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Abstract 

This article summarizes the results of an exploratory data analysis or1 the INFFC competition time series. 
The analysis provides evidence that the problem is non-stationary and that the interpolation process for 
filling-in missing values alters the data distribution. The accuracy for trivial and linear predictors, determined 
in order to establish accuracy lower bounds for reasonable nonlinear pred iction systems, identifies competition 
entries with prediction accuracien below the provided bounds. Finally, testbed design recommendations for 
future financial time series competitions are extracted from the results of this analysis. 

1 Introduction 
The objective of the First International Nonlinear Financial Forecasting Competition (INFFC) was to eval- 
uate financial time series forecasting models on a pre-specified benchmaxk problem. The INFFC benchmark 
data [7] was a cotton futures intra-day time series comprising 3.07,386 non-uniformly sampled 6-tuples con- 
sisting of time stamp, opening, highest, lowest, and last strike price of the minute, along with the tick volume 
(the number of strike prices collected in the one minute period:). The first 80,000 samples were provided to 
the competitors for model design and verification, whereas the :last 27,386 samples were used by the INFFC 
panel for evaluating submitted forecasting systems. In order to provide forecasts for prediction horizons of 
120 minutes and 1 day ahead, an interpolation process had to be performed in which the missing price values 
were obtained by repeating the last available closing price. This resulted in approximately 261,000 training 
samples and 67,000 test samples. 

The objectives of this article: are to analyze the competitiion time series, to establish accuracy lower 
bounds for reasonable nonlinear prediction systems,, and to plrovide .testbed design recommendations for 
future financial forecasting competitions (a more detailed report can 'be found in [4]). It is important to 
emphasize that the predictors discussed in this article are not designed as; competition entries, and no attempt 
is made whatsoever to evaluate the adequacy of the submitted forecastling systems. 

2 Statistical Analysis of the Competition Data 
The INFFC call for participation did not explicitly specify whether the goal of the competition was to predict 
the closing price or the price change, and consequently this article considers both objectives. An analysis is 
performed in order to determine: (1) whether the interpolation process, explained in the Introduction alters 
the data distribution; (2) whether the distribution of the data set provided to the competitors (training s e t )  
is the same as the distribution of the data set used b!y the INFFC panel to  evaluate prediction accuracy ( t e s t  
s e t ) ;  (3) whether a reliable prediction horizon can be estimated from autocorrelation plots. In addition to a 
visual inspection of normalized histograms (the number of points in each bin is divided by the total number 
of points) and autocorrelation plots, the analysis also includes the  chi-square and Kolmogorov-Smirnov tests 
for comparing whether two data distributions are difFerent [6]. 

2.1 

Normalized histograms for un-interpolated and interpolated training and test set prices suggested different 
distributions (histograms for un-interpolated and interpolated price test data are shown in Figs. 1 and 2). 
More objectively, both the chi-square and the Kolmogorov-Smirnov tests yielded a probability 0.999 of 

Interpolation Effects on Data Distribution 

71 



rejecting the null hypothesis that the un-interpolated and the interpolated price data distributions are the 
same, both for the training and the test sequences. 

A similar analysis on price changes indicated the histograms of the interpolated data sets to  be signifi- 
cantly more leptokurtic (pointed) than the corresponding histograms of the un-interpolated data  sets (see 
Figs. 3 and 4). This is due to  the fact that a fairly large amount of data was introduced through the 
interpolation process by repeating the last available closing price when data was missing, resulting in a large 
number of zero-valued price changes shown as a long bar centered about the zero value of the interpolated 
histograms. This visual finding that the interpolation alters the price change distribution is confirmed by 
chi-square and Kolmogorov-Smirnov tests that both rejected the null hypothesis with probabilities between 
0.93 and 0.999. 
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Figure 1: Un-interpolated Price Test Set Figure 2: Interpolated Price Test Set 

Figure 3: Un-interpolated Price Change Test Set Figure 4: Interpolated Price Change Test Set 

2.2 

A non-stationary time series can be described as a time series whose characteristic parameters change over 
time [5]. In general, non-stationarity detection can be reduced to identifying two sufficiently long, distinct 
data segments that  have significantly different statistics (distributions). 

For the competition data, stationarity analysis was reduced to comparing the interpolated training and 
test distributions for the price, as well as for the price change time series. Both for the price and the price 
change data, the histograms indicated significantly different training and test distributions, confirmed also 
by the chi-square and Kolmogorov-Smirnov tests that rejected the null hypothesis, according to  which the 
two distributions were the same, with probability 0.999. 

Additional tests on un-interpolated price and price change time series were performed in order to  deter- 
mine whether the non-stationarity was an intrinsic property of the original cotton time series or it has been 
artificially introduced by the interpolation process. The results confirmed that the original time series also 
exhibited non-stationarity. 

Autocorrelation plots for a 300 samples data segment from the training and the test parts of the interpo- 
lated price time series exhibited a relatively slow drop, thus suggesting a potentially large reliable prediction 
horizon when predicting actual prices. Similar autocorrelation plots for the interpolated price change time 
series suggested a very short reliable horizon for price change prediction using previous price changes only. 

Stationarity and Data Correlation Analysis 

72 



I Predictor I DS I m d D S  I nRMSE I ~- - 

Random Walk 
Mean 

I I 

7.888 5Z-l 
0.000 64.255 
13.231 
7.899 

AN31 
ARIf1) 

(Predictor71 DS I r r w d D S ( n R M S E I  

4(-1 50.787 ARIf1) -' 

Table 1: Price 120 Minutes ahead Table 2: Price Change 120 Minutes ahead 

3 Trivial and Linear Predictors 
Assuming large training data sets and sufficient training time, it in reasonable to expect non-linear forecasting 
systems to perform at least as well as trivial or linear predictors. Hence, it is important to determine the 
prediction accuracy of both trivial and linear predictors in order to establish lower bounds for the prediction 
accuracy of reasonable non-linear predictors. The trivial predictors considered in this analysis were the 
random walk and the mean predictors. The random walk predictor cons,iders a future prediction to be equal 
to the last available process value, whereas the mean predictor generates future predictions as being equal 
to the mean of the training data samples. The linear forecasting [l] considered in this article is based on 
autoregressive predictors of order p, denoted as AR(p), in which the predicted process value at time t i  &, is 
obtained as a linear combination of p previous process values, at-l, . . . at--p. The analysis also considered 
the autoregressive-integrated ARI (p) model which is an AR(p) model applied to  differenced data. 

The accuracy measures for comparing the actual data sequence { x t }  anid the predicted data sequence { O t } ,  

reported in this article are the normalized root mean1 squared error (nitZMSE) and a modified directional 
symmetry (modDS) defined as 

1, if (xt - xt-1)(& - Ot-1) > 0 and lxt - xt-ll > E and 1st - 
or 
Ixt - xt-ll < E and I& - B t - l l  < E [ 0, otherwise, 

> E 
n 100 

n 
d D S  = - - c c t ;  ct = 

t = l  

E being a small constant related to the numerical precision involved in the modDS computation. 
The n R M S E  measure is alwarys non-negative with smaller values indicating a better predictor. The 

standard directional symmetry DS measures the percentage of correctlly predicted market directions, with 
larger values suggesting a better predictor [2]. Unfortunately, th,e DS in meaningless for a time series with 
a large number of equal consecutive value pairs, as is the case for the interpolated competition time series, 
since it accounts only for correctly predicted upward1 and downward trends. Consequently, the proposed 
modDS takes into consideration all the correctly prediicted directions (upward, downward, and no change), 
as well as computer truncation errors. 

The n R M S E  as a function of prediction horizon for a trivial random walk predictor on the price test 
series exhibited a relatively slow rise, suggesting a fairly easy prediction problem both for 120 minutes and 
1 day prediction horizons, the n R M S E  values for 120 minutes ahead being shown in Table 1. The random 
walk predictor yielded the best n R M S E  value bothL compared to the mean predictor and to  the linear 
autoregressive models. The same i w a s  true also for the 1 day ahe,ad prediction. The investigated AR(p) and 
ARI(p) models based on a sampling rate of one minute were restricted to orders p< 10. Consequently, these 
linear models did not include the random walk predictor as a particular case for the competition's prediction 
horizons (e.g. for 120 minutes horizon, the AR(p) model has to be a t  least of order p= 120). Although 
the n R M S E  value for the mean ]predictor was extremely poor, its moci!DS value for price prediction was 
significantly better than those of the other predictors. However, this is riot a particular achievement of the 
mean predictor, but an artifact of Lhe interpolation process, since / S t  - 2,-11 < E is always true for the mean 
predictor, whereas 1at - at-ll < E is true for each t introduced by the inCerpolation process. 

The price change prediction results for a 120 minutes horizon are presented in Table 2. As expected, 
the n R M S E  value for the random walk predictor was significantly larger as compared to that obtained on 
the price prediction, confirming the increased difficulty of the problem. However, the n R M S E  value for 
the mean predictor improved for the price change prediction since the mean of the price change training 
series was the same as the mean of the price change test series, while t h i ~  was not true for the means of the 
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actual prices. It was also evident that the most appropriate AR(p) model (p= 3) performed slightly better 
than the random walk predictor with respect to the n R M S E  measure. The decrease in d D S  for the 
mean predictor was due to the fact that for the price change prediction, ct is a function of three consecutive 
price values instead of two for the price prediction, thus reducing the number of cases in which the actual 
price change trend coincides with the predicted price change trend. For price change prediction, the mean 
predictor appeared to be better than the random walk and the AR predictors, with respect to both nRMSE 
and modDS. Similar observations were valid also for the 1 day ahead price change prediction. 

It is important to observe that the lower bounds for reasonable nonlinear predictors obtained through 
this simple analysis are probably weak. Better lowei bounds can be obtained by investigating AR models of 
higher order (e.g. when predicting 120 minutes ahead one might want to use information from at least the 
previous 120 minutes) and considering different data sampling rates [3]. However, this was not necessary for 
this analysis, since even these simple predictors were able to outperform some of the competition entries [7]. 

4 Conclusions and Recommendations for Future Competitions 
This article reported the results of an exploratory data analysis, as well as the prediction accuracy of random 
walk, mean and autoregressive predictors on the INFFC competition time series. 

The exploratory data analysis should be a mandatory step in any time series prediction, since the obtained 
knowledge (regarding data distribution, stationarity, predictability, etc.) can be used in designing appropriate 
predictors. The prediction accuracy of trivial and linear predictors provides accuracy lower bounds for 
reasonable nonlinear prediction systems. Hence, any nonlinear predictor whose prediction accuracy does not 
exceed that of the previously mentioned predictors should be disregarded. 

The results showed that: (1) the interpolation process altered the original time series data distribution; 
(2) both the original and the interpolated time series were non-stationary; (3) the price prediction was 
considerably easier than the price change prediction; (4) trivial and linear predictors provided better nRMSE 
values than some nonlinear competition entries; (5) the directional symmetry measure was un-informative 
due to the properties of the interpolated time series. 

The performed analysis suggests the following testbed design recommendations for future financial fore- 
casting competitions: (i) it should be tested whether the time series is non-stationary and if it is, then 
model retraining should be allowed; (ii) a uniformly sampled financial time series should be selected as a 
testbed, or at least it should be a time series in which the interpolation process preserves the real-life data 
distribution; (iii) an exploratory data analysis should investigate the prediction accuracy as a function of 
prediction horizon in order to formulate a challenging but feasible forecasting problem; (iv) explicit rules 
(e.g. nRMSE computed either on price or price change) for evaluating a predictor’s accuracy should be 
provided, since predictors can be optimized differently for specific objectives. 
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