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Abstract

This article summarizes the results of an exploratory data analysis on the INFFC competition time series.
The analysis provides evidence that the problem is non-stationary and that the interpolation process for
filling-in missing values alters the data distribution. The accuracy for trivial and linear predictors, determined
in order to establish accuracy lower bounds for reasonable nonlinear prediction systems, identifies competition
entries with prediction accuracies below the provided bounds. Finally, testbed design recommendations for
future financial time series competitions are extracted from the results of this analysis.

1 Introduction

The objective of the First International Nonlinear Financial Forecasting Competition (INFFC) was to eval-
uate financial time series forecasting models on a pre-specified benchmark problem. The INFFC benchmark
data [7] was a cotton futures intra-day time series comprising 107,386 non-uniformly sampled 6-tuples con-
sisting of time stamp, opening, highest, lowest, and last strike price of the minute, along with the tick volume
(the number of strike prices collected in the one minute period). The first 80,000 samples were provided to
the competitors for model design and verification, whereas the last 27,386 samples were used by the INFFC
panel for evaluating submitted forecasting systems. In order to provide forecasts for prediction horizons of
120 minutes and 1 day ahead, an interpolation process had to be performed in which the missing price values
were obtained by repeating the last available closing price. This resulted in approximately 261,000 training
samples and 67,000 test samples.

The objectives of this article are to analyze the competition time series, to establish accuracy lower
bounds for reasonable nonlinear prediction systems, and to provide testbed design recommendations for
future financial forecasting competitions (a more detailed report can be found in [4]). It is important to
emphasize that the predictors discussed in this article are not designed as competition entries, and no attempt
is made whatsoever to evaluate the adequacy of the submitted forecasting systems.

2 Statistical Analysis of the Competition Data

The INFFC call for participation did not explicitly specify whether the goal of the competition was to predict
the closing price or the price change, and consequently this article considers both objectives. An analysis is
performed in order to determine: (1) whether the interpolation process explained in the Introduction alters
the data distribution; (2) whether the distribution of the data set provided to the competitors (training set)
is the same as the distribution of the data set used by the INFFC panel to evaluate prediction accuracy (test
set); (3) whether a reliable prediction horizon can be estimated from autocorrelation plots. In addition to a
visual inspection of normalized histograms (the number of points in each bin is divided by the total number
of points) and autocorrelation plots, the analysis also includes the chi-square and Kolmogorov-Smirnov tests
for comparing whether two data distributions are different [6].

2.1 Interpolation Effects on Data Distribution

Normalized histograms for un-interpolated and interpolated training and test set prices suggested different
distributions (histograms for un-interpolated and interpolated price test data are shown in Figs. 1 and 2).
More objectively, both the chi-square and the Kolmogorov-Smirnov tests yielded a probability 0.999 of
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rejecting the null hypothesis that the un-interpolated and the interpolated price data distributions are the
same, both for the training and the test sequences.

A similar analysis on price changes indicated the histograms of the interpolated data sets to be signifi-
cantly more leptokurtic (pointed) than the corresponding histograms of the un-interpolated data sets (see
Figs. 3 and 4). This is due to the fact that a fairly large amount of data was introduced through the
interpolation process by repeating the last available closing price when data was missing, resulting in a large
number of zero-valued price changes shown as a long bar centered about the zero value of the interpolated
histograms. This visual finding that the interpolation alters the price change distribution is confirmed by
chi-square and Kolmogorov-Smirnov tests that both rejected the null hypothesis with probabilities between
0.93 and 0.999.

Un—interpolated Price Test Data Interpotated Price Teat Data
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Figure 1: Un-interpolated Price Test Set Figure 2: Interpolated Price Test Set
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Figure 3: Un-interpolated Price Change Test Set  Figure 4: Interpolated Price Change Test Set

2.2 Stationarity and Data Correlation Analysis

A non-stationary time series can be described as a time series whose characteristic parameters change over
time [5]. In general, non-stationarity detection can be reduced to identifying two sufficiently long, distinct
data segments that have significantly different statistics (distributions).

For the competition data, stationarity analysis was reduced to comparing the interpolated training and
test distributions for the price, as well as for the price change time series. Both for the price and the price
change data, the histograms indicated significantly different training and test distributions, confirmed also
by the chi-square and Kolmogorov-Smirnov tests that rejected the null hypothesis, according to which the
two distributions were the same, with probability 0.999.

Additional tests on un-interpolated price and price change time series were performed in order to deter-
mine whether the non-stationarity was an intrinsic property of the original cotton time series or it has been
artificially introduced by the interpolation process. The results confirmed that the original time series also
exhibited non-stationarity.

Autocorrelation plots for a 300 samples data segment from the training and the test parts of the interpo-
lated price time series exhibited a relatively slow drop, thus suggesting a potentially large reliable prediction
horizon when predicting actual prices. Similar autocorrelation plots for the interpolated price change time
series suggested a very short reliable horizon for price change prediction using previous price changes only.
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I Predictor | DS | modDS | nRMSE | I Predictor | DS ] modDS | nRMSE |
Random Walk | 7.888 | 52.295 0.075 Random Walk | 16.745 | 48.060 1.421
Mean 0.000 | 64.255 1.161 Mean 0.000 | 49.397 1.600
AR(3) 13.231 | 40.949 0.265 AR(3) 21.944 | 44.161 1.318
ARI(1) 7.899 | 50.787 0.267 ARI(1) 17.601 | 47.036 1.402

Table 1: Price 120 Minutes ahead Table 2: Price Change 120 Minutes ahead

3 Trivial and Linear Predictors

Assuming large training data sets and sufficient training time, it is reasonable to expect non-linear forecasting
systems to perform at least as well as trivial or linear predictors. Hence, it is important to determine the
prediction accuracy of both trivial and linear predictors in order to establish lower bounds for the prediction
accuracy of reasonable non-linear predictors. The trivial predictors considered in this analysis were the
random walk and the mean predictors. The random walk predictor considers a future prediction to be equal
to the last available process value, whereas the mean predictor generates future predictions as being equal
to the mean of the training data samples. The linear forecasting [1] considered in this article is based on
autoregressive predictors of order p, denoted as AR(p), in which the predicted process value at time ¢, 2,, is
obtained as a linear combination of p previous process values, 2;_1,...,2;_p. The analysis also considered
the autoregressive-integrated ARI{p) model which is an AR(p) model applied to differenced data.

The accuracy measures for comparing the actual data sequence {z;:} and the predicted data sequence {&,},
reported in this article are the normalized root mean squared error (nRM SE) and a modified directional

symmetry (modDS) defined as

Ty —2y1| > € and |8, — B4_1| > €

1, if (:Bt - 2‘.;_1)(5‘ - it—l) > 0 and
or
oy — 2¢_1]| < € and |&; — Bp_1| < €
0, otherwise,

100
modDS = —n— th; Cy =

t=1

€ being a small constant related to the numerical precision involved in the modDS computation.

The nRM SFE measure is always non-negative with smaller values indicating a better predictor. The
standard directional symmetry D.S measures the percentage of correctly predicted market directions, with
larger values suggesting a better predictor [2]. Unfortunately, the DS is meaningless for a time series with
a large number of equal consecutive value pairs, as is the case for the interpolated competition time series,
since it accounts only for correctly predicted upward and downward trends. Consequently, the proposed
modDS takes into consideration all the correctly predicted directions (upward, downward, and no change),
as well as computer truncation errors.

The nRMSE as a function of prediction horizon for a trivial random walk predictor on the price test
series exhibited a relatively slow rise, suggesting a fairly easy prediction problem both for 120 minutes and
1 day prediction horizons, the nRM SE values for 120 minutes ahead being shown in Table 1. The random
walk predictor yielded the best nRMSFE value both compared to the mean predictor and to the linear
autoregressive models. The same was true also for the 1 day ahead prediction. The investigated AR(p) and
ARI(p) models based on a sampling rate of one minute were restricted to orders p< 10. Consequently, these
linear models did not include the random walk predictor as a particular case for the competition’s prediction
horizons (e.g. for 120 minutes horizon, the AR(p) model has to be at least of order p= 120). Although
the nRM SE value for the mean predictor was extremely poor, its modDS value for price prediction was
significantly better than those of the other predictors. However, this is not a particular achievement of the
mean predictor, but an artifact of the interpolation process, since |#; — #;_1| < € is always true for the mean
predictor, whereas |z; — z;1| < € is true for each ¢ introduced by the interpolation process.

The price change prediction results for a 120 minutes horizon are presented in Table 2. As expected,
the nRM SE value for the random walk predictor was significantly larger as compared to that obtained on
the price prediction, confirming the increased difficulty of the problem. However, the nRMSE value for
the mean predictor improved for the price change prediction since the mean of the price change training
series was the same as the mean of the price change test series, while this was not true for the means of the
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actual prices. It was also evident that the most appropriate AR(p) model (p= 3) performed slightly better
than the random walk predictor with respect to the nRMSFE measure. The decrease in modDS for the
mean predictor was due to the fact that for the price change prediction, c; is a function of three consecutive
price values instead of two for the price prediction, thus reducing the number of cases in which the actual
price change trend coincides with the predicted price change trend. For price change prediction, the mean
predictor appeared to be better than the random walk and the AR predictors, with respect to both nRMSE
and modDS. Similar observations were valid also for the 1 day ahead price change prediction.

It is important to observe that the lower bounds for reasonable nonlinear predictors obtained through
this simple analysis are probably weak. Better lower bounds can be obtained by investigating AR models of
higher order (e.g. when predicting 120 minutes ahead one might want to use information from at least the
previous 120 minutes) and considering different data sampling rates [3]. However, this was not necessary for
this analysis, since even these simple predictors were able to outperform some of the competition entries [7].

4 Conclusions and Recommendations for Future Competitions

This article reported the results of an exploratory data analysis, as well as the prediction accuracy of random
walk, mean and autoregressive predictors on the INFFC competition time series.

The exploratory data analysis should be a mandatory step in any time series prediction, since the obtained
knowledge (regarding data distribution, stationarity, predictability, etc.) can be used in designing appropriate
predictors. The prediction accuracy of trivial and linear predictors provides accuracy lower bounds for
reasonable nonlinear prediction systems. Hence, any nonlinear predictor whose prediction accuracy does not
exceed that of the previously mentioned predictors should be disregarded.

The results showed that: (1) the interpolation process altered the original time series data distribution;
(2) both the original and the interpolated time series were non-stationary; (3) the price prediction was
considerably easier than the price change prediction; (4) trivial and linear predictors provided better nRM SE
values than some nonlinear competition entries; (5) the directional symmetry measure was un-informative
due to the properties of the interpolated time series.

The performed analysis suggests the following testbed design recommendations for future financial fore-
casting competitions: (i) it should be tested whether the time series is non-stationary and if it is, then
model retraining should be allowed; (ii) a uniformly sampled financial time series should be selected as a
testbed, or at least it should be a time series in which the interpolation process preserves the real-life data
distribution; (iii) an exploratory data analysis should investigate the prediction accuracy as a function of
prediction horizon in order to formulate a challenging but feasible forecasting problem; (iv) explicit rules
(e.g. nRMSE computed either on price or price change) for evaluating a predictor’s accuracy should be
provided, since predictors can be optimized differently for specific objectives.
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