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AbstractThe objectives of this paper are to investigate applicability of neural network tech-niques for single and multiple frame video tra�c prediction. In the single and multipleframe tra�c prediction problems, the information of previous frame sizes is used topredict either the following or several following frame sizes respectively. respectively.Accurate tra�c prediction can be used to optimally smooth delay sensitive tra�c[15] and increase multiplexing gain in asynchronous transfer mode (ATM) networks.Neural network models for both single and multiple frame tra�c prediction problemsare proposed. Two important types of video sequences are considered - video tele-conferencing and entertainment video. An o�-line learning method is suggested forsimple tra�c and an on-line learning method for complex one. Simulation studies ofcell losses in an ATM multiplexer using recorded variable-bit-rate coded video tele-conference data indicate reasonably good predictions for bu�er delays between 0.5and 5 ms.
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1. IntroductionIn the last few years a substantial amount of research has been performed in the areaof neural networks. The experimental work indicates their potential for practicalapplications where traditional computation structures have performed poorly (e.g.ambiguous data [1] or large contextual in
uence [2]).In addition to the traditional analytical approximation techniques, recently neuralnetworks have also been proposed for some ATM control problems. For example in[7, 17] a neural networks learning method is suggested for service admission control inthe ATM networks. The objective of this application is to keep the requested servicequality parameters by rejecting some of the call set-up requests while connectingas many calls as possible. In [12], a neural network is used to re�ne a traditionalanalytical approximation technique for admission control for improved bandwidthe�ciency. Another promising application for neural networks in ATM is call control[11]. Simulation results show that neural networks can lead to a compromise betweenthe maximum number of calls accepted and the satisfaction of the quality of servicesnegotiated for established calls.In this paper we explore whether neural networks prediction techniques can beused for video tra�c prediction. Accurate source tra�c models and tra�c predic-tions are needed for e�ective utilization and control of ATM networks. Video tra�cconsists of a periodic arrival of frames (25 frames per sec for our tra�c sequence)with a variable number of ATM cells per frame. The number of cells per frame variessigni�cantly. Predictions of the number of cells per frame can be used for improving3



ATM network e�ciency by incorporating the predictions in schemes for multiplexing,routing, smoothing and bandwidth allocation. As an example, statistical models ofvideo sources developed in [6] have been used to optimally smooth video tra�c [15]and to increase multiplexing gain. We use neural networks to predict the number ofcells per frame for two important classes of video applications - video teleconferencingand entertainment video.The computational model used in the paper is a neural network with sigmoidalcomputing units. Each unit computes the function 1=(1 + e��x), where x is the unitsweighted input sum. The computation units are organized in layers with connectionsonly among units in adjacent layers. In the simplest form of such a layered network,there is just one input layer of source units that projects onto an output layer ofcomputation units. In multilayer networks there is one or more hidden layers, whosecomputation units are accordingly called hidden units. The network is said to be fullyconnected if each node in each layer of the network is connected to every other nodein the adjacent forward layer. By adding one or more hidden layers, the networkis enabled to extract higher-order statistics from the data (to approximate morecomplicated functions). A network is called feedforward, if all the directed linksbetween di�erent layers of units start in a layer that is closer to the input layer andend in a layer that is closer to the output layer.The proposed neural network model and learning algorithms for single frame pre-diction are explained in Section 2, followed by the multiple frame prediction in Section3. In Section 4 the experimental results are presented.4



2. Single Frame PredictionLet u(k) be the frame size at time k and y(k+1) be the predicted frame size at timek +1. We assume that y(k+1) is a function of u(k); u(k� 1); : : : ; u(k� n+ 1). Themodel we use for predicting this function is a fully connected i feedforward multilayerneural network (FNN) with sigmoidal computation units. In our model, the FNNhas n input units, one layer of hidden units and one output unit. The architecture isshown in Fig. 1, where the blocks denoted by z�1 represent one step delay elements.Learning is performed by the back-propagation algorithm (BP), which is a gradient-descent iterative method for minimization of the total squared prediction error on a setof training examples[16]. Here, each example has the form hu(t�n); : : : ; u(t�1); u(t)i,where hu(t � n); : : : ; u(t � 1)i is used as an input to the neural network and u(t) isused for comparison to the predicted frame size y(t).A viable alternative to FNN with BP is the radial basis function network (RBFN)[9] which is a local approximation technique. Time series prediction research [10]indicates that this approach might give very good results and fast response if theinformation needed for prediction is contained in a small number of previous frames.Otherwise, the prediction would require too large radial basis networks.Both networks have advantages and disadvantages: FNN with BP learns slowlybecause of the gradient descent technique used for training, but is usually the choicewhen dealing with complex structures having a large number of inputs, whereas RBFNis very fast, but the number of radial basis units tends to increase exponentially withthe dimension of the input space, so that this approach becomes practically infeasible5
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u(k-n+1)Figure 1: Neural Network Structure Used in the Simulationwhen the dimensionality of the input space is high.2.1. O�-line learning for simple video signalFor video teleconference tra�c, the recorded tra�c sequence does not have any abrupt
uctuations because there are no signi�cant scene changes. So we �rst test if simpleo�-line learning is appropriate for the video teleconference sequence prediction prob-lem. A sequence of T examples hu(t� n); : : : ; u(t� 1); u(t)i, where n+ 1 � t � T isused for neural network training. After a training phase of N epochs the weights arefrozen and the system is used for prediction on the rest of the available sequence (fort > T on input hu(t� n); : : : ; u(t� 1)i, the predicted output is y(t)).The advantage of this approach is that it is extremely fast (after the initial trainingphase) which makes it applicable to real-time forecasting. The drawback is thatthe method assumes a �xed distribution signal, which is not true for complex videosequences such as entertainment video.
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2.2. On-line learning for complex video signalFor video tra�c with a number of sudden scene changes, frame cuts, zooms, rapidmovement of objects, the continuous on-line learning seems more appropriate. Thelearning is performed for M epochs on S consecutive examples hu(t � n); : : : ; u(t �1); u(t)i, where n+1 � t � S and the network is used to predict y(S+1) which is thesize of the next frame. Whenever a new frame becomes available, the training set isshifted to include this new frame and the oldest frame is discarded (t t+1). A newlearning session ofM epochs is performed on this new training set and the next framesize prediction is obtained. The process is then repeated. The weights are adjustedcontinuously during the whole process. After the training set is shifted, the newtraining session of M epochs starts from the existing weight values rather then fromrandom values. Therefore it is reasonable to expect convergence in a signi�cantlysmaller number of epochs as compared to the o�-line learning (M � N). Sincethe learning has to be performed in real time, we also reduce the number of trainingexamples as compared to the o�-line learning (S < T ). The on-line learning algorithmcan also have an additional initial learning phase, similar to the learning phase of theo�-line algorithm, so that the on-line learning starts with properly initialized weights.The advantage of the on-line approach is the continuous learning on new examplesthat should cope with changes in the distribution for complex sequences. The prob-lem of this approach is that it might be computationally too expensive for real-timeresponse if experiments show that for accuracy reasons M or S have to be large.In such a case, an alternative to standard backpropagation learning is a more e�-7



cient parallel learning that we have proposed earlier and applied successfully to otherproblems of large scale [8, 13, 18].Another possible learning approach for complex signals is the recently proposedgrowing cell structures network [5]. This local approximation algorithm is very fastand in contrast to regular RBFN, it is still appropriate for larger dimension problems.For very complex signals, an appropriate approach is to combine domain speci�c priorknowledge and constructive learning from examples into a hybrid system, as proposedin [3, 4].3. Multiple Frame PredictionTo optimally smooth delay sensitive tra�c we examine to what extent neural networkscan do a multiple frame size prediction. More precisely, in an s-frame predictionproblem given the actual frame sizes u(k); u(k � 1); : : : ; u(k � n + 1), the networkhas to predict not only y(k + 1) as earlier, but also y(k + 2); : : : ; y(k + s), wheres > 1. Obviously, this is a more challenging problem compared to the previous 1-frame prediction, and so the accuracy might be compromised if s is too large. Itis an experimental question of how many previous frames are needed for s-frameprediction and how many frames ahead (maximum value for s) neural networks canpredict without a signi�cant decay in accuracy.The �rst approach for multiple frame prediction (incremental approach) has atraining phase as earlier (using an o�-line or on-line technique depending on the signalcomplexity). In the prediction phase y(t+ 1) is computed using hu(t� n); : : : ; u(t)i8



as the network input. Prediction for the frame size at time t+ 2 is computed usinghu(t�n+1); : : : ; u(t); y(t+1)i (oldest actual frame size is discarded and the previousprediction - y(t + 1) is used instead of the corresponding actual value). Similarly,y(t+ 3) is predicted using hu(t� n+ 2); : : : ; u(t); y(t+ 1); y(t+ 2)i, and the processcontinues until y(t+s) is computed using hu(t�n+s�1); : : : ; u(t); y(t+1); : : : ; y(t+s� 1)i.Another approach for multiple frame prediction (direct approach) is to learn amapping f : Nn ! N s from the previous n to the next s frames. In this model thenetwork has s output units rather than one. The training phase uses examples of theform hu(t�n); : : : ; u(t+s)iwhere the �rst n components are used as the network inputand the rest to compare the computed response versus the actual frame sizes. Theadvantage of this direct approach is that the prediction error is not accumulating as inthe incremental approach. On the other side this approach has more free parametersin the system. So the learning process is computationally more demanding and alsoa larger training set is needed for a good generalization.4. Experimental ResultsA number of experiments were performed by varying the training set size, the networkinput layer size, the number of hidden units, the training time (number of epochs)and the learning rate. This section contains a short summary of the obtained results.Sections 4.1 and 4.2 present the results for the single frame prediction problem, whileSection 4.3 presents the multiple frame prediction.9



4.1. Video Teleconference DataThe experiments on video teleconference sequence forecasting, were done by usingrecorded and compressed real video conference data consisting of 40,000 frames pre-viously used in [6]. The �rst 1000 frames are shown in Fig. 2.Reasonably good prediction results are obtained using the o�-line learning on aneural network with 5 inputs, 5 units in one hidden layer and a single output unit.Learning is performed on the �rst 666 frames for 10000 epochs and testing is doneon the next 329 frames. Fig. 3 shows the quantile-quantile plot of predicted versusactual data. The generalization stays approximately the same for smaller number oftraining epochs and longer test sequences (up to all available 40,000 frames). Fig. 4shows the results obtained using an identical network and the same training examplesas previously, but with 2000 training epochs and a prediction of 9000 frames. Theautocorrelation function for the actual and the predicted data corresponding to Fig.4 is shown in Fig 5. The autocorrelation functions are exponentially decreasing andthe �t between actual and predicted data is good.The predicted sequence is used in simulations in which 25 multiplexed video sourcesfeed a �nite bu�er queue which models the queue at the output port of an ATM switch.The output rate from the queue is 56 Mbps. The bu�er size at the queue is speci�edin terms of maximum delay that can be tolerated at the queue. Maximal delay isvaried from 0.5 ms to 35 ms. Incoming tra�c (in the form of ATM cells) is lost if itarrives to a full bu�er. The results of a number of simulations is shown in Table 1and 2. In these tables the bu�er size is speci�ed in terms of maximal delay (i.e. 0.510



bu�er 0.5 1 2 3 4 5predicted 4.104e-05 3.830e-05 3.447e-05 3.109e-05 2.802e-05 2.495e-05actual 7.444e-05 6.988e-05 6.184e-05 5.592e-05 5.183e-05 4.808e-05Table 1: Simulation using small bu�er and predicted teleconference sequencebu�er 11 12 13 14 15predicted 1.156e-05 1.002e-05 8.486e-06 6.937e-06 5.768e-06actual 3.647e-05 3.497e-05 3.347e-05 3.196e-05 3.046e-05Table 2: Simulation using larger bu�er and predicted teleconference sequencems, 1 ms, 2 ms, etc) and the cell loss probabilities corresponding to these bu�er sizesare speci�ed for the predicted and the actual sequences. The �t is reasonably goodfor tra�c purposes for small bu�ers (accurate to within a factor of 2 or 3) but forlarge bu�ers the actual and predicted losses diverge.Slightly better results were obtained by using on-line learning. Fig. 6 shows thequantile-quantile plot of predicted versus actual data for predicting 1000 values. Theneural network used has 5 input units, one hidden layer with 5 units and one outputunit and learning is performed using a window of S = 100 frames and M = 200epochs.4.2. Entertainment Video DataEntertainment video has frequent scene changes which makes the prediction prob-lem very di�cult. Supervised neural networks learning seems quite appropriate forsuch noisy prediction problems. The experiments on entertainment video sequenceforecasting, have been done by using recorded and compressed real data consisting of11



12,000 frames. The global distribution for this data set is unknown, although certainsmall subsequences of data can be identi�ed to have a gamma distribution. The �rst4000 frames are shown in Fig. 7.Fig. 8 shows the quantile-quantile plot of predicted versus actual data obtainedusing the o�-line learning on a neural network with 5 inputs, 5 units in one hiddenlayer and a single output unit. Learning is performed on the �rst 666 frames for2000 epochs and testing is done on the next 3000 frames. From Fig. 8 it is clearthat the losses are caused mainly by the scene changes (peaks). The autocorrelationfunction for the actual and the predicted data used in the entertainment video testcorresponding to Fig. 8 is shown in Fig. 9. It can be observed that the �t betweenactual and predicted data is still good, although the exponential character of thecurves is lost.The on-line experiments were similar to those performed for the video teleconfer-ence data, but the results were fairly poor. Although the predictions had a tendencyof sensing the scene changes, the errors were excessive. We believe that the reasonfor this behavior is the slow backpropagation learning.4.3. Multiple Frame Prediction for Video Teleconference DataThe previously explained incremental approach is used for 2-frame and 3-frame pre-diction experiments on video teleconference data. The neural network and the dataset used were exactly the same as those used in Test 2 (corresponding to Fig. 4).Figures 10 and 11 present the quantile-quantile plots of predicted versus actual datafor the 2-frame and the 3-frame problems respectively. In the 2-frame problem, the12



accuracy of the prediction is measured by comparing the second predicted frame sizeversus the corresponding actual value. Similarly, in the 3-frame problem the accuracyis measured by comparing the third predicted frame size versus the corresponding ac-tual value. By comparing Figures 4, 9 and 10 it can be observed that in the s-frameprediction problem the accuracy of the prediction is decreasing as s increases.These preliminary results on the multiple frame prediction problem suggest thatthe direct approach might give better results since the error accumulated in theincremental approach is too large even for predicting the third following frame.
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Figure 2: Video Teleconference Data 0
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Figure 3: Video Teleconference Test 1
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Figure 4: Video Teleconference Test 2 0
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Figure 5: Autocorrelation for Test 213
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Figure 6: Video Teleconference Test 3 3000
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Figure 7: Entertainment Video Data
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Figure 8: Entertainment Video Test 0.1
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Figure 9: Autocorrelation for Video Test
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Figure 10: 2-nd Frame for Test 2 0
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Figure 11: 3-rd Frame for Test 25. ConclusionThe experimental results indicate that the single frame problem for the video telecon-ference data can be predicted with reasonably good accuracy using both on-line ando�-line learning methods. The entertainment video data is more di�cult to predict14



but the o�-line learning method still gives promising results. The on-line learningmethod in its actual form can not be used for predicting bursty data in real-time.Preliminary results on the multiple frame problem using the incremental learningapproach indicate that the method is inappropriate for prediction using only informa-tion contained in a small number of previous frames. The direct learning approach forthis problem is still under investigation. Also, the experimentation with radial basisfunction networks for on-line learning of the video entertainment data is in progress.Tra�c prediction has application in smoothing video tra�c in an ATM network,which is useful in network tra�c management. Probabilistic models used for videotra�c prediction have been successfully applied to tra�c smoothing with some con-straints [14]. The application of the neural networks based tra�c prediction modelto tra�c smoothing and to other tra�c management problems are currently underconsideration.References[1] Y. Le Cun et al., \Handwritten Digit Recognition: Applications of NeuralNetwork Chips and Automatic Learning," IEEE Communications, 1989, pp.41-46.[2] R.C. Eberhart, R.W. Dobbins, \Case Study I: Detection of Electroen-cephalogram Spikes," in Neural Networks PC Tools, ed. R.C. Eberhart,R.W. Dobbins, San Diego, CA, Academic Press, 1990.15
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