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etche@eecs.wsu.eduSchool of Electrical Engineering and Computer ScienceWashington State University, Pullman, Washington, 99164-2752Abstract|The graphical user interface (GUI) toheterogeneous neural network simulators proposedin this article is intended to be of use both for thenovice and for the experienced neural network user.For the novice, it provides an easy to use neuralnetwork simulation package that insulates the userfrom the need of knowing the simulator implemen-tation details or the con�guration �le syntax. Forthe experienced neural network professional it pro-vides an interface that is easily extensible to includeany additional neural network simulator in its bi-nary form. To satisfy both academic and personalcomputer environments, the GUI has been devel-oped by using the free TCL/TK software package,available both on workstations running UNIX andon PC's running the free Linux operating system.Although the GUI and the embedded simulatorshave been successfully tested both in neural net-work research and training programs, a more ex-tensive testing in undergraduate and graduate levelclasses is in progress.I. IntroductionNeural network technology has the potential to solve animpressive variety of today's technological problems whichconventional computers are quite powerless to deal with[5]. Popularity of this technology is rapidly growing sinceit proved its applicability in everyday applications as di-verse as signature veri�cation [2], power consumption pre-dictions [14], or �nancial markets forecasting [4].Neural network data modelling techniques are applicableto two general types of problems:� Classi�cation problems, in which the goal is to classifya number of patterns as belonging to di�erent cate-gories (an example would be to automatically recog-nize hand written zip codes and classify each symbol inone of ten categories corresponding to the digits from0 to 9 [15]).� Prediction problems, in which the goal is to predicta future value of a speci�c process parameter (an ex-ample would be the prediction of the U.S. power con-1 Sponsored in part by the NSF research grant NSF-IRI-9308523 andby the NSF education grant NSF-ESI-9254358.

sumption for the year 1997). The prediction problemscan be regarded as limit cases of classi�cation prob-lems in which the number of classes is in�nite.In addition, these techniques are applicable not only totime independent, but also to time dependent problems(time series), where the patterns to be classi�ed are tem-poral sequences of previous process values.Neural network computational models consist of a num-ber of relatively simple, interconnected processing unitscalled neurons working in parallel. Di�erent neural net-work architectures can be used to solve a given classi�ca-tion or prediction problem. In an architecture the neuronsare interconnected through synaptic links and are groupedin layers, with synaptic links usually connecting neuronsin adjacent layers. Typically three di�erent layer typescan be distinguished: input layer (the layer that externalstimuli are applied to), output layer (the layer that out-puts results to the exterior world) and one or more hiddenlayers (intermediate computational layers between inputand output layer). The neural network architectures canbe, roughly speaking, divided in two categories: feedfor-ward, in which the signal 
ow between di�erent layers isunidirectional (from input layer towards output layer), orrecurrent, in which the 
ow between di�erent layers is bidi-rectional (both from input layer towards output layer aswell as opposite).The most distinctive element in neural networks, as op-posed to traditional computational structures, is denotedas learning. Learning represents the adaptation of somecharacteristic neural network parameters by using a set ofexamples (known outcomes of the problem for given condi-tions) so that for given input patterns the outputs re
ectthe value of a speci�c function. The �nal data modellinggoal is not to memorize some known patterns, but to beable to generalize from prior examples (to be able to esti-mate the outcomes of the problem under unknown condi-tions).Neural network data modeling represents the combina-tion of an architecture and an appropriate learning tech-nique. Traditional approaches assume learning on a pre-speci�ed architecture, whereas constructive learning cre-ates the appropriate architecture during the learning pro-cess. Most neural networks have a number of architec-tural and learning parameters that have to be appropri-



ately speci�ed. Selection of appropriate parameters forlarge scale applications is an important experimental prob-lem. If parameters are not appropriate, the algorithmsmaytake a long time to converge or may not converge at all [21].Consequently, in training novice neural networks users, anemphasis on techniques and intuition development is nec-essary for properly setting these parameters.Currently, most neural networks modeling is performedon standard sequential computers (rather than on special-ized neural networks hardware) using simulation software.Until recently the choice of a simulation software was nota primary issue among neural network professionals, as ap-plications of neural networks technology have been limitedto relatively small problems. However, the choice of ane�cient simulation software plays an important role whendealing with large scale, real life applications as desired byindustry. The approach proposed in this paper provides de-velopers with a number of simulator modules implementingvarious learning algorithms, all using a single user interface.In such an environment it is easier to select the model thatis appropriate for a particular application than to becomeaccustomed to various independent simulators.Until recently, most neural network modeling work wasperformed by highly trained neural networks experts. Inpractice, such experts learn how to use several commercialor freely available packages and in addition develop theirown software to deal with special issues not supported bythe packages. Experience seems to indicate that for deal-ing with features not supported by the standard packages,even inside a single group, most neural networks expertsprefer building their own software rather than using codedeveloped by other experts, as it usually takes a signi�canttime to learn how to use somebody else's neural networkscode properly. We strongly believe that the software reuseamong experts can be signi�cantly improved by using a
exible user interface, as proposed in this paper, that caneasily support developers' needs.As the applicability of arti�cial neural networks seemsto extend far beyond the computer science domain to ar-eas like electrical engineering, biology, medicine, business,the need for rapidly trained personnel able to quickly as-similate neural network techniques and to apply them tothe corresponding domain becomes more and more acute.Thus the necessity to acquire some basic neural networkknowledge rapidly, without covering underlying mathemat-ical and programing details, but rather concentrating onunderstanding the conceptual model as well as on design-ing adequate experiments tuned to a particular problem.Our experience indicates that the choice of a graphical userinterface, as proposed in this paper, plays a crucial rolewhen trying to transfer neural network technology rapidlyto non-expert users.The graphical user interface (GUI) proposed in this arti-cle is intended to be of use both for the novice and for theexperienced user. The software package included with thispaper provides an interface to both the most used tradi-tional backpropagation learning through gradient descent

optimization on a prespeci�ed analog architecture [17] andto a novel learning technique developed in our lab, knownas hyperplane determination from examples (HDE), thatautomatically grows a problem tailored discrete architec-ture [10, 11]. The �ne-tuning of each neural network learn-ing process is done by adjusting speci�c learning param-eters. For the novice, it provides an easy to use neuralnetwork simulation package supporting both backpropaga-tion, as well as HDE, that insulates the user from the needof knowing the implementation details, as well as the con-�guration �le syntax for running the simulators. For theexperienced neural network professional it provides an in-terface that is easily extensible to include any additionalneural network simulator in its binary form.The paper is organized as follows: Section 2 contains adescription of the graphical user interface and its under-lying menu structure; Section 3 illustrates the 
exibility,portability and extendibility of the GUI by means of em-bedding two radically di�erent neural network simulators;�nally, Section 4 discusses the applications of the GUI inresearch and teaching, as well as suggestions for furtherimprovements of the GUI.II. GUI Design and ImplementationThe objective of our e�ort was to develop a portable GUIthat would be able to serve neural network professionals,as well as a large number of novice neural network users,who might have access only to personal computers (PCs).With the introduction of Linux, a free UNIX-like operatingsystem that runs on Intel 386/486/Pentium based personalcomputers (PCs), the use of UNIX and X Window environ-ments becomes a�ordable not only to institutions, but alsoto the large PC users community [1]. Linux provides thePC user with the power and 
exibility of the UNIX oper-ating system, as well as with an overwhelming amount offree, good quality software. One of the software packages,included in most of the Linux distributions, available alsoon UNIX workstations in academic environments, is Dr.John Ousterhout's TCL/TK package [16]. TCL, standingfor \tool command language" is a general purpose script-ing language for controlling and extending applications,whereas TK is a toolkit designed to develop X Windowapplications. For those who aren't familiar with X Win-dows, this represents a windowing environment, similar inappearance to PC window environments, that is used in theUNIX environment. Both TCL and TK are implementedas libraries of C procedures that allow the extension of theircore features. In its actual form, TCL is interpreted, thussuggesting that there might be a slowdown as comparedto a compiled program. This potential slowdown isn't ap-parent for scripts of a few thousand lines, as is su�cientfor developing a GUI for neural network simulation. TheCD-ROM software accompanying this paper includes theGUI and simulators' executable �les for both HP 9000 se-ries workstations, as well as for PC's running Linux. Torun the included software on one of these platforms, theexistence of TCL ver. 7.3 and TK ver. 3.6 is also required.



Figure 1: GUI Main WindowThe GUI proposed in this paper is developed for UNIXand Linux environments, to satisfy both expert and novelusers' needs. For ensuring portability, the GUI has beenwritten using just the TCL/TK core features without anyadditional C procedures. The GUI allows an interactivesetting of neural network simulator parameters as well asthe execution of the simulations. In its current form, theGUI embeds two radically di�erent simulators, a backprop-agation simulator and the HDE constructive learning sim-ulator. A basic understanding of TCL/TK should allowthe user to easily embed additional simulators by "linking"their executable �les to the GUI interface.The GUI provides the following basic features:1. A basic text editor for editing plain text �les.2. The color con�guration of all the GUI items.3. Setting the characteristic features and parameters forthe underlying neural network simulators.4. Saving the neural network con�guration in the simula-tor speci�c �le formats, as well as retrieving a neuralnetwork con�guration from a �le in the case of thebackpropagation simulator.5. Viewing the neural network con�guration both in atutorial style form (in which the signi�cance of thedi�erent con�guration options is brie
y explained), aswell as in the format in which the con�guration wouldappear in the simulators' con�guration �les.6. Running the simulators both as foreground and asbackground processes (for an explanation of foregroundand background processes, the reader can consult [19,22]).7. A help �le that provides information on running thesimulators both by using the GUI, as well as by edit-ing the corresponding con�guration �les for the simu-lators.In order to run the GUI, the contents of either the di-

rectory called NNGUI/UNIX (for HP 9000 series worksta-tions), or of NNGUI/LINUX (for PC's running Linux) fromthe CD-ROM needs to be copied to a user's directory, sayMYNNGUI. The current directory needs to be changed toMYNNGUI and the GUI can then be started by issuing thecommand nngui. The GUI main window is then displayed,as shown in Fig. 1. The di�erent menus can be accessed ei-ther by clicking them with the left mouse button or keepingthe ALT key pressed while pressing the underlined letterof the menu name. During application execution, certainGUI options can be accessed directly from the main win-dow through the use of a keyboard accelerator (hot key).The options that have corresponding hot keys have the keycombination displayed in the pop-up menus (read also thehelp �le for a list of options), where CTRL+A stands for\press the CTRL key and keep it pressed while pressingthe A key "(the GUI is not case sensitive, so lowercase a isthe same as uppercase A). In each �le selection box, a �leis selected by double-clicking it with the left mouse button.The menu structure of the GUI can be represented hier-archically as in Fig. 2.A brief explanation of each of the di�erent menu itemssupported under the current GUI implementation follows.For a more detailed explanation, install the program fromthe CD-ROM and select the Help option under the Helpmenu item, or press CTRL+H in the main menu window.A. The File MenuThe following �le access options are included in this menu.� The Edit File menu item provides access to a simplegeneral purpose text editor, that allows the GUI userto easily change parameters in a previously used neuralnetwork con�guration �le. A �le selection box allowsthe user to select either an existing or a new �le to edit(see Fig. 3). An editor window is then displayed, hav-ing the basic editor commands printed at the bottom
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Figure 2: GUI Menu Structureof the screen (see Fig. 4).� The Load Con�g menu item allows the loading of apreviously saved con�guration �le. It also allows themore advanced user to load a con�guration �le thatwas created directly (without the use of the GUI). Inits current implementation, the GUI supports this op-tion just for the backpropagation simulator.� The Save Con�g menu item allows the saving of theneural network con�guration de�ned in the GUI toa �le. This allows the user to save a certain neuralnetwork con�guration for future use.� The Exit Program menu item exits the application.B. The Network MenuThis menu allows the selection of the desired simulator.The current version of the GUI supports two di�erent neu-ral network models:� The Backpropagation menu item selects the backprop-agation simulator. By selecting this option, the set-tings speci�c to the backpropagation simulator will bedisplayed under the Con�guration menu.� The Constructive HDE menu item selects the HDEconstructive learning simulator. This option will alsoenable the display of constructive learning speci�c set-tings under the Con�guration menu.C. The Con�guration MenuParameters speci�c to the supported neural network mod-els are set by using this menu. This menu is neural network Figure 3: File Selection Boxmodel sensitive, meaning that the characteristics displayeddepend on the simulator set in the Network menu. A moredetailed description of this menu in the current GUI im-plementation is given in Section 3.



Figure 4: Edit FileD. The Run MenuThe Run menu starts the selected neural network simula-tor. It consists of three menu items:� Run from File starts the simulator using a simula-tor speci�c con�guration �le. This is the option thatan expert in a particular neural network model wouldmost likely use.� Run from Desktop starts the simulator using the pa-rameters that have been con�gured by using the GUI.This is the preferred option for a novice user, who isunfamiliar with a particular neural network simulator.� Options allows the choice of whether to run the simu-lator as a foreground or as a background job (in whichcase the output of the simulation will be redirectedto a �le). The foreground option is usually preferredin the case of a short simulation run (of the order ofminutes), whereas the background option is used inthe case of long simulation runs (that last hours oreven days).E. The View MenuThis menu allows the display of the current simulator set-tings.� View Params displays the settings in a fairly self ex-planatory way, thus helping the user to decide whetherall the settings are appropriate or not.� View File displays the settings in a more cryptic way,characteristic to the speci�c con�guration �le syntaxof the underlying simulators.

F. The Color MenuFor a more pleasant appearance of the GUI, a multitudeof color options can be set in this menu. The Color Modemenu item allows the selection of colors in three di�erentways, either by using X Windows' default names, or byusing two more sophisticated, but �ne tunable, color selec-tion techniques, HSV and RGB [9]. A setup screen for anHSV color selection is shown in Fig. 5.The default color con�guration can be restored by select-ing the Restore Color Con�guration menu item, whereasthe preferred color con�guration can be saved by choosingthe Save Color Con�guration menu item. Whenever a newcolor con�guration is saved, it will overwrite the previouslysaved color con�guration stored in the �le con�g.crt.G. The Help MenuThis menu contains a release number of the current GUIversion under the About the GUI menu item, as well as ahelp �le under Help.III. The Configuration Menu as a Key toEmbedding Heterogeneous Neural NetworkSimulatorsThe two neural network simulators embedded in the cur-rent GUI are drastically di�erent in implementation. Thebackpropagation simulator represents a traditional learningtechnique applied to a �xed architecture, whereas the HDEconstructive learning simulator updates the architectureduring the learning process. Implementation-wise also, thetwo simulators are also radically di�erent. Although both



Figure 5: HSV Color Mode Selectionof them were programmed in C, the HDE simulator alsouses XLib calls to implement a graphical visualization ofthe learning process. In addition, whereas the backprop-agation simulator is intended to be run only sequentially(on a single sequential computer), the HDE simulator canbe run both sequentially or in parallel, either on a highlyparallel machine, such as the Paragon at the San Diego Su-percomputer Center [18], or in a local distributed system (acomputer network). E�ective support of two so di�erentneural network models by a single GUI is a strong indi-cation that the GUI is 
exible. In addition, as long as acompiled (binary) version of the simulators is available ona certain computer that has the TCL/TK (ver. 7.3/3.6)package installed, the GUI can be successfully used, thusshowing that the GUI is portable. Finally, when additionalneural network simulators need to be embedded in the GUI,this can be accomplished without signi�cant e�ort, as longas the binary �les of the simulators are available, provingthat the GUI is also extensible.From the perspective of the end user, who should beinsulated from implementation details, the only di�erencesthat appear between various simulators are re
ected just inthe Con�guration menu. As mentioned before, this menudepends on the neural network simulator selected in theNetwork menu. If additional simulators are added to theGUI, these will be re
ected in the corresponding Con�gu-ration menu options when selected.A brief description of the con�guration options for thetwo neural network simulators included in this version ofthe GUI follows. For a detailed description of the param-eters that are set in this menu, the reader is advised toinstall the software from the CD-ROM and to consult thehelp �le (by pressing CTRL+H in the main window). For

Figure 6: Setting the Activation Function for the Back-propagation Simulatorcon�guring model parameters, basic concepts for the back-propagation learning technique can be found in [12, 13],whereas for the HDE constructive learning in [10, 11].The corresponding Con�guration menu settings for thebackpropagation simulator are:� Architecture allows to select either a feedforward or arecurrent neural network, as well as to establish thedesired layer structure (number of layers and numberof neurons per layer). In the case of recurrent networksit also allows the selection of the feedback type and ofthe feedback layer, as well as of the scaling parametersfor the feedback signals.� Parameters sets the backpropagation speci�c learningparameters, known as learning rate, momentum andtolerance.� Activation allows the setting of the neurons' activationfunction to either a sigmoidal, a hyperbolic tangent oran identity function. The setting can be done eitherglobally (for all the neurons in the network) or locally,either at layer level or at neuron (unit) level. An actualscreen of the activation function window is presentedin Fig. 6.� Update Mode sets one of the two speci�c modes inwhich the weights of the synaptic links are updated,either continuously (after each training example) or inbatch mode (after each presentation of all examplesfrom the training set).� Initial Weights allows to set the initial value of thesynaptic links' weights either randomly, or with valuesread from a �le.� Set Weights allows the setting of particular weight val-ues either globally (for all the synaptic links), or locally(for all the links connecting two adjacent layers, for all



Figure 7: Setting the Parameters for the HDE Simulatorthe links emanating from a given unit, for all the linksending at a given unit, or for a single link).� Enable Weights allows the enabling or disabling of cer-tain synaptic links in ways similar to setting weightvalues. A disabled link behaves like a disconnectedlink.� Horizon allows to set the desired testing horizon fortime series prediction problems (a testing horizon ofone indicates the prediction of just the next processvalue, whereas a prediction horizon larger than oneindicates the prediction of a process value further infuture). This menu item also allows the setting of thetraining horizon, an internal learning parameter thatcan't exceed the testing horizon.� Threshold allows a brute force elimination of trainingexamples with outputs above or below a certain level(None stands for no elimination of training examples).� Training selects the training �le (�le containing all theexamples used during the learning process), as well asthe number of training epochs (number of repetitivepasses through the example �le) and the number ofepochs after which to display the learning status.� Testing selects the testing �le (�le containing examplesnot seen during the learning process, on which to test
the generalization ability of the neural network).� Generating allows the generation of a time series.The Con�guration menu settings for the HDE construc-tive learning simulator are:� Inputs allows to set the number of neural network in-puts (the number of outputs is one, since the simulatoris used just for binary classi�cation problems).� Parameters allows the setting of HDE characteristicparameters like learning rate, random seed, tolerance,classi�cation improvement threshold, maximum itera-tions for output layer, maximum iteration for hyper-plane selection, maximumnumber of boundary points,maximum number of example pairs. The parameterssetting screen is shown in Fig. 7.� Training and Testing allow the setting of training andtesting �les, similar to the case of the backpropagationsimulator.� Graphics Modes allows the setting of the graphic dis-play modes for tracing the constructive learning pro-cess. These include the display of training and testpatterns, interpolation steps, points on separating hy-perplanes, candidate and actual hyperplanes, as wellas the �nal separating surface. An actual graphics



Figure 8: Graphics in HDE Simulationscreen resulting from a simulation in which all thegraphics options, except the display of the test pat-terns are set, is presented in Fig. 8.� Network Switches allows the setting of di�erent addi-tional HDE options such as creating hidden units andprinting the network, the training and the test sets.� Advanced Options allows the selection of two sophis-ticated features. The Hybrid System option incorpo-rates prior knowledge to the HDE learning, providedin the form of an expert system [10]. The ParallelComputation option allows the parallel execution ofthe simulation on either a distributed system or ona highly parallel machine [11]. This also implies theexistence of the p4 software package on the user's com-puter, which might not be installed on all systems, al-though it is available cost free from Argonne NationalLabs [3].IV. Application in Research and TeachingThe primary goal of the GUI development was to assistboth neural network professionals and novel users in per-forming neural network experimentations on heterogeneoussimulators.From the professionals' perspective, the two embeddedneural network simulators were successfully used either di-rectly or by means of the GUI in our lab for several researchprojects, covering various problems [6, 7, 8, 10, 11].In summer 1995, the GUI was also used by neural net-work �rst time users during the WSU/NSF Teacher In-stitute for Science/Mathematics Education through Engi-neering Experiences training program. Two mathematicsteachers who had no prior knowledge of both the UNIX op-erating system and neural networks spent 6 weeks in our
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