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INTRODUCTIONA time series xt can be de�ned as a random (or nondeterministic) function x of anindependent variable t [6]. Its main characteristic is that its future behavior can not bepredicted exactly as in the case of a deterministic function of t. However, the behavior ofa time series can sometimes be anticipated by describing the series through probabilisticlaws. Commonly, time series prediction problems are approached either from a stochasticperspective [1] or, more recently from a neural network perspective [9, 12]. Each of theseapproaches has advantages and disadvantages: the stochastic methods are usually fast, butof limited applicability since they commonly employ linear models, whereas the neural net-work methods are powerful enough, but the selection of an appropriate architecture andparameters is a time consuming trial and error procedure. At �rst glance it might seem thatthere isn't any direct relationship between time series and neural networks, but there are atleast two reasons that might make neural networks very attractive for modelling time series:1. The theoretical work shows that neural networks are computationally very powerfulmodels. For example, a multilayer perceptron with a single layer of hidden process-ing units using sigmoidal nonlinearities is powerful enough to uniformly approximatealmost any arbitrary continuous function on a compact domain [3]. In addition tothe ability of representing complex nonlinear functions, neural networks can e�ectivelyconstruct approximations for those functions by learning from examples. This abilityto approximate complex input-output mappings makes them attractive in practicalapplications where traditional computational structures have performed poorly (e.g.ambiguous data or large contextual in
uence).2



2. There is a direct relationship between the fundamental stochastic models (autoregres-sive and autoregressive-moving average) for time series and feedforward and recurrentneural network models, as explained in the next section.A comparative study of stochastic and neural network techniques for time series predic-tion with respect to number of data samples and prediction horizon is performed in [11]. Thecombination of stochastic and neural network techniques in a hybrid system for improvingprediction accuracy, or the use of some stochastic prior knowledge of the underlying processfor con�guring the neural network are topics that deserve further consideration.This paper proposes the use of stochastic modelling both for providing initial hints forselecting an appropriate neural network architecture (number of external inputs and numberof context inputs) and data sampling rate, as well as a means of comparison to neural networkprediction techniques.The proposed approach is to perform an initial stochastic analysis of the data and tochoose an appropriate neural network model accordingly. The motivation for this approachis that the linear stochastic modelling is more cost e�ective than the selection of a neuralnetwork architecture by a trial and error procedure. The objective of this study is not toobtain \the optimal" neural network architecture for a given problem, but to provide rapidlyan architecture with close to optimal performance. Since the hint is obtained from a linearmodel, for more complex problems the neural network might be over-dimensioned (similarperformance might be obtained using a smaller machine and less training data). However,the exhaustive trial and error procedure involved for determining such an optimal machinecould be costlier than the stochastic hint-based alternative.3



The evaluation of the stochastic hints for neural network prediction is performed in thecontext of di�erent prediction objectives, of \clean" and \noisy" data, as well as of data setsof various complexity. An additional issue addressed in the paper is whether neural networksdi�erent than the ones suggested by the stochastic model can lead to improved predictionaccuracy as compared to the suggested ones.STOCHASTIC MODELS AND NEURALNETWORKS FOR TIME SERIESA stationary process can be described as a process whose characteristic parameters don'tchange over time. The autoregressive moving average model of orders p and q (ARMA(p,q))of a stationary stochastic process xt can be described by the following equation:xt = '1xt�1 + '2xt�2 + : : :+ 'pxt�p + at +  1at�1 +  2at�2 + : : :+  qat�q; (1)where xt�1; xt�2; : : : ; xt�p represent the process values at p previous time steps, at; at�1; : : : ;at�q are realizations of a random process, usually emanating from a normal (Gaussian) dis-tribution with mean zero and variance �2a, and '1 : : : 'p;  1 : : :  q are the model parameters.Commonly, xt doesn't represent the actual physical process, but the process with the meanremoved. The AR(p) and MA(q) processes are special cases of the ARMA(p,q) model,obtained by setting q = 0 and p = 0, respectively. The most general stochastic model,ARIMA (autoregressive integrated moving average) assumes that the process exhibits a\homogeneous" non-stationary behavior that can be eliminated through a suitable discretedi�erentiation pre-processing.A natural generalization of the linear AR and ARMA models to the nonlinear case leads4



to the NAR model xt = h(xt�1; xt�2; : : : ; xt�p) + at; (2)and the NARMA modelxt = h(xt�1; xt�2; : : : ; xt�p; at�1; : : : ; at�q) + at; (3)where h is an unknown smooth function.The NAR and NARMA models are very complex, thus making them unsuitable for reallife applications. Feedforward and recurrent neural networks have been proposed [2, 12] forsimulating nonlinear AR and ARMA models respectively (see Fig. 1). A conditional meanpredictor [2] for the NAR model can be approximated as:x̂t = ĥ(xt�1; : : : ; xt�p) = mXi=1Wif( pXj=1wijxt�j + �i); (4)where f represents a non-linear, smooth, bounded function (usually called activation or trans-fer function). This approximation of the NAR model corresponds to the feedforward neuralnetwork obtained by disconnecting the context inputs ât�1 : : : ât�q from Fig. 1. Similarly, apredictor for an invertible [1] NARMA model can be approximated as:x̂t = h(xt�1; : : : ; xt�p; ât�1; : : : ; ât�q) = mXi=1Wif( pXj=1wijxt�j + qXj=1w0ij(xt�j � x̂t�j) + �i); (5)with âk = xk�x̂k; j = t� q; t� 1, corresponding to the recurrent neural network from Fig. 1.Most commonly, the parametersWi, wij and w0ij (weights) are estimated from examples by agradient descent error minimization technique known as backpropagation learning [10]. Thisis also the learning method employed in our experiments.5



w,  w’,  W  = weights

f  = activation function

w
11

w
m1

w
mp

w
1p w’

11

w’
m1

w’
1q

w’
mq

Unit
Delay

Unit
Delay

W
1W

m

1m

FEEDBACK

x̂
t

EXTERNAL  INPUTS CONTEXT  INPUTS

x x a a
t-q t-1t-1

.....

...

t-p
.....

.....f f

PREDICTED  VALUE

a  =  x  -  x
ttt

^^

^ ^

Figure 1: Stochastic Model ApproximationSTOCHASTIC AND NEURAL NETWORKPREDICTIONSBoth the stochastic and the neural network predictions can be described in a proceduralfashion as follows:perform initial data pre-processing /* step 1 */repeatperform model identification /* step 2 */perform parameter estimation on data set 1 /* step 3 */perform model validation on data set 2 /* step 4 */until model suitableperform prediction /* step 5 */6



However, the individual steps are di�erent for stochastic and neural network predictors,as explained below.A. Stochastic Models.A1. The data pre-processing step usually comprises a smoothing and possibly a sta-tionarization. In practice a logarithmic transformation of the original positivevalued series is commonly performed for smoothing (yt = log(xt)) and a �rstor second order discrete di�erentiation for stationarization (wt = yt � yt�1 orwt = yt � 2yt�1 + yt�2 respectively).A2. The model identi�cation step selects a model type (AR, MA or ARMA), as wellas corresponding model orders.A3. The parameter estimation step uses a �rst data set for performing most commonlya maximum likelihood estimation of the model parameters. In the case of pure ARmodels, Burg's method or the Modi�ed Covariance method are also applied [7].A4. The model validation step performs an adequacy check of the model by usingAkaike's �nal prediction error and information criterion, Bode plots, pole-zerocancellation, as well as a residual analysis of prediction errors on the second dataset in both time and frequency domain.B. Neural Network Models.B1. The data pre-processing step can be performed as in the case of the stochasticmodels. Alternatively, it can be completely omitted or, more commonly, it canencompass a linear transformation of the data so as to �t it to a convenient range.7



B2. The model identi�cation step selects a neural network architecture (feedforwardor recurrent), layer structure (number of layers and number of units per layer),as well as learning parameters (learning rate, momentum and tolerance).B3. The parameter estimation step encompasses the neural network training on a �rstdata set (training set), in which the network weights are modi�ed according to agiven learning technique (backpropagation in our case).B4. The model validation performs a residual analysis of prediction errors in time andfrequency domain on the second data set (test set).For both stochastic and neural network models the residual analysis of prediction errorsshould comprise at least the computation of:� error mean � = 1nPn1 âi,� root mean squared error RMSE = qPn1 â2i=n,� coe�cient of determination r2 = 1 �RMSE2=V AR[x],� histogram,� power spectra,where the âi's stand for prediction errors and V AR[x] for the variance of the actual data.For a good predictor, the residuals should be normally distributed (the normality of thedistribution can be indicated by a histogram resembling the Normal distribution, as well asby a \
at spectrum") with � close to 0, small RMSE and r2 close to 1. It is common practiceto test the prediction accuracy on either the same data set used for model validation or ona third data set, also known as cross-validation set.The actual prediction can deal with either predicting a characteristic process parameter8



for just the next time step (prediction horizon one), or with predicting a parameter severalsteps ahead (prediction horizon larger than one). Prediction horizons larger than one areuseful in numerous real life problems like power consumption predictions, car sales predictionsor Internet tra�c predictions.EXPERIMENTAL RESULTSThe hint explored throughout the experiments is whether the order of the most appro-priate stochastic model provides an indication of the appropriate number of neural networkinputs: feedforward neural network with p or p + 1 external inputs for an AR(p) process orrecurrent neural network with p or p+1 external and q context inputs for an ARMA(p,q) pro-cess. The choice of p or p+1 external inputs from the hint depends on whether the stochasticpre-processing step is done without or with discrete di�erentiation respectively. Since thestochastic modelling of the data sets considered in the experiments indicated AR(p) modelsas the most appropriate, all the analyzed neural network architectures were of feedforwardtype.The validity of the stochastic modelling hint for selecting an adequate neural networkarchitecture was tested in the context of the following prediction problems:1. Prediction with horizon one on data un-corrupted by noise.2. In
uence of increased prediction horizon.3. In
uence of noise corruption.4. In
uence of increased complexity of the data set.9
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Figure 2: Entertainment Video Tra�c DataThe �rst data set used in the experiments consisted of a real life, compressed, entertain-ment video tra�c data used in an ATM (Asynchronous Transfer Mode) network, in whicheach sample represents the size of a corresponding compressed video frame [4]. The di�cultyassociated with this data set is the non-stationarity (data distribution changes over time), aswell as the existence of \outliers" (values very di�erent from neighboring ones). The data setconsisted of 2000 samples (shown in Fig. 2), of which the �rst 1000 were used for parameterestimation and the last 1000 for model validation. The actual predictions were done usingthe same 1000 samples used for model validation and not a separate cross-validation set.The second data set is arti�cially generated and is obtained by a delay di�erential equa-tion (also known as Mackey-Glass series):dx(t)dt = Ax(t� � )1 + x10(t� � ) �Bx(t)Experiments were performed for A = 0:2; B = 0:1; � = 17, case in which the system10
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Figure 3: Mackey-Glass Dataexhibits chaotic behavior. The di�culty associated with this data set is the high nonlinearity.The data set consisted of 3000 samples (the �rst 2000 shown in Fig. 3), out of which variousexperiments used either the �rst 1000 or the �rst 2000 values for parameter estimation(training), and the following 1000 for model validation (testing).Prediction problems 1, 2 and 3 were analyzed in the context of the entertainment videotra�c data set, whereas the in
uence of increased complexity was analyzed in the contextof the Mackey-Glass series.Prediction with Horizon One on Data Un-corrupted by Noise.The data pre-processing step for the stochastic model encompassed both a logarithmicsmoothing and a �rst order di�erentiation for stationarization purposes, whereas it includedjust a linear scaling transformation in the case of the neural network, since this yielded farbetter results than the previously mentioned transformations. The residual analysis results11



Model � RMSE r2AR(5) 2.313 462.664 0.749NN 6-1 -359.283 592.596 0.593NN 6-1 * -105.982 482.995 0.730NN 6-3-1 -365.196 596.864 0.587NN 6-6-1 -380.949 606.855 0.573NN 6-6-1 * -97.991 477.913 0.736NN 8-8-1 -386.014 611.476 0.569NN 4-4-1 -406.859 628.954 0.539NN 6-6-6-1 -417.531 637.428 0.528Table 1: Stochastic and NN Performance for Prediction Horizon 1(\*" stands for bias removal)obtained for the most appropriate stochastic model, as well as for the most signi�cant neuralnetworks are presented in Table 1.The residual analysis indicated an AR(5) model as the most appropriate, thus suggestingthe use of a feedforward neural network with 5 inputs. The �rst order discrete di�erentiationhas been accounted for by allowing an additional neural network input, hence leading to afeedforward neural network with 6 inputs.All the neural network results were obtained using a learning rate � = 0:05, a momentumterm � = 0:7, a tolerance t = 0:02 and training for 4000 epochs. The only transformationperformed on the data was a linear transformation for mapping the data range to the (0:4; 0:6)range. All the results presented for the neural networks were averaged over 10 runs withdi�erent initial random weights. The notation NN x-y1-y2-z stands for a neural networkwith x external inputs, y1 and y2 units in the �rst and second hidden layer respectively andz output units.Varying the hidden layer size suggested that a number of hidden units equal to the12



number of inputs is an appropriate choice. Although the 6-1 architecture has the smallestRMSE and the largest r2 of all neural network models, spectral analysis and histogram ofresiduals indicated the 6-6-1 architecture to be more appropriate. They indicated also thatthe 6-6-1 neural network is more adequate than the AR(5) model, despite the correspondingRMSE and r2 values from Table 1.By comparing the r2 value for the AR(5) model to that of the 6-y1-1 and the 6-y1-y2-1 neural networks (lines 1, 5 and 9 in Table 1), it can be seen that the AR(5) modelstill performs better, although its histogram and spectrum of the residuals didn't indicate anormal distribution. The neural network predictor appears to be biased (mean of residuals farfrom zero), thus suggesting the need for the following bias removal post-processing procedure:(1) train the neural network as before; (2) perform a cross-validation test; (3) computethe mean of the residuals (prediction errors) for the cross-validation set; (4) subtract thecomputed mean from each actual prediction.For the 6-6-1 architecture this procedure yielded �=-97.991, RMSE=477.913, r2=0.736using the training data as a cross-validation set. These results, as well as the histogram andthe spectrum, indicated a signi�cant improvement without deteriorating the \normality" ofthe residuals. They also con�rmed that the 6-6-1 is indeed a better choice than the 6-1architecture (compare lines 3 and 6 from Table 1).The conclusions drawn from these experiments are:1. The hint provided by the stochastic analysis of using 6 input units for neural networkmodelling of the underlying process seems to be appropriate. Increasing the number ofinputs to 8 did not improve prediction accuracy, while decreasing the number of inputs13



to 4 deteriorated the prediction accuracy considerably.2. Even when applying the bias removal post-processing, the performance of the mostappropriate AR model is still better than that of the corresponding neural network(although not signi�cantly better).In
uence of Increased Prediction Horizon.In the previous experiment, the performance of the hint-based neural network was still notbetter than that of the corresponding stochastic model. Thus, di�erent related problems ofincreased complexity were experimented with, as the computationally more powerful neuralnetwork model is expected to yield better performance in those cases [11]. One of these moredi�cult problems that is quite important in practice is prediction for an increased horizon.For both stochastic and neural network models, the data pre-processing step was per-formed similarly as in the case of the prediction horizon one. For a larger prediction horizondi�erent sampling rates can be employed, which makes the trial and error neural networkarchitecture selection even more impractical. Consequently, in this experiment the choice ofan appropriate sampling rate based on the stochastic modelling hint is analyzed.In addition, similar to the prediction horizon one hint, it is explored whether an appro-priate AR(p) model indicates the use of a feedforward neural network with p + 1 externalinputs.The same entertainment video tra�c data was used for experimentation, but now withprediction horizon ten (the tenth step ahead process value is predicted). To predict theprocess, x̂, at time step t+ 10 using k process values up to time t, di�erent sampling rates(divisors of the prediction horizon) are considered:14



� sampling rate 1, where the k previous process values are x(t); x(t�1); x(t�2); : : : ; x(t�k + 1);� sampling rate 2, where the k previous process values are x(t); x(t�2); x(t�4); : : : ; x(t�2 � (k � 1));� sampling rate 5, where the k previous process values are x(t); x(t�5); x(t�10); : : : ; x(t�5 � (k � 1));� sampling rate 10, where the k previous process values are x(t); x(t�10); x(t�20); : : : ; x(t�10 � (k � 1)).For horizon h larger than one, the prediction can be done either in a direct or in anincremental fashion. In the direct approach, the neural network is trained to predict directlythe h-th step ahead without predicting any of the intermediate 1; : : : ; h � 1 steps. In theincremental approach, the neural network predicts all the intermediate values up to h stepsahead by using the previously predicted values as inputs for predicting the next value. Sincethe incremental approach lead to an undesirable accumulation of error for our data set, thepresented results are obtained by using the direct approach. All neural network results are,as for the previous set of experiments, averaged over 10 runs with di�erent initial randomweights. All results were obtained using a learning rate � = 0:01, a momentum term � = 0:7,a tolerance t = 0:02 and training for 6000-10000 epochs.The most appropriate AR models obtained for di�erent sampling rates, as well as thecorresponding neural network models are presented in Table 2. The stochastic models in-dicate a sampling rate 1 as the most appropriate. The neural network results con�rm the15



Sampling Model � RMSE r21 AR(5) -1.635 534.640 0.6671 NN 6-6-1 -191.596 623.589 0.5562 AR(4) 4.042 544.573 0.4422 NN 5-5-1 -177.545 557.727 0.4065 AR(5) 1.759 928.670 0.1315 NN 6-6-1 24.472 880.784 0.22210 AR(4) 31.118 855.588 0.36110 NN 5-5-1 10.223 1004.144 0.333Table 2: Stochastic and NN Performance for Di�erent Sampling Rateshint drawn from the stochastic analysis, according to which a sampling rate 1 is the mostappropriate. Except for the case of the 5-5-1 neural network applied for sampling rate 10,all the neural networks employed the bias removal post-processing.Table 3 summarizes the results obtained for the best stochastic model, as well as fordi�erent representative neural networks for a sampling rate 1. The neural networks employeda similar bias removal post-processing as in the case of prediction horizon one. The tableindicates that the neural network having 6 inputs yielded the best prediction, this beingconsistent with the hint provided by the stochastic modelling (allowing again an additionalexternal input as compared to the most appropriate AR(5) model to account for the �rstorder di�erentiation). Neural network architectures much larger than the ones indicated werealso experimented with, but their performance was poor (the coe�cient of determination, r2was 0.160 for a 20-20-1 architecture and -0.025 for a 30-30-1 architecture respectively).The conclusions that could be drawn from these experiments are:1. The data sampling rate indicated by the stochastic models seems to be appropriatealso for the neural network models. 16



Model � RMSE r2AR(5) -1.635 534.640 0.667NN 3-3-1 -272.557 691.800 0.446NN 4-4-1 -192.799 625.247 0.552NN 5-5-1 -232.390 664.002 0.498NN 6-6-1 -191.596 623.589 0.556NN 7-7-1 -201.559 636.116 0.540Table 3: Stochastic and NN Performance for Prediction Horizon 10with Sampling Rate 12. The hint provided by the stochastic analysis regarding the number of external inputsis e�ective also for larger horizons.3. The performance of the AR models is still better, this indicating that the complexityof the data sets might still be too low.In
uence of Noise Corruption.Another practical problem is constituted by the prediction in a noisy environment. Forsuch an experiment, an additive Gaussian noise is introduced to the entertainment videotra�c data and predictions with horizon one are performed. The �rst experiment used un-corrupted (noise-free) data for parameter estimation and data with 50% noise for modelvalidation. The noise level is computed as a ratio of the standard deviation of the additivenoise and the standard deviation of the un-corrupted data.For both stochastic and neural network models the data pre-processing step was as in theprevious noise-free experiments. All neural network results were obtained using a learningrate � = 0:01, a momentum term � = 0:7, a tolerance t = 0:02, training for 10000-20000epochs and averaged over 10 runs with di�erent initial random weights. In addition, the17



Noise Level Model r250% AR(5) 0.35950% NN 3-3-1 0.38250% NN 4-4-1 0.41350% NN 5-5-1 0.42150% NN 6-6-1 0.43050% NN 7-7-1 0.42750% NN 8-8-1 0.42950% RWALK 0.065580% AR(5) 0.09580% NN 6-6-1 0.23280% RWALK -0.293Table 4: Stochastic and NN Performance on Noisy Datapreviously discussed bias removal post-processing was applied.The results for the most appropriate stochastic model, as well as for some of the rep-resentative neural network models are presented in Table 4. It can be observed that thestochastic model is outperformed by the corresponding 6-6-1 neural network. Table 4 alsoincludes experimental results for an 80% noise level in the model validation data. Again,the neural network outperforms the corresponding stochastic model, but this time more sig-ni�cantly. For comparison purposes Table 4 includes also the results obtained for a randomwalk (RWALK) predictor on 50% and 80% noise corrupted data. A random walk predictor isa trivial predictor in which the next predicted value is identical to the last observed processvalue. The very low values for the coe�cient of determination obtained for the random walkpredictor as compared to both stochastic and neural network models show clearly that bothmodels are capable of extracting useful information even in the conditions of such a highnoise level.The conclusions drawn from this experiment are:18



1. The neural network corresponding to the most appropriate stochastic model has abetter performance than the other tested neural networks.2. In this problem the performance of the neural network is better than that of thecorresponding stochastic model.In
uence of Increased Complexity of Data Set.The �nal experiment uses a well known benchmark problem, the Mackey-Glass timeseries. In accordance to previously published results [8], a sampling rate six is used forpredicting six steps ahead.The pre-processing step for the stochastic model included either both logarithmic smooth-ing and �rst order di�erentiation (yielding a most appropriate AR model of order 24) or justthe logarithmic smoothing (leading to a most appropriate AR model of order 29). Exper-iments without �rst order di�erentiation were performed in this case since the data wasapparently \stationary".In the neural network models, the pre-processing was similar to the previous experiments.The neural network results were obtained with a learning rate � = 0:01, a momentum term� = 0:7, a tolerance t = 0:02 and training for 40000 epochs. In contrast to the previousexperiments, the neural network results were obtained as an average over three runs withdi�erent initial random weights, since training was computationally too expensive for tenruns.In addition to neural network learning performed on the training set used for stochas-tic modelling (1000 examples), additional experiments were performed using a twice largertraining set (2000 examples). The motivation for these additional experiments was the con-19



Model Training Set Size r2AR(24) 1000 0.751NN 25-25-1 1000 0.914NN 25-25-1 2000 0.925AR(29) * 1000 0.767NN 29-29-1 1000 0.917NN 29-29-1 2000 0.929NN 4-10-10-1 1000 0.912NN 4-10-10-1 2000 0.936Table 5: Stochastic and NN Performance on Mackey-Glass Data(\*" stands for no di�erentiation)cern that the original 1000 training examples might not be enough to �t the parameters(weights) of the neural networks corresponding to the AR(24) and AR(29) stochastic mod-els. Instead of comparing the stochastic hint-based neural networks to the neural networksof somewhat di�erent architectures obtained through a trial and error process as previously,here the results are compared versus an earlier reported \optimal" neural network topologywith 4 inputs and two hidden layers of 10 units each [8].The conclusions drawn from this experiment (reported in Table 5) are:1. A di�erentiation pre-processing step in the stochastic modelling for this time series isnot needed.2. The performance of the neural networks is much better as compared to the mostappropriate stochastic model.3. The stochastic hint-based neural networks performed similar to the \optimal" neuralnetwork architecture, further supporting the hint-based design approach.4. Although the hint-based neural network might appear to be highly over-dimensioned20



as compared to \the optimal" network, training and prediction in an actual hardwareimplementation would be faster for the hint-based architecture since it contains a singlelayer of hidden units as compared to two such layers in the \optimal" architecture.FINAL REMARKS AND FURTHER RESEARCHThis study tested whether a stochastic analysis can provide any initial knowledge fora neural network time series prediction. This issue was analyzed in the context of fairlydi�cult time series prediction problems (entertainment video tra�c and Mackey-Glass).Although neural networks are computationally more powerful models than the linearstochastic models, there are important real life problems in which a simple stochastic modelcan outperform neural networks (see �rst two sections of Experimental Results). Anyhow,there are many problems in which the computational power of neural networks is bene�-cial (see last two sections of Experimental Results). Consequently, when predicting timeseries, both methodologies should be considered before deciding upon the most appropriateprediction model.Experiments suggested that a neural network architecture selected according to the hintprovided by the stochastic analysis performs comparable or better than neural networkarchitectures determined through a trial and error procedure. It is important to emphasizethat the goal of the proposed hint-based approach is not to �nd \the optimal" neural networkarchitecture for a given problem but to provide rapidly (after a fast stochastic analysis) aneural network architecture with close to optimal performance. Further research is neededto explore the validity of these hints to other time series prediction problems as well as toextend the study from AR to ARMA modelling hints (that would indicate the choice of a21



recurrent neural network).We strongly believe that potentially better results are achievable by integrating priorknowledge and neural network learning. For example, a successful integration of expertsystem rules and neural network classi�ers is presented in [5]. The approach proposed inthis study is a way of incorporating prior knowledge into neural network systems for timeseries prediction. As a further level of integration, our current research considers the useof stochastic modelling hints with additional sources of prior knowledge (e.g. embedding orchaotic dimension) for neural network based time series predictions.References[1] G. Box and G. Jenkins, \Time Series Analysis. Forecasting and Control," Prentice Hall,1976.[2] J. T. Connor et al., \Recurrent Neural Networks and Robust Time Series Prediction,"IEEE Transactions on Neural Networks, Vol. 5, No. 2, March 1994, pp. 240-254.[3] G. Cybenko, \Approximation by Superpositions of a Sigmoidal Function," Mathematicsof Control, Signal, and Systems, Vol. 2, 1989, pp. 303-314.[4] R. Drossu, T. V. Lakshman, Z. Obradovi�c and C. Raghavendra, \Single and MultipleFrame Video Tra�c Prediction Using Neural Network Models," Proc. IEEE Networks 94,Madras, India, 1994. 22
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