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Abstract

This article reports the results of an exploratdaga analysis, as well as the prediction accuracgraom
walk, mean and autoregressive predictors on the=@NEompetition time series. The analysis provides
evidence that the problem is non-stationary antl ttr& interpolation process for filling-in missinglues
alters the data distribution. The accuracy foriativand linear predictors, on the INFFC time series
determined in order to establish accuracy lowerndgufor reasonable nonlinear prediction systems,
identifies competition entries with prediction ataties below the provided bounds. Outlier removal
preprocessing did not show statistically significaocuracy improvements for trivial and linear poaks.
on the competition series. Finally, testbed designpommendations for future financial time series

competitions are extracted from the results of this analysis.

1 Introduction

Financial time series are the result of complex arwdfficiently understood interdependencies irrlyai
efficient markets. Consequently, financial markitsecasting models consider incomplete information,
while factors not included in the models act as@eoln financial markets, it is not very likely ientify
linear relationships, since these are relativelgye discover and hence disappear fast when d&gloi
However, potentially profitable nonlinear data degencies might exist even in the financial marketh
large trading volume, since such relationships difficult to discover due to the inherent complgxdf
nonlinear optimization techniques (huge computaiioaquirements, presence of multiple local minima

the cost function etc.). Nevertheless, nonlineatintpation techniques have recently been used for



financial time series forecasting ranging from optipricing (Hutchinson et al. [1994]), corporatend
rating (Moody and Utans [1994]), stock index tradifChenoweth and Obradovic [1996]) to currency
exchange (Abu-Mostafa [1995]).

A serious drawback in comparing different finanaiadrkets forecasting techniques is a lack of stahda
benchmark problems. Typically, forecasting resates reported in the context of a particular datgment
from a single time series, with a specific preidictobjective, thus making the comparison of difar

forecasting techniques difficult.

The Santa Fe time series forecasting competitiorig@dhd and Gershenfeld [1993]) was one of the first
successful attempts of evaluating time series &g models on pre-specified benchmark probleors f

a variety of domains, including also the finanaamain of currency exchange rate forecasting. Ting F
International Nonlinear Financial Forecasting Cotitima (INFFC) is a continuation of this standasatibn

effort, that concentrates on financial markets forecasting only.

The INFFC benchmark data (Tenorio and Caldwell BlP9vas a cotton futures intra-day time series
comprising 107,386 6-tuples, each providing timagi, opening, highest, lowest, and last strikeepdt
the minute, along with the tick volume (the numbestrike prices collected in the one minute peyidthe
first 80,000 samples were provided to the competifor model design and verification, whereas #s |
27,386 samples were used by the INFFC panel fduatiag submitted forecasting systems. The competin
systems had to provide forecasts for two differprediction horizons, 120 minutes and 1 day ahead,
respectively. The real-life data was sampled nafermly, resulting in missing information for some
minutes, but the INFFC rules clearly specified thatinterpolation has to be performed to extenddta

to all minutes of every trading day in order toilitatte the testing process. An interpolation altfon for
obtaining a uniformly sampled data set was provitiedhe competitors, according to which all missing
price values are obtained by repeating the lastabla closing price. The interpolation processeexted
the 80,000 samples data set to approximately 261y88d by the competitors and the 27,386 samplas da

set to approximately 67,000 samples used by the evaluation panel.

The objective of this article is to analyze the peitition cotton time series and to evaluate théoperance
of simple predictors in order to establish accurdmyer bounds for reasonable nonlinear prediction
systems. An additional goal is to provide testbedigh recommendations for future financial foreicast
competitions. It is important to emphasize that piedictors discussed in this article are not desigas
competition entries, and no attempt is made whatsoéo evaluate the adequacy of the submitted

forecasting systems.



Section 2 contains a statistical data analysishiferINFFC cotton futures time series. Section repthe
performance of trivial and linear predictors on tt@mpetition problem, whereas Section 4 explores th
effect of time series outlier removal on predictiumality. Finally, Section 5 contains conclusioas well as

testbed design recommendations for future competitions based on the INFFC experience.

2 Statistical Analysis of the Competition Data

When forecasting the competition time series, dififié prediction goals can be imposed. One can pttéan
predict an actual closing prigt+h) or the change in closing priegt+h)-a(t+h-1), wheret is the current
time andh is he desired prediction horizon (120 minutes atay ahead in this competition). Although
predicting the change in closing price is typicadlyconsiderably more difficult problem, it repreten
more common financial forecasting goal. Unfortuhatthe INFFC call for participation did not expliy
specify that the goal was to predict the changeldsing price as opposed to the actual closingepifor
that matter, this article considers both the acpuide as well as the price change time seriescésting.
The daily closing price, as well as the daily ahgsprice changes with respect to the previous raifut the
entire competition data are shown in Figs. 1 ante&pectively. A zoom-in on the price and pricende

time series for a five day period and one minute resolution is shown in Figs. 3 and 4.

An analysis is performed in order to determine:

» whether the interpolation process explained in the Introduction alters the data distribution;

« whether the distribution of the data set providedhe competitorstaining set) is the same as the
distribution of the data set used by the INFFC panel to evaluate prediction actestesy)(

« whether a reliable prediction horizon can be estimated from autocorrelation plots.

In addition to a visual inspection of normalizedtbgrams (the number of points in each bin is didity
the total number of points) and autocorrelationtgladhe analysis also includes the chi-square and

Kolmogorov-Smirnov tests for comparing whether two data distributions are different (Press et al. [1992]).

In the chi-square test, the data range of the two data sets to be comparelivided into a number of
intervals (bins). Assuming thd® and § represent the number of data samples iri liam the first and the

second data set, respectively, the chi-square statistic computes

X? = Z—(F;_f;) ,

with the sum taken over all bins. The complement of the incomplete gamma function,



2 1 = a1
Qlv,x ):mfxze t*dt,

where
r(x) = J':t a7,

is then evaluated and a small valug€Xfclose to 0) indicates that it is unlikely thag o distributions are

the same. Herey represents the number of degrees of freedom, whitihe case when the two sets have

the same number of data samp(eE Ri =53 SI ) equals the number of bins minus one. If the navi

restriction is not imposed, thah equals the number of bins.
The Kolmogorov-Smirnov (K-S) test measures the absolute difference betweerciwwlative distribution

functions S and Sy with N, and N, data points, respectively. The K-S statistic computes

D = max|S, (x)-S,, (x)‘ :

The functionQ,5, defined as

Quh) =23 (-9 e ™™,
1=1
is computed for

A =D({N, +012+ Q17 /N, ),

where N, is the effective number of data points computed as

_ I\|1N2
© N, +N,

A small value ofQ,s (close to 0) indicates that it is unlikely that the two distributions are the same.
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Fig. 2: Daily Closing Price Change with Respect to the Previous Minute
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2.1 Interpolation Effects on Data Distribution

Normalized histograms for un-interpolated and iptdsited training set prices are shown in Figs. & &n
respectively, whereas the normalized histogramsufointerpolated and interpolated test set prices a
shown in Figs. 7 and 8, respectively. The visuapéction of Figs. 5 and 6 indicates radically défe

distributions, while this is not obvious for Figs. 7 and 8.

More objectively, both the chi-square and the Kajor@v-Smirnov tests yielded a probability 0.999%§9
rejecting the null hypothesis that the un-interpadaand the interpolated price training data distibns are
the same. Similarly, the chi-square and the Kolmog®@mirnov tests yielded a 0.999999 probability o
rejecting the null hypothesis that the un-interpedaand the interpolated price test data distrimgiare the

same, hence explicitly showing that the interpolation process altered the data distribution.

A similar analysis on price changes shows histografrboth interpolated training and interpolatestitey
data sets (Figs. 10 and 12) as being significamitye leptokurtic (pointed) than the corresponding
histograms of the un-interpolated data sets (Rigmd 11). This is due to the fact that a fairhgéaamount

of data is introduced through the interpolationgass by repeating the last available closing priben
data is missing. This results in a large numbezerb-valued price changes shown in the interpoldtad
histograms as a long bar centered about the zduve.vahis visual finding that the interpolationeak the
price change distribution is confirmed by chi-squand Kolmogorov-Smirnov tests that both rejectrihié
hypothesis with probabilities between 0.93 and 0.999999.

2.2 Stationarity Analysis

A non-stationary time series can be described as a time seriesemdi@acteristic parameters change over
time. Common concepts include strict-sense, widhseen-th order and weak-sense stationary processes
(Papoulis [1984]). In general, non-stationarityedtion can be reduced to identifying two sufficlehbng,
distinct data segments that have significantlyedé@ht statistics (distributions). For non-statigndgomains,

the single model technique of building a prediction model on a a&ertdata segment and using it for all
subsequent predictions is usually inadequate, wigkter results can be obtained if retraining thedet

when significant changes in the distribution are signaled (Drossu and Obradovic [1996a]).



Un-Interpolated Price Training Data
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Fig. 5: Histogram for Un-interpolated Price Training Set
Interpolated Price Training Data
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Fig. 6: Histogram for Interpolated Price Training Set




Un-Interpolated Price Test Data
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Fig. 7: Histogram for Un-interpolated Price Test Set

Interpolated Price Test Data
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Fig. 8: Histogram for Interpolated Price Test Set



Un-Interpolated Price Change Training Data
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Interpolated Price Change Training Data
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Fig. 10: Histogram for Interpolated Price Change Training Set




normalized number of points

0.35

0.3

0.25

0.2

0.1

0.05

Un-Interpolated Price Change Test Data

value range

0 —— —
@ © N~ © ;v ¥ ® &N = o = o © ¥ v © ~ o o
value range
Fig. 11: Histogram for Un-interpolated Price Change Test Set
Interpolated Price Change Test Data
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Fig. 12: Histogram for Interpolated Price Change Test Set




For the competition data, stationarity analysiseduced to comparing the interpolated training text
distributions for the price, as well as for theggrchange time series. The histograms shown in Eigad 8
indicate significantly different price distributien confirmed also by the chi-square and Kolmogorov-
Smirnov tests that reject the null hypothesis, adiog to which the two distributions are the samih
probability 0.999999. Although the histograms shawrrigs. 10 and 12 for the interpolated price dean
training and test data sets are fairly similar, tfe-square and Kolmogorov-Smirnov tests reject the

hypothesis that the distributions are the same with probabilities 0.999682 and 0.999999, respectively.

Additional tests on un-interpolated price and pgbange time series were performed in order tordete
whether the non-stationarity was an intrinsic prop®f the original cotton time series or it hasehe
artificially introduced by the interpolation prosesThe results confirmed that the original timeeserlso

exhibited non-stationarity.

2.3 Data Correlation

Autocorrelation plots for a 300 samples data sedrtem the training and the test parts of the iptdated
price time series are shown in Figs. 13 and 14. rEhatively slow drop of the autocorrelation fuinct

suggests a potentially large reliable prediction horizon when predicting actual prices.

Similar autocorrelation plots for the interpolatpdce change time series (shown in Figs. 15 and 16)

suggest very short reliable horizon for price change prediction when using previous price changes only.

3 Trivial and Linear Predictors

Assuming the availability of reasonably large tmagndata sets and sufficient training time, itéssonable
to expect non-linear forecasting systems to perfatieast as well as trivial or linear predictdignce, it is
important to determine the prediction accuracy othbtrivial and linear predictors in order to edisip

lower bounds for the prediction accuracy of reasonable non-linear predictors.

The trivial predictors considered in this analysisre the random walk and the mean predictors. The
random walk predictor considers a future predictiofe equal to the last available process vallereas

the mean predictor generates future predictions as being equal to the mean of the training data samples.



Interpolated Price Training Data
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Interpolated Price Change Training Data
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A general linear time series model (Box and JenKif36]) is the autoregressive moving average déms
p and g (ARMA(p,q)). It describes the process valaea weighted sum of p previous process values and

the current, as well as g previous values of a gangbrocess. Formally, for a zero mean process, the

ARMA(p,q) model for{x} is given as

X, :¢1Xt‘1 +0 2Xt-2+‘”+¢ pX-p T Wa WAt -tl"qat—q;

where X;_;,X;_5,...,X,_, represent the process values at p previous tieps &, ,&,_;,...,a,_, are the

current and the g previous values of a random mcasually emanating from a normal (Gaussian)

distribution with zero mean anbll,. .. ,¢ P Wi,... W q are the model parameters.

The ARMA(p,q)-based predictor approximates the peatess valueX, by a predicted valu&, computed

as

X =0.X ¥ X o4 X, WA, WA L. a .

The error between the real process vayeand the predicted valug, is theresidual a, .

The AR(p) model considered in this analysis is a special case of the ARMA(p,q) model described as

X, =%, +O X+ 4 pXi-p T2

The analysis also considers the autoregressivgratied ARI(p) model which is an AR(p) model applted

differenced data.

A multitude of accuracy measures can be considieredder to evaluate the accuracy of a given ptedic
(Caldwell [1995]). However, many of these measuwaes either redundant (e.g. normalized root mean
squared error and coefficient of determination highly related) or encompassed in more powerful

measures (e.g. normalized root mean squared isrmore relevant than the root mean squared eff.

only two standard accuracy measures for compahiagattual data sequen{e(t} and the predicted data

sequence{f(t}, reported in this article are the normalized romtan squared erronRMSE) and the

directional symmetry[}S) defined as




where

1 n
X=—)» X,
n; t
and
100
DS=—%d,,
n tzzl !
where

d = 2 i (Xt - Xt-l)()A(t _)A(t—l) >0
t EQ otherwise.

The nRMSE measure is always non-negative with smaller vaindgating a better predictor. THBS
measures the percentage of correctly predicted ehatiections, with larger values suggesting adpett
predictor, whileDS=50% meaning that the market direction is predictedtectly for half of all predictions.
Unfortunately, theDS defined as previously is meaningless for a timéesewith a large number of equal
consecutive value pairs, since B8 accounts only for correctly predicted upward amdvaward trends.
This problem is particularly serious for the intelgted competition time series, in which there @uany
missing values which are filled-in by replicas bétlast available actual data. Consequently, wpqe® a
modified directional symmetrynfodDS) which takes into consideration all the corregtigdicted directions

(upward, downward, and no change), as well as computer truncation errors, defined as

100 ¢
DS=—- ,
n 2
where
%L it (% —x.)(% ~%,)>0 and |x -x_|>e and [% -%_]| >e
¢ =D or
"0 X — x| <e and [& -% <t
H, otherwise,

€ being a small constant related to the numerical precision involved imoti&S computation.



Random Walk nRMSE on Price Test Data
1.2
1 |
08+
L
%]
S 06+
[0
c
04+
02+
0 | | | | | |
- S S S S S S S
o o o o o o o
[aV] < [{e) [e0] o N <
horizon

Fig. 17: Random Walk nRM SE vs. Prediction Horizon for Price Test Data

The $nRMSE$ as a function of prediction horizon #otrivial random walk predictor on the price test
series is shown in Fig. 17. The relatively slover the curve suggests a fairly easy predictiavblam
both for 120 minutes and 1 day prediction horizasfirmed by the\RMSE values shown in Tables 1 and
2. For the price prediction one can observe thatrémdom walk predictor yields the b&eRMSE values
both compared to the mean predictor and to thealimeitoregressive models. It should be noted that t

search for appropriate AR(p) and ARI(p) models wesgricted to ordergd < 10 and is using a sampling

rate of one minute. Consequently, these linear isode not include the random walk predictor as a
particular case for the competitions predictionihons (e.g. for 120 minutes horizon, the AR(p) rldthas

to be at least of ordep = 120). Although thenRMSE values for the mean predictor are extremely poor,
its modDS values for price prediction are significantly leetthan those of the other predictors. However,
this is not a particular achievement of the meaadigtor, but an artifact of the interpolation presgsince
‘)A(t —)A(t_l‘ <& is always true for the mean predictor, where#x.s—xt_l‘ <& is true for eacht

introduced by the interpolation process.



Predictor DS modDS nRMSE
Random Walk 7.888 52.295 0.075
Mean 0.000 64.255 1.161
AR(3) 13.231 40.949 0.265
ARI(1) 7.899 50.787 0.267
Table 1: Price Prediction 120 Minutes ahead
Predictor DS modDS nRMSE
Random Walk 8.789 54.955 0.113
Mean 0.000 64.255 1.161
AR(3) 14.014 43.416 0.387
ARI(1) 8.897 53.633 0.394
Table 2: Price Prediction 1 Day ahead
Predictor DS modDS nRMSE
Random Walk 15.377 44.418 1.413
Mean 0.000 49.397 1.000
AR(3) 20.646 40.995 1.338
ARI(1) 16.198 43.458 1.399
Table 3: Price Change Prediction 120 Minutes ahead

Predictor DS modDS nRMSE
Random Walk 16.745 48.060 1.421
Mean 0.000 49.397 1.000
AR(3) 21.944 44.161 1.318
ARI(1) 17.601 47.036 1.402

Table 4: Price Change Prediction 1 Day ahead

The price change prediction results are presemtddhbles 3 and 4. As expected, tHRMSE values for the
random walk predictor are significantly larger asmpared to those obtained on the price prediction,
confirming the increased difficulty of the probletdowever, thenRMSE values for the mean predictor
improve for the price change prediction since tleamof the price change training series is the szsribe
mean of the price change test series, while thisotstrue for the means of the actual prices. I$ @bs0
evident that the most appropriate AR(p) model (pp8jformed slightly better than the random walk
predictor with respect to theRMSE measure. The decreasenndDS for the mean predictor is due to the

fact that for the price change predictia, is a function of three consecutive price valuesdad of two for

the price prediction, thus reducing the number ades in which the actual price change trend cod@scid
with the predicted price change trend. For pricangie prediction, the mean predictor appears toelierb
than the random walk and the AR predictors with respect tonBMSE andmodDS.



It is important to observe that the lower boundsrsasonable nonlinear predictors obtained throthgg
simple analysis are probably weak. Better lowerrtasucan be obtained by investigating AR models of
higher order (e.g. when predicting 120 minutes dha@e might want to use information from at ledst t
previous 120 minutes) and considering differentads&ampling rates (Drossu and Obradovic [1996b]).
However, this was not necessary for this analysisce even these simple predictors were able to

outperform some of the competition entries (Tenorio and Caldwell [1996]).

4 Outlier Removal Effectson Trivial and Linear Predictors

The existence of outliers makes time series priegtigtarticularly challenging. In practice, the dens are
difficult to predict due to their relative sparsity the training set, while their existence in th&ining set
negatively affects the optimization process for tbaining data. An improved prediction accuracyngls
trivial or linear predictors on data with outlielsmoved would provide strong evidence in favor oflier
removal as a preprocessing step for nonlinear predi. However, outlier removal should still be

considered for nonlinear predictors even if its advantages are not evident for trivial and linear predictors.

The outliers can either be removed from the dataiseeplaced by appropriately filtered values. dxanon
outlier removal technique, called in this article[BD, consists of removing all the process values éie
more thars standard deviations away from the data mean, tyjtteal values for the dispersion threshsld
being 2 and 3. In the experiments reported in $bistion, the identified outliers were replaced hy kst

observed (non-outlier) process value.

A block diagram of an alternative outlier removathnique proposed in this article, called MFO, Haze
median filtering is shown in Fig. 18. The idea listtechnique is to either leave the original psscealue
unchanged, if the value is not an outlier, or tolaee it by a value obtained through median fittgyiif it is

an outlier. The median filtering assumes that a dawm containing 2k+1 samples,

Xicgre oo 1 X2 1 % 1 Xi4q -+ X4 » Slides over the data set replacing tKevalue by m which isthe (k+1)-
st largest value in the current window. The MFChteque computes the differencﬁq between the actual

process valueX, and the corresponding median filtered valiiand also the meapl and the standard

deviationO of the {6t} series. On a giveiX, , the output of MFQY, is computed as

X, if p—-so<d <pu+so

Y= Em otherwise,

wheres is a prespecified dispersion threshold.



X(t)
MF
+
X(t) M(t) > K0
v
o(t)
SWITCH | o
l MF = median filter
Y(t) M, 0 =mean and standard deviation

Fig. 18: MFO Outlier Removal Technique

The STDO and MFO outlier removal experiments weegfggmed using a dispersion threshce?2,
whereas the window size for the median filter wessts five (%+1=5). STDO removed 5.1% training set
values and 4.0% test set values, whereas MFO reinb@% training set values and 3.4% test set values
However, the outlier removal did not lead to sigraiftly better prediction accuracy neither for thgial
(random walk and mean predictors) nor for the agorssive predictors. Obviously, outlier removathwi
s>2 would eliminate a subset of the data removedgsi2, resulting in similar prediction accuracy as for
s=2. On the other hand, the STDO and the MFO teciesiqwith s=2 changed the data distribution
considerably, as confirmed by the chi-square antimdgorov-Smirnov tests, thus indicating that outlie

removal using<2 would result in a significant information loss.

5 Conclusions and Recommendationsfor Future Competitions

This article reported the results of an exploraaya analysis, as well as the prediction accushecgndom
walk, mean and autoregressive predictors on thé=NEompetition time series. In addition, the efeat

outlier removal on the predictability of the competition time series were investigated.



The exploratory data analysis should be a mandateyy in any time series prediction, since the inbth
knowledge (regarding data distribution, stationaripredictability, etc.) can be used in designing
appropriate predictors. The prediction accuracytrivial and linear predictors provides accuracy éw
bounds for reasonable nonlinear prediction systdfence, any nonlinear predictor whose prediction
accuracy does not exceed that of the previouslytiomead predictors should be disregarded. The autlie
removal is important, since outliers are diffictdtpredict due to their relative sparsity in thairting set,

while their existence in the training set negatively affects the optimization process for the remaining data.

The results show that:

* The interpolation process altered the original time series data distribution.

« Both the original and the interpolated time series were non-stationary.

* The price prediction was considerably easier than the price change prediction.

e Trivial and linear predictors provided bettdRMSE values than some nonlinear competition entries.

» The directional symmetry measure was un-informatlue to the properties of the interpolated time

series.

The performed analysis suggests the following tabtldesign recommendations for future financial

forecasting competitions:

» It should be tested whether the time series isstatienary and if it is, then model retraining slble
allowed.

* A uniformly sampled financial time series shouldde¢ected as a testbed, or at least it shouldtineea
series in which the interpolation process preserves the real-life data distribution.

» An exploratory data analysis should investigate fhediction accuracy as a function of prediction
horizon in order to formulate a challenging but feasible forecasting problem.

* Explicit rules (e.g.nRMSE computed either on price or price change) for eatihg a predictors

accuracy should be provided, since predictors can be optimized differently for specific objectives.
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