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Abstract

This article reports the results of an exploratory data analysis, as well as the prediction accuracy of random

walk, mean and autoregressive predictors on the INFFC competition time series. The analysis provides

evidence that the problem is non-stationary and that the interpolation process for filling-in missing values

alters the data distribution. The accuracy for trivial and linear predictors, on the INFFC time series,

determined in order to establish accuracy lower bounds for reasonable nonlinear prediction systems,

identifies competition entries with prediction accuracies below the provided bounds. Outlier removal

preprocessing did not show statistically significant accuracy improvements for trivial and linear predictors.

on the competition series. Finally, testbed design recommendations for future financial time series

competitions are extracted from the results of this analysis.

1  Introduction

Financial time series are the result of complex and insufficiently understood interdependencies in fairly

efficient markets. Consequently, financial markets forecasting models consider incomplete information,

while factors not included in the models act as noise. In financial markets, it is not very likely to identify

linear relationships, since these are relatively easy to discover and hence disappear fast when exploited.

However, potentially profitable nonlinear data dependencies might exist even in the financial markets with

large trading volume, since such relationships are difficult to discover due to the inherent complexity of

nonlinear optimization techniques (huge computational requirements, presence of multiple local minima in

the cost function etc.). Nevertheless, nonlinear optimization techniques have recently been used for



financial time series forecasting ranging from option pricing  (Hutchinson et al. [1994]), corporate bond

rating (Moody and Utans [1994]), stock index trading (Chenoweth and Obradovic [1996]) to currency

exchange (Abu-Mostafa [1995]).

A serious drawback in comparing different financial markets forecasting techniques is a lack of standard

benchmark problems. Typically, forecasting results are reported in the context of a particular data segment

from  a single time series, with a specific prediction objective, thus making the comparison of different

forecasting techniques difficult.

The Santa Fe time series forecasting competition (Weigend and Gershenfeld [1993]) was one of the first

successful attempts of evaluating time series forecasting models on pre-specified benchmark problems from

a variety of domains, including also the financial domain of currency exchange rate forecasting. The First

International Nonlinear Financial Forecasting Competition (INFFC) is a continuation of this standardization

effort, that concentrates on financial markets forecasting only.

The INFFC benchmark data (Tenorio and Caldwell [1996]) was a cotton futures intra-day time series

comprising 107,386 6-tuples, each providing time stamp, opening, highest, lowest, and last strike price of

the minute, along with the tick volume (the number of strike prices collected in the one minute period). The

first 80,000 samples were provided to the competitors for model design and verification, whereas the last

27,386 samples were used by the INFFC panel for evaluating submitted forecasting systems. The competing

systems had to provide forecasts for two different prediction horizons, 120 minutes and 1 day ahead,

respectively. The real-life data was sampled non-uniformly, resulting in missing information for some

minutes, but the INFFC rules clearly specified that an interpolation has to be performed to extend the data

to all minutes of every trading day in order to facilitate the testing process. An interpolation algorithm for

obtaining a uniformly sampled data set was provided to the competitors, according to which all missing

price values are obtained by repeating the last available closing price. The interpolation process extended

the 80,000 samples data set to approximately 261,000 used by the competitors and the 27,386 samples data

set to approximately 67,000 samples used by the evaluation panel.

The objective of this article is to analyze the competition cotton time series and to evaluate the performance

of simple predictors in order to establish accuracy lower bounds for reasonable nonlinear prediction

systems. An additional goal is to provide testbed design recommendations for future financial forecasting

competitions. It is important to emphasize that the predictors discussed in this article are not designed as

competition entries, and no attempt is made whatsoever to evaluate the adequacy of the submitted

forecasting systems.



Section 2 contains a statistical data analysis for the INFFC cotton futures time series. Section 3 reports the

performance of trivial and linear predictors on the competition problem, whereas Section 4 explores the

effect of time series outlier removal on prediction quality. Finally, Section 5 contains conclusions, as well as

testbed design recommendations for future competitions based on the INFFC experience.

2  Statistical Analysis of the Competition Data

When forecasting the competition time series, different prediction goals can be imposed. One can attempt to

predict an actual closing price a(t+h) or the change in closing price a(t+h)-a(t+h-1), where t is the current

time and h is he desired prediction horizon (120 minutes or 1 day ahead in this competition). Although

predicting the change in closing price is typically a considerably more difficult problem, it represents a

more common financial forecasting goal. Unfortunately, the INFFC call for participation did not explicitly

specify that the goal was to predict the change in closing price as opposed to the actual closing price. For

that matter, this article considers both the actual price as well as the price change time series forecasting.

The daily closing price, as well as the daily closing price changes with respect to the previous minute for the

entire competition data are shown in Figs. 1 and 2, respectively. A zoom-in on the price and price change

time series for a five day period and one minute resolution is shown in Figs. 3 and  4.

An analysis is performed in order to determine:

• whether the interpolation process explained in the Introduction alters the data distribution;

• whether the distribution of the data set provided to the competitors (training set) is the same as the

distribution of the data set used by the INFFC panel to evaluate prediction accuracy (test set);

• whether a reliable prediction horizon can be estimated from autocorrelation plots.

In addition to a visual inspection of normalized histograms (the number of points in each bin is divided by

the total number of points) and autocorrelation plots, the analysis also includes the chi-square and

Kolmogorov-Smirnov tests for comparing whether two data distributions are different (Press et al. [1992]).

In the chi-square test, the data range of the two data sets to be compared is divided into a number of

intervals (bins). Assuming that Ri  and Si represent the number of data samples in bin i for the first and the

second data set, respectively, the chi-square statistic computes

( )
χ 2

2

=
−
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R S
i i

i ii

,

with the sum taken over all bins. The complement of the incomplete gamma function,
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is then evaluated and a small value of Q (close to 0) indicates that it is unlikely that the two distributions are

the same. Here, ν  represents the number of degrees of freedom, which in the case when the two sets have

the same number of data samples ( )R
i

S
i

= ∑∑ , equals the number of bins minus one. If the previous

restriction is not imposed, than ν  equals the number of bins.

The Kolmogorov-Smirnov (K-S) test measures the absolute difference between two cumulative distribution

functions SN1
and S N2

 with N1 and N2 data points, respectively. The K-S statistic computes
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where N e  is the effective number of data points computed as

N
N N

N Ne =
+
1 2

1 2

.

A small value of QKS  (close to 0) indicates that it is unlikely that the two distributions are the same.



D aily C losing Price
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Fig. 1: Daily Closing Price
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Fig. 2: Daily Closing Price Change with Respect to the Previous Minute



M inute C los ing  Price  for F irs t F iv e D ays

��

��

��

��

��

��

��

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

m inute

p
ri

ce

Fig. 3: Minute Closing Price for First Five Days
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Fig. 4: Minute Closing Price Change for First Five Days



2.1  Interpolation Effects on Data Distribution

Normalized histograms for un-interpolated and interpolated training set prices are shown in Figs. 5 and 6,

respectively, whereas the normalized histograms for un-interpolated and interpolated test set prices are

shown in Figs. 7 and 8, respectively. The visual inspection of Figs. 5 and 6 indicates radically different

distributions, while this is not obvious for Figs. 7 and 8.

More objectively, both the chi-square and the Kolmogorov-Smirnov tests yielded a probability 0.999999 of

rejecting the null hypothesis that the un-interpolated and the interpolated price training data distributions are

the same. Similarly, the chi-square and the Kolmogorov-Smirnov tests  yielded a 0.999999 probability of

rejecting the null hypothesis that the un-interpolated and the interpolated price test data distributions are the

same, hence explicitly showing that the interpolation process altered the data distribution.

A similar analysis on price changes shows histograms of both interpolated training and interpolated testing

data sets (Figs. 10 and 12) as being significantly more leptokurtic (pointed) than the corresponding

histograms of the un-interpolated data sets (Figs. 9 and 11). This is due to the fact that a fairly large amount

of data is introduced through the interpolation process by repeating the last available closing price when

data is missing. This results in a large number of zero-valued price changes shown in the interpolated data

histograms as a long bar centered about the zero value. This visual finding that the interpolation alters the

price change distribution is confirmed by chi-square and Kolmogorov-Smirnov tests that both reject the null

hypothesis with probabilities between 0.93 and 0.999999.

2.2  Stationarity Analysis

A  non-stationary time series can be described as a time series whose characteristic parameters change over

time. Common concepts include strict-sense, wide-sense, n-th order and weak-sense stationary processes

(Papoulis [1984]). In general, non-stationarity detection can be reduced to identifying two sufficiently long,

distinct data segments that have significantly different  statistics (distributions). For non-stationary domains,

the single model technique of building a prediction model on a certain data segment and using it for all

subsequent predictions is usually inadequate, while better results can be obtained if retraining the model

when significant changes in the distribution are signaled (Drossu and Obradovic [1996a]).



Un-Interpolated Price Training Data
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Fig. 5: Histogram for Un-interpolated Price Training Set

Interpolated Price Training Data
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Fig. 6: Histogram for Interpolated Price Training Set



Un-Interpolated Price Test Data
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Fig. 7: Histogram for Un-interpolated Price Test Set

Interpolated Price Test Data
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Fig. 8: Histogram for Interpolated Price Test Set



Un-Interpolated Price Change Training Data
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Fig. 9: Histogram for Un-interpolated Price Change Training Set

Interpolated Price Change Training Data
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Fig. 10: Histogram for Interpolated Price Change Training Set



Un-Interpolated Price Change Test Data
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Fig. 11: Histogram for Un-interpolated Price Change Test Set

Interpolated Price Change Test Data
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Fig. 12: Histogram for Interpolated Price Change Test Set



For the competition data, stationarity analysis is reduced to comparing the interpolated training and test

distributions for the price, as well as for the price change time series. The histograms shown in Figs. 6 and 8

indicate significantly different price distributions, confirmed also by the chi-square and Kolmogorov-

Smirnov tests that reject the null hypothesis, according to which the two distributions are the same, with

probability 0.999999. Although the histograms shown in Figs. 10 and 12 for the interpolated price change

training and test data sets are fairly similar, the chi-square and Kolmogorov-Smirnov tests reject the

hypothesis that the distributions are the same with  probabilities 0.999682 and 0.999999, respectively.

Additional tests on un-interpolated price and price change time series were performed in order to determine

whether the non-stationarity was an intrinsic property of the original cotton time series or it has been

artificially introduced by the interpolation process. The results confirmed that the original time series also

exhibited non-stationarity.

2.3  Data Correlation

Autocorrelation plots for a 300 samples data segment from the training and the test parts of the interpolated

price time series are shown in Figs. 13 and 14. The relatively slow drop of the autocorrelation  function

suggests a potentially large reliable prediction horizon when predicting actual prices.

Similar autocorrelation plots for the interpolated price change time series (shown in Figs. 15 and 16)

suggest very short reliable horizon for price change prediction when using previous price changes only.

3  Trivial and Linear Predictors

Assuming the availability of reasonably large training data sets and sufficient training time, it is reasonable

to expect non-linear forecasting systems to perform at least as well as trivial or linear predictors. Hence, it is

important to determine the prediction accuracy of both trivial and linear predictors in order to establish

lower bounds for the prediction accuracy of reasonable non-linear predictors.

The trivial predictors considered in this analysis were the random walk and the mean predictors. The

random walk predictor considers a future prediction to be equal to the last available process value, whereas

the mean predictor generates future predictions as being equal to the mean of the training data samples.



Interpolated Price Training Data
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Fig. 13: Autocorrelation for Interpolated Price Training Set

Interpolated Price Test Data
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Fig. 14: Autocorrelation for Interpolated Price Test Set



Interpolated Price Change Training Data
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Fig. 15: Autocorrelation for Interpolated Price Change Training Set

Interpolated Price Change Test Data
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Fig. 16 Autocorrelation for Interpolated Price Change Test Set



A general linear time series model (Box and Jenkins [1976]) is the autoregressive moving average of orders

p and q (ARMA(p,q)). It describes the process value as a weighted sum of p previous process values and

the current, as well as q previous values of a random process. Formally, for a zero mean process, the

ARMA(p,q) model for { }xt is given as

x x x x a a a at t t p t p t t t q t q= + + + + + + + +− − − − − −ϕ ϕ ϕ ψ ψ ψ1 1 2 2 1 1 2 2K K ,

where x x xt t t p− − −1 2, , ,K  represent the process values at p previous time steps, a a at t t q, , ,− −1 K  are the

current and the q previous values of a random process, usually emanating from a normal (Gaussian)

distribution with zero mean and ϕ ϕ ψ ψ1 1, , , , ,K Kp q  are the model parameters.

The ARMA(p,q)-based predictor approximates the real process value xt  by a predicted value $xt computed

as

$ .x x x x a a at t t p t p t t q t q= + + + + + + +− − − − − −ϕ ϕ ϕ ψ ψ ψ1 1 2 2 1 1 2 2K K

The error between the real process value xt  and the predicted value $xt  is the residual at .

The AR(p) model considered in this analysis is a special case of the ARMA(p,q) model described as

x x x x at t t p t p t= + + + +− − −ϕ ϕ ϕ1 1 2 2 K .

The analysis also considers the autoregressive-integrated ARI(p) model which is an AR(p) model applied to

differenced data.

A multitude of accuracy measures can be considered in order to evaluate the accuracy of a given predictor

(Caldwell [1995]). However, many of these measures are either redundant (e.g. normalized root mean

squared error and coefficient of determination are highly related) or encompassed in more powerful

measures (e.g. normalized  root mean squared error is more relevant than the root mean squared error). The

only two standard accuracy measures for comparing the actual data sequence { }xt and the predicted data

sequence { }$ ,xt  reported in this article are the normalized  root mean squared error (nRMSE) and the

directional symmetry (DS) defined as

( )

( )
nRMSE

n
x x

n
x x

t t
t

n

t t
t

n
=

−

−
−

=

=

∑

∑

1

1

1

2

1

2

1

$

,



where

x
n

xt
t

n

=
=
∑1

1

,

and

DS
n

d t
t

n

=
=
∑100

1

,

where

( )( )
d

if x x x x

otherwiset
t t t t=
− − >




− −1 0

0
1 1, $ $

, .

The nRMSE measure is always non-negative with smaller values indicating a better predictor. The DS

measures the percentage of correctly predicted market directions, with larger values suggesting a better

predictor, while DS=50% meaning that the market direction is predicted correctly for half of all predictions.

Unfortunately, the DS defined as previously is meaningless for a time series with a large number of equal

consecutive value pairs, since the DS accounts only for correctly predicted upward and downward trends.

This problem is particularly serious for the interpolated competition time series, in which there are many

missing values which are filled-in by replicas of the last available actual data. Consequently, we propose a

modified directional symmetry (modDS) which takes into consideration all the correctly predicted directions

(upward, downward, and no change), as well as computer truncation errors, defined as

DS
n

ct
t

n

=
=
∑100

1

,

where

( )( )
c

if x x x x and x x and x x

or

x x and x x

otherwise

t

t t t t t t t t

t t t t

=

− − > − > − >

− < − <











− − − −

− −

1 0

0

1 1 1 1

1 1

, $ $ $ $

$ $

, ,

ε ε

ε ε

ε  being a small constant related to the numerical precision involved in the modDS computation.



Random Walk nRMSE on Price Test Data
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Fig. 17: Random Walk nRMSE vs. Prediction Horizon for Price Test Data

The $nRMSE$ as a function of prediction horizon for a trivial random walk predictor on the price test

series is shown in Fig. 17. The relatively slow rise of the curve suggests a fairly easy prediction problem

both for 120 minutes and 1 day prediction horizons, confirmed by the nRMSE values shown in Tables 1 and

2. For the price prediction one can observe that the random walk predictor yields the best nRMSE values

both compared to the mean predictor and to the linear autoregressive models. It should be noted that the

search for appropriate AR(p) and ARI(p) models was restricted to orders p ≤ 10 and is using a sampling

rate of one minute. Consequently, these linear models do not include the random walk predictor as a

particular case for the competition’s prediction horizons (e.g. for 120 minutes horizon, the AR(p) model has

to be at least of order p = 120). Although the nRMSE values for the mean predictor are extremely poor,

its modDS values for price prediction are significantly better than those of the other predictors. However,

this is not a particular achievement of the mean predictor, but an artifact of the interpolation process, since

$ $x xt t− <−1 ε  is always true for the mean predictor, whereas x xt t− <−1 ε  is true for each t

introduced by the interpolation process.



Predictor DS modDS nRMSE
Random Walk 7.888 52.295 0.075
Mean 0.000 64.255 1.161
AR(3) 13.231 40.949 0.265
ARI(1) 7.899 50.787 0.267

Table 1: Price Prediction 120 Minutes ahead

Predictor DS modDS nRMSE
Random Walk 8.789 54.955 0.113
Mean 0.000 64.255 1.161
AR(3) 14.014 43.416 0.387
ARI(1) 8.897 53.633 0.394

Table 2: Price Prediction 1 Day ahead

Predictor DS modDS nRMSE
Random Walk 15.377 44.418 1.413
Mean 0.000 49.397 1.000
AR(3) 20.646 40.995 1.338
ARI(1) 16.198 43.458 1.399

Table 3: Price Change Prediction 120 Minutes ahead

Predictor DS modDS nRMSE
Random Walk 16.745 48.060 1.421
Mean 0.000 49.397 1.000
AR(3) 21.944 44.161 1.318
ARI(1) 17.601 47.036 1.402

Table 4: Price Change Prediction 1 Day ahead

The price change prediction results are presented in Tables 3 and 4. As expected, the nRMSE values for the

random walk predictor are significantly larger as compared to those obtained on the price prediction,

confirming the increased difficulty of the problem. However, the nRMSE values for the mean predictor

improve for the price change prediction since the mean of the price change training series is the same as the

mean of the price change test series, while this is not true for the means of the actual prices. It was also

evident that the most appropriate AR(p) model (p=3) performed slightly better than the random walk

predictor with respect to the nRMSE measure. The decrease in modDS for the mean predictor is due to the

fact that for the price change prediction, ct  is a function of three consecutive price values instead of two for

the price prediction, thus reducing the number of cases in which the actual price change trend coincides

with the predicted price change trend. For price change prediction, the mean predictor appears to be better

than the random walk and the AR predictors with respect to both nRMSE and modDS.



It is important to observe that the lower bounds for reasonable nonlinear predictors obtained through this

simple analysis are probably weak. Better lower bounds can be obtained by investigating AR models of

higher order (e.g. when predicting 120 minutes ahead one might want to use information from at least the

previous 120 minutes) and considering different data sampling rates (Drossu and Obradovic [1996b]).

However, this was not necessary for this analysis, since even these simple predictors were able to

outperform some of the competition entries (Tenorio and Caldwell [1996]).

4  Outlier Removal Effects on Trivial and Linear Predictors

The existence of outliers makes time series prediction particularly challenging. In practice, the outliers are

difficult to predict due to their relative sparsity in the training set, while their existence in the training set

negatively affects the optimization process for the remaining data. An improved prediction accuracy using

trivial or linear predictors on data with outliers removed would provide strong evidence in favor of outlier

removal as a preprocessing step for nonlinear predictors. However, outlier removal should still be

considered for nonlinear predictors even if its advantages are not evident for trivial and linear predictors.

The outliers can either be removed from the data set or replaced by appropriately filtered values. A common

outlier removal technique, called in this article STDO, consists of removing all the process values that are

more than s standard deviations away from the data mean, with typical values for the dispersion threshold s

being 2 and 3. In the experiments reported in this section, the identified outliers were replaced by the last

observed (non-outlier) process value.

A block diagram of an alternative outlier removal technique proposed in this article, called MFO, based on

median filtering is shown in Fig. 18. The idea of this technique is to either leave the original process value

unchanged, if the value is not an outlier, or to replace it by a value obtained through median filtering, if it is

an outlier. The median filtering assumes that a window containing 2k+1 samples,

x x x x xt k t t t t k− − + +, , , , , , ,K K1 1  slides over the data set replacing the xt value by mt which is the (k+1)-

st largest value in the current window. The MFO technique computes the difference δt between the actual

process value xt and the corresponding median filtered value mt and also the mean µ  and the standard

deviation σ  of the { }δt series. On a given xt , the output of MFO yt  is computed as
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where s is a prespecified dispersion threshold.
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Fig. 18: MFO Outlier Removal Technique

The STDO and MFO outlier removal experiments were performed using a dispersion threshold s=2,

whereas the window size for the median filter was set to five (2k+1=5). STDO removed 5.1% training set

values and 4.0% test set values, whereas MFO removed 1.8% training set values and 3.4% test set values.

However, the outlier removal did not lead to significantly better prediction accuracy neither for the trivial

(random walk and mean predictors) nor for the autoregressive predictors. Obviously, outlier removal with

s>2 would eliminate a subset of the data removed using s=2, resulting in similar prediction accuracy as for

s=2. On the other hand, the STDO and the MFO techniques with s=2 changed the data distribution

considerably, as confirmed by the chi-square and Kolmogorov-Smirnov tests, thus indicating that outlier

removal using s<2 would result in a significant information loss.

5  Conclusions and Recommendations for Future Competitions

This article reported the results of an exploratory data analysis, as well as the prediction accuracy of random

walk, mean and autoregressive predictors on the INFFC competition time series. In addition, the effects of

outlier removal on the predictability of the competition time series were investigated.



The exploratory data analysis should be a mandatory step in any time series prediction, since the obtained

knowledge (regarding data distribution, stationarity, predictability, etc.) can be used in designing

appropriate predictors. The prediction accuracy of trivial and linear predictors provides accuracy lower

bounds for reasonable nonlinear prediction systems. Hence, any nonlinear predictor whose prediction

accuracy does not exceed that of the previously mentioned predictors should be disregarded. The outlier

removal is important, since  outliers are difficult to predict due to their relative sparsity in the training set,

while their existence in the training set negatively affects the optimization process for the remaining data.

The results show that:

• The interpolation process altered the original time series data distribution.

• Both the original and the interpolated time series were non-stationary.

• The price prediction was considerably easier than the price change prediction.

• Trivial and linear predictors provided better nRMSE values than some nonlinear competition entries.

• The directional symmetry measure was un-informative due to the properties of the interpolated time

series.

The performed analysis suggests the following testbed design recommendations for future financial

forecasting competitions:

• It should be tested whether the time series is non-stationary and if it is, then model retraining should be

allowed.

• A uniformly sampled financial time series should be selected as a testbed, or  at least it should be a time

series in which the interpolation process preserves the real-life data distribution.

• An exploratory data analysis should investigate the prediction accuracy as a function of prediction

horizon in order to formulate a challenging but feasible forecasting problem.

• Explicit rules (e.g. nRMSE computed either on price or price change) for evaluating a predictor’s

accuracy should be provided, since predictors can be optimized differently for specific objectives.
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