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Abstract

The objective of this study is to investigate the relationship between stochastic and neural
network approaches to time series modelling. Experiments on both a complex real life
prediction problem (entertainment video traffic series) as well as on an artificially generated
nonlinear time series on the verge of chaotic behavior (Mackey-Glass series) indicate that
the initial knowledge obtained through stochastic analysis provides a reasonably good hint
for the selection of an appropriate neural network architecture. Although not necessarily
the optimal, such a rapidly designed neural network architecture performed comparable or
better than more elaborately designed neural networks obtained through expensive trial and
error procedures.
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INTRODUCTION

A time series z; can be defined as a random (or nondeterministic) function z of an
independent variable ¢ [6]. Its main characteristic is that its future behavior can not be
predicted exactly as in the case of a deterministic function of t. However, the behavior of
a time series can sometimes be anticipated by describing the series through probabilistic
laws. Commonly, time series prediction problems are approached either from a stochastic
perspective [1] or, more recently from a neural network perspective [9, 12]. Each of these
approaches has advantages and disadvantages: the stochastic methods are usually fast, but
of limited applicability since they commonly employ linear models, whereas the neural net-
work methods are powerful enough, but the selection of an appropriate architecture and
parameters is a time consuming trial and error procedure. At first glance it might seem that
there isn’t any direct relationship between time series and neural networks, but there are at

least two reasons that might make neural networks very attractive for modelling time series:

1. The theoretical work shows that neural networks are computationally very powerful
models. For example, a multilayer perceptron with a single layer of hidden process-
ing units using sigmoidal nonlinearities is powerful enough to uniformly approximate
almost any arbitrary continuous function on a compact domain [3]. In addition to
the ability of representing complex nonlinear functions, neural networks can effectively
construct approximations for those functions by learning from examples. This ability
to approximate complex input-output mappings makes them attractive in practical
applications where traditional computational structures have performed poorly (e.g.

ambiguous data or large contextual influence).



2. There is a direct relationship between the fundamental stochastic models (autoregres-
sive and autoregressive-moving average) for time series and feedforward and recurrent

neural network models, as explained in the next section.

A comparative study of stochastic and neural network techniques for time series predic-
tion with respect to number of data samples and prediction horizon is performed in [11]. The
combination of stochastic and neural network techniques in a hybrid system for improving
prediction accuracy, or the use of some stochastic prior knowledge of the underlying process
for configuring the neural network are topics that deserve further consideration.

This paper proposes the use of stochastic modelling both for providing initial hints for
selecting an appropriate neural network architecture (number of external inputs and number
of context inputs) and data sampling rate, as well as a means of comparison to neural network
prediction techniques.

The proposed approach is to perform an initial stochastic analysis of the data and to
choose an appropriate neural network model accordingly. The motivation for this approach
is that the linear stochastic modelling is more cost effective than the selection of a neural
network architecture by a trial and error procedure. The objective of this study is not to
obtain “the optimal” neural network architecture for a given problem, but to provide rapidly
an architecture with close to optimal performance. Since the hint is obtained from a linear
model, for more complex problems the neural network might be over-dimensioned (similar
performance might be obtained using a smaller machine and less training data). However,
the exhaustive trial and error procedure involved for determining such an optimal machine

could be costlier than the stochastic hint-based alternative.



The evaluation of the stochastic hints for neural network prediction is performed in the
context of different prediction objectives, of “clean” and “noisy” data, as well as of data sets
of various complexity. An additional issue addressed in the paper is whether neural networks
different than the ones suggested by the stochastic model can lead to improved prediction

accuracy as compared to the suggested ones.

STOCHASTIC MODELS AND NEURAL
NETWORKS FOR TIME SERIES

A stationary process can be described as a process whose characteristic parameters don’t
change over time. The autoregressive moving average model of orders p and ¢ (ARMA(p,q))

of a stationary stochastic process z; can be described by the following equation:

Ty = Q1%4-1 + P22 + ... + QpLi_p + ar + Y101 + VYaai_2 + ...+ Pgas_g, (1)

where z¢_1,Z;_2,. .., %:_p represent the process values at p previous time steps, a¢, a;_1,. . .,
a¢—q are realizations of a random process, usually emanating from a normal (Gaussian) dis-
tribution with mean zero and variance o2, and ;... @y, 91 . .., are the model parameters.
Commonly, z; doesn’t represent the actual physical process, but the process with the mean
removed. The AR(p) and MA(q) processes are special cases of the ARMA(p,q) model,
obtained by setting ¢ = 0 and p = 0, respectively. The most general stochastic model,
ARIMA (autoregressive integrated moving average) assumes that the process exhibits a
“homogeneous” non-stationary behavior that can be eliminated through a suitable discrete
differentiation pre-processing.

A natural generalization of the linear AR and ARMA models to the nonlinear case leads



to the NAR model

Ty = h(mt—ly Li—2,--- ,a:t_p) + 0, (2)

and the NARMA model
Ty = h(fllt_l, L2y 3y Ti—py Ag—1,5- -+, at_q) + Qg, (3)

where A is an unknown smooth function.

The NAR and NARMA models are very complex, thus making them unsuitable for real
life applications. Feedforward and recurrent neural networks have been proposed [2, 12] for
simulating nonlinear AR and ARMA models respectively (see Fig. 1). A conditional mean

predictor [2] for the NAR model can be approximated as:

/\ m p
&y = h(@e-1,. .y Temp) = Y Wif (D wisze—j + 05), (4)

i=1 j=1
where f represents a non-linear, smooth, bounded function (usually called activation or trans-
fer function). This approximation of the NAR model corresponds to the feedforward neural
network obtained by disconnecting the context inputs a;_1 ...a¢—4 from Fig. 1. Similarly, a

predictor for an invertible [I] NARMA model can be approximated as:

m p q
Ty = h(mt—h <oy Ti—py Qi1+, &t—fI) = Z I/Vif(zwijmt—j + Zwij(mt—j - :%t—j) + 0i): (5)
=1 7=1 7=1

with ay = zx—2k, 7 =t — gq,t — 1, corresponding to the recurrent neural network from Fig. 1.
Most commonly, the parameters W;, w;; and w;; (weights) are estimated from examples by a
gradient descent error minimization technique known as backpropagation learning [10]. This

is also the learning method employed in our experiments.
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Figure 1: Stochastic Model Approximation

STOCHASTIC AND NEURAL NETWORK

PREDICTIONS

Both the stochastic and the neural network predictions can be described in a procedural

fashion as follows:

perform initial data pre-processing
repeat
perform model identification
perform parameter estimation on data set 1
perform model validation on data set 2
until model suitable

perform prediction
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However, the individual steps are different for stochastic and neural network predictors,

as explained below.

A. Stochastic Models.

Al.

A2,

A3.

A4.

The data pre-processing step usually comprises a smoothing and possibly a sta-
tionarization. In practice a logarithmic transformation of the original positive
valued series is commonly performed for smoothing (y: = log(z:)) and a first
or second order discrete differentiation for stationarization (w; = y; — yt—1 or
Wy = Yt — 2Ys—1 + Yi—2 respectively).

The model identification step selects a model type (AR, MA or ARMA), as well

as corresponding model orders.

The parameter estimation step uses a first data set for performing most commonly
a maximum likelihood estimation of the model parameters. In the case of pure AR

models, Burg’s method or the Modified Covariance method are also applied [7].

The model validation step performs an adequacy check of the model by using
Akaike’s final prediction error and information criterion, Bode plots, pole-zero
cancellation, as well as a residual analysis of prediction errors on the second data

set in both time and frequency domain.

B. Neural Network Models.

B1.

The data pre-processing step can be performed as in the case of the stochastic
models. Alternatively, it can be completely omitted or, more commonly, it can

encompass a linear transformation of the data so as to fit it to a convenient range.



B2. The model identification step selects a neural network architecture (feedforward
or recurrent), layer structure (number of layers and number of units per layer),

as well as learning parameters (learning rate, momentum and tolerance).

B3. The parameter estimation step encompasses the neural network training on a first
data set (training set), in which the network weights are modified according to a

given learning technique (backpropagation in our case).

B4. The model validation performs a residual analysis of prediction errors in time and

frequency domain on the second data set (test set).

For both stochastic and neural network models the residual analysis of prediction errors
should comprise at least the computation of:

e error mean 4 = 37 4,

e root mean squared error RMSE = \/W,

e coefficient of determination 7> =1 — RMSE?/V AR|[z],

¢ histogram,

e power spectra,
where the a,’s stand for prediction errors and VAR[z] for the variance of the actual data.

For a good predictor, the residuals should be normally distributed (the normality of the
distribution can be indicated by a histogram resembling the Normal distribution, as well as
by a “flat spectrum”) with u close to 0, small RMSE and r? close to 1. It is common practice
to test the prediction accuracy on either the same data set used for model validation or on

a third data set, also known as cross-validation set.

The actual prediction can deal with either predicting a characteristic process parameter



for just the next time step (prediction horizon one), or with predicting a parameter several
steps ahead (prediction horizon larger than one). Prediction horizons larger than one are
useful in numerous real life problems like power consumption predictions, car sales predictions

or Internet traffic predictions.
EXPERIMENTAL RESULTS

The hint explored throughout the experiments is whether the order of the most appro-
priate stochastic model provides an indication of the appropriate number of neural network
inputs: feedforward neural network with p or p + 1 external inputs for an AR(p) process or
recurrent neural network with p or p+1 external and ¢ context inputs for an ARMA(p,q) pro-
cess. The choice of p or p+1 external inputs from the hint depends on whether the stochastic
pre-processing step is done without or with discrete differentiation respectively. Since the
stochastic modelling of the data sets considered in the experiments indicated AR(p) models
as the most appropriate, all the analyzed neural network architectures were of feedforward
type.

The validity of the stochastic modelling hint for selecting an adequate neural network

architecture was tested in the context of the following prediction problems:

1. Prediction with horizon one on data un-corrupted by noise.

2. Influence of increased prediction horizon.

3. Influence of noise corruption.

4. Influence of increased complexity of the data set.



12000 T T T T T T T T T
film2000° ——

11000

10000

9000

8000

frame size

7000 |

6000 -

5000

4000 [

3000 i i i i i i i i i
o 200 400 600 800 1000 1200 1400 1600 1800 2000
frame no.

Figure 2: Entertainment Video Traffic Data

The first data set used in the experiments consisted of a real life, compressed, entertain-
ment video traffic data used in an ATM (Asynchronous Transfer Mode) network, in which
each sample represents the size of a corresponding compressed video frame [4]. The difficulty
associated with this data set is the non-stationarity (data distribution changes over time), as
well as the existence of “outliers” (values very different from neighboring ones). The data set
consisted of 2000 samples (shown in Fig. 2), of which the first 1000 were used for parameter
estimation and the last 1000 for model validation. The actual predictions were done using

the same 1000 samples used for model validation and not a separate cross-validation set.

The second data set is artificially generated and is obtained by a delay differential equa-

tion (also known as Mackey-Glass series):

de(t)  Az(t—r7)
dt 1+ z0(t — 1)

— Baz(t)

Experiments were performed for A = 0.2, B = 0.1, 7 = 17, case in which the system

10
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Figure 3: Mackey-Glass Data

exhibits chaotic behavior. The difficulty associated with this data set is the high nonlinearity.
The data set consisted of 3000 samples (the first 2000 shown in Fig. 3), out of which various
experiments used either the first 1000 or the first 2000 values for parameter estimation

(training), and the following 1000 for model validation (testing).

Prediction problems 1, 2 and 3 were analyzed in the context of the entertainment video
traffic data set, whereas the influence of increased complexity was analyzed in the context

of the Mackey-Glass series.
Prediction with Horizon One on Data Un-corrupted by Noise.

The data pre-processing step for the stochastic model encompassed both a logarithmic
smoothing and a first order differentiation for stationarization purposes, whereas it included
just a linear scaling transformation in the case of the neural network, since this yielded far

better results than the previously mentioned transformations. The residual analysis results

11



Model W RMSE r?

AR(5) 2.313 | 462.664 | 0.749

NN 6-1 -359.283 | 592.596 | 0.593
NN 6-1 * | -105.982 | 482.995 | 0.730
NN 6-3-1 | -365.196 | 596.864 | 0.587
NN 6-6-1 | -380.949 | 606.855 | 0.573
NN 6-6-1 * | -97.991 | 477.913 | 0.736
NN 8-8-1 |-386.014 | 611.476 | 0.569
NN 4-4-1 | -406.859 | 628.954 | 0.539
NN 6-6-6-1 | -417.531 | 637.428 | 0.528

Table 1: Stochastic and NN Performance for Prediction Horizon 1

(“*” stands for bias removal)

obtained for the most appropriate stochastic model, as well as for the most significant neural
networks are presented in Table 1.

The residual analysis indicated an AR(5) model as the most appropriate, thus suggesting
the use of a feedforward neural network with 5 inputs. The first order discrete differentiation
has been accounted for by allowing an additional neural network input, hence leading to a
feedforward neural network with 6 inputs.

All the neural network results were obtained using a learning rate n = 0.05, a momentum
term a = 0.7, a tolerance ¢ = 0.02 and training for 4000 epochs. The only transformation
performed on the data was a linear transformation for mapping the data range to the (0.4, 0.6)
range. All the results presented for the neural networks were averaged over 10 runs with
different initial random weights. The notation NN z-y;-y;-z stands for a neural network
with z external inputs, y; and y, units in the first and second hidden layer respectively and
z output units.

Varying the hidden layer size suggested that a number of hidden units equal to the

12



number of inputs is an appropriate choice. Although the 6-1 architecture has the smallest
RMSE and the largest 72 of all neural network models, spectral analysis and histogram of
residuals indicated the 6-6-1 architecture to be more appropriate. They indicated also that
the 6-6-1 neural network is more adequate than the AR(5) model, despite the corresponding
RMSE and 72 values from Table 1.

By comparing the r? value for the AR(5) model to that of the 6-y;-1 and the 6-y;-
y2-1 neural networks (lines 1, 5 and 9 in Table 1), it can be seen that the AR(5) model
still performs better, although its histogram and spectrum of the residuals didn’t indicate a
normal distribution. The neural network predictor appears to be biased (mean of residuals far
from zero), thus suggesting the need for the following bias removal post-processing procedure:

(1) train the neural network as before; (2) perform a cross-validation test; (3) compute
the mean of the residuals (prediction errors) for the cross-validation set; (4) subtract the
computed mean from each actual prediction.

For the 6-6-1 architecture this procedure yielded p=-97.991, RMSE=477.913, r2=0.736
using the training data as a cross-validation set. These results, as well as the histogram and
the spectrum, indicated a significant improvement without deteriorating the “normality” of
the residuals. They also confirmed that the 6-6-1 is indeed a better choice than the 6-1
architecture (compare lines 3 and 6 from Table 1).

The conclusions drawn from these experiments are:

1. The hint provided by the stochastic analysis of using 6 input units for neural network
modelling of the underlying process seems to be appropriate. Increasing the number of

inputs to 8 did not improve prediction accuracy, while decreasing the number of inputs

13



to 4 deteriorated the prediction accuracy considerably.

2. Even when applying the bias removal post-processing, the performance of the most
appropriate AR model is still better than that of the corresponding neural network

(although not significantly better).

Influence of Increased Prediction Horizon.

In the previous experiment, the performance of the hint-based neural network was still not
better than that of the corresponding stochastic model. Thus, different related problems of
increased complexity were experimented with, as the computationally more powerful neural
network model is expected to yield better performance in those cases [11]. One of these more
difficult problems that is quite important in practice is prediction for an increased horizon.

For both stochastic and neural network models, the data pre-processing step was per-
formed similarly as in the case of the prediction horizon one. For a larger prediction horizon
different sampling rates can be employed, which makes the trial and error neural network
architecture selection even more impractical. Consequently, in this experiment the choice of
an appropriate sampling rate based on the stochastic modelling hint is analyzed.

In addition, similar to the prediction horizon one hint, it is explored whether an appro-
priate AR(p) model indicates the use of a feedforward neural network with p + 1 external
inputs.

The same entertainment video traffic data was used for experimentation, but now with
prediction horizon ten (the tenth step ahead process value is predicted). To predict the
process, Z, at time step ¢ + 10 using & process values up to time ¢, different sampling rates

(divisors of the prediction horizon) are considered:
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e sampling rate 1, where the k previous process values are z(¢), z(t—1),z(t—2),...,z(t—

k+1);

e sampling rate 2, where the k previous process values are z(¢), z(¢t—2), z(t—4),...,z(t—
2x(k—1));

e sampling rate 5, where the k previous process values are z(t), z(t—5), z(t—10),. .., z(t—
5x(k—1));

e sampling rate 10, where the k previous process values are z(¢), z(¢t—10), z(t—20), ..., z(t—

10 % (k — 1)).

For horizon h larger than one, the prediction can be done either in a direct or in an
incremental fashion. In the direct approach, the neural network is trained to predict directly
the h-th step ahead without predicting any of the intermediate 1,...,h — 1 steps. In the
incremental approach, the neural network predicts all the intermediate values up to h steps
ahead by using the previously predicted values as inputs for predicting the next value. Since
the incremental approach lead to an undesirable accumulation of error for our data set, the
presented results are obtained by using the direct approach. All neural network results are,
as for the previous set of experiments, averaged over 10 runs with different initial random
weights. All results were obtained using a learning rate n = 0.01, a momentum term o = 0.7,
a tolerance ¢t = 0.02 and training for 6000-10000 epochs.

The most appropriate AR models obtained for different sampling rates, as well as the
corresponding neural network models are presented in Table 2. The stochastic models in-

dicate a sampling rate 1 as the most appropriate. The neural network results confirm the
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Sampling | Model W RMSE r?
1 AR(5) -1.635 | 534.640 | 0.667
1 NN 6-6-1 | -191.596 | 623.589 | 0.556
2 AR(4) 4.042 544.573 | 0.442
2 NN 5-5-1 | -177.545 | 557.727 | 0.406
5 AR(5) 1.759 928.670 | 0.131
5 NN 6-6-1 | 24.472 | 880.784 | 0.222
10 AR(4) 31.118 | 855.588 | 0.361
10 NN 5-5-1 | 10.223 | 1004.144 | 0.333

Table 2: Stochastic and NN Performance for Different Sampling Rates

hint drawn from the stochastic analysis, according to which a sampling rate 1 is the most
appropriate. Except for the case of the 5-5-1 neural network applied for sampling rate 10,
all the neural networks employed the bias removal post-processing.

Table 3 summarizes the results obtained for the best stochastic model, as well as for
different representative neural networks for a sampling rate 1. The neural networks employed
a similar bias removal post-processing as in the case of prediction horizon one. The table
indicates that the neural network having 6 inputs yielded the best prediction, this being
consistent with the hint provided by the stochastic modelling (allowing again an additional
external input as compared to the most appropriate AR(5) model to account for the first
order differentiation). Neural network architectures much larger than the ones indicated were
also experimented with, but their performance was poor (the coefficient of determination, r?

was 0.160 for a 20-20-1 architecture and -0.025 for a 30-30-1 architecture respectively).

The conclusions that could be drawn from these experiments are:

1. The data sampling rate indicated by the stochastic models seems to be appropriate

also for the neural network models.
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Model W RMSE r?

AR(5) -1.635 | 534.640 | 0.667
NN 3-3-1 | -272.557 | 691.800 | 0.446
NN 4-4-1 | -192.799 | 625.247 | 0.552
NN 5-5-1 | -232.390 | 664.002 | 0.498
NN 6-6-1 | -191.596 | 623.589 | 0.556
NN 7-7-1 | -201.559 | 636.116 | 0.540

Table 3: Stochastic and NN Performance for Prediction Horizon 10
with Sampling Rate 1

2. The hint provided by the stochastic analysis regarding the number of external inputs

is effective also for larger horizons.

3. The performance of the AR models is still better, this indicating that the complexity

of the data sets might still be too low.

Influence of Noise Corruption.

Another practical problem is constituted by the prediction in a noisy environment. For
such an experiment, an additive Gaussian noise is introduced to the entertainment video
traffic data and predictions with horizon one are performed. The first experiment used un-
corrupted (noise-free) data for parameter estimation and data with 50% noise for model
validation. The noise level is computed as a ratio of the standard deviation of the additive
noise and the standard deviation of the un-corrupted data.

For both stochastic and neural network models the data pre-processing step was as in the
previous noise-free experiments. All neural network results were obtained using a learning
rate n = 0.01, a momentum term a« = 0.7, a tolerance ¢ = 0.02, training for 10000-20000

epochs and averaged over 10 runs with different initial random weights. In addition, the

17



Noise Level | Model r?
50% AR(5) 0.359
50% NN 3-3-1 | 0.382
50% NN 4-4-1 | 0.413
50% NN 5-5-1 | 0.421
50% NN 6-6-1 | 0.430
50% NN 7-7-1 | 0.427
50% NN 8-8-1 | 0.429

50% RWALK | 0.0655
80% AR(5) | 0.095
80% NN 6-6-1 | 0.232
80% RWALK | -0.293

Table 4: Stochastic and NN Performance on Noisy Data

previously discussed bias removal post-processing was applied.

The results for the most appropriate stochastic model, as well as for some of the rep-
resentative neural network models are presented in Table 4. It can be observed that the
stochastic model is outperformed by the corresponding 6-6-1 neural network. Table 4 also
includes experimental results for an 80% noise level in the model validation data. Again,
the neural network outperforms the corresponding stochastic model, but this time more sig-
nificantly. For comparison purposes Table 4 includes also the results obtained for a random
walk (RWALK) predictor on 50% and 80% noise corrupted data. A random walk predictor is
a trivial predictor in which the next predicted value is identical to the last observed process
value. The very low values for the coefficient of determination obtained for the random walk
predictor as compared to both stochastic and neural network models show clearly that both
models are capable of extracting useful information even in the conditions of such a high
noise level.

The conclusions drawn from this experiment are:

18



1. The neural network corresponding to the most appropriate stochastic model has a

better performance than the other tested neural networks.

2. In this problem the performance of the neural network is better than that of the

corresponding stochastic model.

Influence of Increased Complexity of Data Set.

The final experiment uses a well known benchmark problem, the Mackey-Glass time
series. In accordance to previously published results [8], a sampling rate six is used for
predicting six steps ahead.

The pre-processing step for the stochastic model included either both logarithmic smooth-
ing and first order differentiation (yielding a most appropriate AR model of order 24) or just
the logarithmic smoothing (leading to a most appropriate AR model of order 29). Exper-
iments without first order differentiation were performed in this case since the data was
apparently “stationary”.

In the neural network models, the pre-processing was similar to the previous experiments.
The neural network results were obtained with a learning rate n = 0.01, a momentum term
a = 0.7, a tolerance ¢ = 0.02 and training for 40000 epochs. In contrast to the previous
experiments, the neural network results were obtained as an average over three runs with
different initial random weights, since training was computationally too expensive for ten
runs.

In addition to neural network learning performed on the training set used for stochas-
tic modelling (1000 examples), additional experiments were performed using a twice larger

training set (2000 examples). The motivation for these additional experiments was the con-
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Model Training Set Size | 7?
AR(24) 1000 0.751
NN 25-25-1 1000 0.914
NN 25-25-1 2000 0.925
AR(29) * 1000 0.767
NN 29-29-1 1000 0.917
NN 29-29-1 2000 0.929
NN 4-10-10-1 1000 0.912
NN 4-10-10-1 2000 0.936

Table 5: Stochastic and NN Performance on Mackey-Glass Data
(“*” stands for no differentiation)

cern that the original 1000 training examples might not be enough to fit the parameters
(weights) of the neural networks corresponding to the AR(24) and AR(29) stochastic mod-
els. Instead of comparing the stochastic hint-based neural networks to the neural networks
of somewhat different architectures obtained through a trial and error process as previously,
here the results are compared versus an earlier reported “optimal” neural network topology
with 4 inputs and two hidden layers of 10 units each [8].

The conclusions drawn from this experiment (reported in Table 5) are:

1. A differentiation pre-processing step in the stochastic modelling for this time series is

not needed.

2. The performance of the neural networks is much better as compared to the most

appropriate stochastic model.

3. The stochastic hint-based neural networks performed similar to the “optimal” neural

network architecture, further supporting the hint-based design approach.

4. Although the hint-based neural network might appear to be highly over-dimensioned
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as compared to “the optimal” network, training and prediction in an actual hardware
implementation would be faster for the hint-based architecture since it contains a single

layer of hidden units as compared to two such layers in the “optimal” architecture.

FINAL REMARKS AND FURTHER RESEARCH

This study tested whether a stochastic analysis can provide any initial knowledge for
a neural network time series prediction. This issue was analyzed in the context of fairly
difficult time series prediction problems (entertainment video traffic and Mackey-Glass).

Although neural networks are computationally more powerful models than the linear
stochastic models, there are important real life problems in which a simple stochastic model
can outperform neural networks (see first two sections of Experimental Results). Anyhow,
there are many problems in which the computational power of neural networks is benefi-
cial (see last two sections of Experimental Results). Consequently, when predicting time
series, both methodologies should be considered before deciding upon the most appropriate
prediction model.

Experiments suggested that a neural network architecture selected according to the hint
provided by the stochastic analysis performs comparable or better than neural network
architectures determined through a trial and error procedure. It is important to emphasize
that the goal of the proposed hint-based approach is not to find “the optimal” neural network
architecture for a given problem but to provide rapidly (after a fast stochastic analysis) a
neural network architecture with close to optimal performance. Further research is needed
to explore the validity of these hints to other time series prediction problems as well as to

extend the study from AR to ARMA modelling hints (that would indicate the choice of a
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recurrent neural network).

We strongly believe that potentially better results are achievable by integrating prior
knowledge and neural network learning. For example, a successful integration of expert
system rules and neural network classifiers is presented in [5]. The approach proposed in
this study is a way of incorporating prior knowledge into neural network systems for time
series prediction. As a further level of integration, our current research considers the use
of stochastic modelling hints with additional sources of prior knowledge (e.g. embedding or

chaotic dimension) for neural network based time series predictions.
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