 1-M-GR-! tic
7 C-B-G-! 1-B-G-! cmc
8 C-S-C-! 1-S-C-! spe
9 C-S-D-! 1-S-D-! con
10 C-S-D-! 1-S-D-! aba

Table 8. Some comparisons of classifiers differing significantly in accuracy
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Rule RIA CSC ES Class
1 "chs/anf" "all" "dis", "gai" Best
2 ‘"chs/anf" "bin", "sig" Best
3 ! "all" "dis", "gai" Average
4 ! "bin", "sig" Average
5  "chs/anf" "all" "chs", "gin", "inf" Average
6  "chs/anf" "mul" Average
7 ! "all" "chs", "gin", "inf"  Worst
8 ! "mul” Worst

Table 9. Rules extracted from decision trees that classified algorithms by accuracy on 15 datasets

Rule RIA CSC ES Class
1 “bin”,““sig” Best
4 “all” “dis”, “gai” Best
2  “chs/anf” “mul” Average
5 “chs/anf” “all” “chs”, “gin”, “inf” Average
3 ! “mul” Worst
6 ! “all” “chs”, “gin”, “inf” Worst

Table 10. Rules extracted from decision trees that classified algorithms by accuracy on the “car”

Table 11. Results of 10-fold cross-validation of 80 component-based algorithms on 15 datasets

dataset

. Max-

Dataset Average Max Min Min
car 94.48% 98.09% 88.71% 9.38%
nur 98.86% 99.88% 97.01% 2.87%
tic 88.46% 94.26% 78.71% 15.55%
aba 72.84% 78.00% 63.50% 14.50%
cmc 50.59% 55.19% 46.23% 8.95%
spe 87.88% 91.99% 82.25% 9.74%
con 62.96% 66.66% 58.97% 7.69%
cre 81.67% 84.35% 77.54% 6.81%
cov 60.97% 64.59% 57.77% 6.82%
adu 76.84% 80.34% 74.18% 6.16%
kin 99.58% 99.69% 99.47% 0.22%
len 75.33% 7833% 71.67% 6.67%
vot 93.06% 94.46% 91.70% 2.76%
thy 94.52% 95.71% 92.86% 2.86%
adv 83.67% 85.00% 80.00% 5.00%
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1. 40% 2.60% 3.809 3 Using

. . . the most

Dataset attributes attributes attributes . .
significant

removal removal removal .
attribute

car 00:15.1 00:12.7 00:11.5 00:13.7
nur 03:09.6 03:05.0 02:42.6 02:50.0
tic 00:09.6 00:08.1 00:05.8 00:05.8
aba 01:03.2 00:39.4 00:28.4 00:29.9
cme 01:55.5 01:51.9 01:34.2 01:14.1
spe 00:02.2 00:01.8 00:01.4 00:01.4
con 01:47.3 01:25.3 00:48.8 00:33.9
cre 14:14.9 08:13.7 02:29.8 02:22.8
adu 07:40.6 04:26.5 01:40.7 01:30.6
kin 01:04.7 02:57.9 00:45.8 00:41.5
cov 01:56.8 02:44.5 02:05.4 01:01.3
len 00:00.0 00:00.0 00:00.0 00:00.0
vot 00:04.5 00:04.1 00:03.4 00:03.1
thy 00:59.7 00:54.2 00:46.2 00:01.3
adv 00:32.6 00:33.7 00:25.6 00:17.8
Table 12. Average run time of 80 algorithms on 15 datasets in four experiments

4. Using
the most Max
significant - Min
attribute
car 93.69 % 93.66% 93.60% 93.60% 0.09%
nur 99.01% 98.95% 98.97% 98.98% 0.06%
tic 90.26% 90.34% 90.65% 90.66 % 0.40%
aba 75.75% 75.41% 75.10% 75.13% 0.65%
cmc 48.73% 48.53% 48.96% 48.97 % 0.44%
spe 84.97 % 84.74% 84.20% 83.42% 1.55%
con 61.78% 61.63% 62.72% 61.24% 1.48%
cre 79.95 % 79.34% 79.30% 79.56% 0.65%
cov 60.72% 60.81% 60.18% 59.10% 1.71%
adu 75.94% 75.57% 74.86% 74.83% 1.11%
kin 99.60 % 98.95% 99.58% 99.53% 0.65%
len 72.92% 72.75% 72.75% 72.75% 0.17%
vot 92.45% 92.42% 92.45% 92.39% 0.06%
thy 96.11% 96.20% 96.37 % 90.12% 6.25%
adv 83.50% 83.50% 83.00% 84.29% 1.29%
Table 13. Average accuracy of 80 algorithms on 15 datasets in four experiments

1. 40% 2.60% 3.80%
Dataset attributes attributes attributes
removal removal removal
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For every node

Remove insignificant

attributes
Create split Create split
(Numerical) (Categorical)
'd ™

Evaluate split

Stop criteria

Prune tree

Fig. 1. Generic decision tree structure

For every node
Remove insignificant
attributes
-NONE-
Create split Create split
{Numerical) (Categorical)
BINARY MULTIWAY
' ™
Evaluate split
GAIN RATIO
. | J
' '
Stop criteria
NONE
L /
|
4 I
Prune tree
REP, PEP, EBP
. vy

Fig. 2. Example of an algorithm (C4.5) designed with RCs
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Step 1.

Step 2.
Step 3.
Step 4.
Step 5.

Step 6.

Step 7.

Generic decision tree algorithm

Input: Dataset
Output: Decision tree model

Optionally, use “Remove insignificant attributes”
to eliminate uninformative attributes in the current
tree node.

Use “Create split” to create candidate tree spilit in
the current tree node.

Use “Evaluate split” to measure the “goodness”
of the candidate spilit.

If the candidate split is better than the best split,
remember new candidate split as best.

Repeat steps 2-4 until no more candidate splits
are produced by “Create split”.

If “Stop criteria” is met, create a leaf node and
add it to the tree model.

Otherwise, split the dataset according to the best
split, and recursively return to step 1 for each
new branch of the node.

Optionally, after the tree model is built use “Prune
tree” to shorten branches which are
uninformative according to the prune criteria.

Create split

Stop criteria

P trise

Fig. 3. The GDT algorithm
R ———

i New algorithm | HSW» algorithrm 1 Open algarithm

Component name:
Component descriphon:

Save component

Rermove insignificant atributes

isable component
Is the component multiple: | Disable compone

Selecl component

Parameters:

Evaluaie split

7 [ Generic Decision Tree
| Rermove ingignificant alributes
| Creats spi
1 Evaluate spit
| Stop criteria
' Prune tree

Fig. 4. WhiBo GDT user interface
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{j Generic decision tree

= Create split
[ BinaryNumerical
BinaryCategorical
= ) Evaluate split
[£) Ginilndex
& Stop criteria
= ) TreeDepth
= ¢ Tree_Depth
54

[£] Remove insignificant atributes

[ Generic decision tree
[£] Remove insignificant atributes
= ) Create split
[£) BinaryNumerical
MultiwayCategorical
= ) Evaluate split
[£) Ginilndex
= ] Stop criteria
= ) TreeDepth
B Tree_Depth
& 4

Fig. 5. Definitions of two algorithms differing in a single component (binary vs. multiway split)
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6 (a) The model obtained by the first algorithm
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6 (b) The model obtained by the second algorithm

Fig. 6. Two classification models differing in a single component
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Average scores

40.00

85.00

80.00

75.00

70.00

65.00 ||||

Fig. 7. Distribution of 80 algorithms’ scores

Average accuracy

84.00%
83.00%
82.00%

81.00%

80.00%

75.00%

78.00%

77.00%

Fig. 8. Distribution of 80 algorithms’ accuracies

Accuracy on "car" dataset

100 00%

58.00%

56.00%

54 .00%

52.00%

%0.00%

88.00%

BE.00%

84.00%

Fig. 9. Distribution of 80 algorithms’ accuracies on the “car” problem
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98.00%

93.00%

88.00%

83.00%

78.00%

—*+—car

nur

—a—tic

C-A-C-!

C-A-C-P

C-A-D-!
C-A-GR-!
C-A-GR-P
C-A-1-!
CA-LP
C-B-C-1
C-B-C-P

C-B-D-!
C-B-D-P

C-B-G-!
C-B-G-P
C-B-GR-!
C-B-GR-P
C-M-D-!

C-M-D-P

C-M-G-!

C-M-G-P
C-M-GR-!

C-M-GR-P
C-M--!
C-M-I-P
C-5-C-!
C-5-C-P
C-5-D-!
C-5-D-P
C-5-G-!
C-5-G-P
C-5-GR-!
C-5-GR-P
C-5-1-!
C-5-1-p

Fig. 10.

9

Accuracy of 40 algorithms (including “chs/anf”) on “car”, “nur”, and “tic” problems
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Fig. 11. Accuracy of 40 algorithms (not including “chs/anf”) on “car”, “nur”, and “tic” problems

82.50%

82.00%

81.50%

81.00%

80.50%

80.00%

bin sig

I . l:
all mul

Fig. 12 (a) Average accuracy grouped by CSC RCs
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0:04:19
0:03:36
0:02:53
0:02:10
0:01:26
0:00:43 .
0:00:00 -—
all bin sig mul
Fig. 12 (b) Average run time (sec) grouped by CSC RCs
82.50%
82.00%
M chi
81.50%
[ dis
81.00% ¥ gal
W gin
80.50% W inf
80.00%
all bin mul sig

Fig. 13. Average accuracy when using different CSC and ES RCs

36



200

190
180
170

M chi
160

0 dis
150

B cai
140 gal
130 Hgin

minf

120
110
100

all bin mul sig

Fig. 14. Average total number of nodes of decision tree models with various CSC and ES RCs

8.00
7.50
7.00
6.50

M chi
6.00

[ dis
5.50

o oai
5.00 - &l
4.50 - M gin
4.00 - W inf
3.50 -
3.00 -

all bin mul sig

Fig. 15. Weighted average three depths when using different CSC and ES RCs
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0:08:38

0:07:12
0:05:46 B chi
0 dis
0:04:19
M gai
0:02:53 Hgin
M inf

0:01:26

0:00:00

all bin mul sig

Fig. 16. Average run time when using different CSC and ES RCs
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