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Abstract 

An accuracy-based signaling technique is proposed 
as an alternative to a statistics-based signaling for de- 
tecting changes in a time series distribution. Three 
different forecasting scenarios are analyzed in order to 
decide whether to reuse historically successful neural 
network models or retrain new ones when a change in 
the distribution is signaled. The results obtained on 
low-noise and high-noise, non-stationary time series 
provide strong evidence in favor of the accuracy-based 
signaling technique. 

1 Introduction 

The theoretical work shows that, similar to tradi- 
tional approximation techniques based on Taylor func- 
tion expansion or Fourier series, neural networks (NN) 
are powerful computational structures able to approx- 
imate almost any arbitrary continuous function [2]. 
In addition, NNs can effectively construct approxima- 
tions for unknown functions by learning from examples 
(known outcomes of the function), which makes them 
attractive in practical applications where traditional 
computational structures have performed poorly (e.g. 
ambiguous data or large contextual influence). 

Many real-life time series are the result of com- 
plex and insufficiently understood interdependencies. 
Hence, forecasting models make use of incomplete in- 
formation, while other factors not included in the mod- 
els act as noise. In addition, real-life time series are 
sometime non-stationary, meaning that the data dis- 
tribution is changing over time. Most often for non- 
stationary domains, a single model built on a certain 
data segment and used for all subsequent predictions is 
inadequate. A straightforward attempt is to stationar- 
ize the data by performing a de-trending preprocessing 
(e.g. a first or a second order discrete differentiation). 
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More sophisticated methods provide solutions for cer- 
tain types of rion-stationarity (e.g. a reversible powrrr 
transformation is successfully used to stabilize the vari- 
ance of a series affected by a strong trend that cannot 
be removed by differencing [I]) .  However, not all ncm- 
stationary processes can be stationarized through data 
preprocessing. Forecavting such processes rec4uire.r on- 
line learning techniques, where a given model is used 
for a limited time and a new model is constructed 
whenever a change of the underlying data distrihiition 
is detected. Although the on-line learning received re- 
cently considerable attention in the literature on coin- 
putational learning theory [4], and is already applied 
to some specific classification problems [9], many irn- 
portant issues related to efficient forecarting of non- 
stationary time series are still unsolved. If time is not 
an issue, on-line learning can be accomplished by a 
sliding window technique, in which a new prediction 
model is built whenever a new data sample becomes 
available. However, in many real-life problems the data 
arrival rate is high, which makes this approach com- 
pletely infeasible due to the computational complexity 
involved in repeatedly building NN prediction models. 
An alternative encountered in practice is the uniform 
retraining technique, in which an existing NN predic- 
tion model is used for a prespecified numher of pre- 
diction steps (called reliable prediction interval), fol- 
lowed by the replacement of the existing model by one 
constructed using more recent, data. A major disad- 
vantage of uniform retraining is that it is often hard to 
determine an appropriate reliable prediction interval, 
as it might be changing over time. 

Although theoretically possible, in practice it  rnigfit 
be very difficult to efficiently learn a single global 
NN model for a non-stationary time series forecast,- 
ing. An obvious difficulty of Huch a global approach 
is the selection of NN modeling parameters that. are 
appropriate for all data segments. Additional mi- 
ow problems include different noise levels in various 
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data segments resulting in local overfitting and under- 
fitting conflicts (it would be desired to stop training 
as not to overfit some data segments, while other data 
segments would still require additional training). An 
interesting multi-model attempt to forecasting piece- 
wise stationary time series, where the process switches 
between different regimes, is by using a gating net- 
work, in which a number of NN experts having an 
identical structure are trained in parallel, and their 
responses are integrated by another NN also trained 
in parallel with the expert networks [7]. Briefly, due 
to an interesting combination of activation and error 
functions that encourages localization, in a gating net- 
work each expert network tends to learn only a subset 
of the training data, thus devoting itself solely to a 
subregion of the input space. This competitive integ- 
ration method showed quite promising results when 
forecasting a non-stationary time series having two re- 
gimes, but is not likely to extend well to more complex 
non-stationary processes due to overfitting problems 
of training a gating network system consisting of too 
many expert networks. In addition, the time required 
to train a complex gating network is likely to be pro- 
hibitively long for many real-life time series forecasting 
problems. 

The multi-model forecasting approach proposed in 
this paper implies the use of a NN predictor until 
‘it is signaled that a new predictor is needed. This 
paper compares a statistics-based with an accuracy- 
based signaling technique for deciding whether to reuse 
“trusted” models or retrain new ones. The statistics- 
based signaling attempts to identify changes in the dis- 
tribution by anaIyzing the statistical similarity of dif- 
ferent data segments. An alternative signaling tech- 
nique proposed in this paper for deciding when a new 
prediction model is needed is the accuracy-based szg- 
naling, in which changes in the distribution are iden- 
tified based on prediction errors from previous time 
steps. Both for prediction accuracy and for compu- 
tational efficiency it is desirable to make use of any 
previously successful prediction model. 

Sections 2 and 3 provide the necessary statistics 
and neural network background concepts, while Sec- 
tion 4 explains the methodology employed. The ex- 
perimental results obtained on relatively noise-free, as 
well as on extremely noisy, non-stationary time series 
with or without model reuse are presented in Section 
5 ,  followed by conclusions provided in Section 6. 

2 Non-stationary Time Series 

A time series { x t }  can be defined as a function x of 
an independent variable t stemming from an unknown 
process. Its main characteristic is that its future be- 
havior cannot be predicted exactly as in the case of a 
known deterministic function. 

A non-stationary time series can be described as 
a time series whose characteristic parameters change 
over time. Different measures of stationarity can be 
employed to decide whether a process is stationary or 
not [5]. In practice, confirming that a given time series 
is stationary is a very difficult task, unless a closed- 
form expression of the underlying time series is known. 
Non-stationarity detection can be reduced to identify- 
ing two sufficiently long, distinct data segments that 
have significantly different statistics (distributions). In 
practice, common tests for comparing whether two dis- 
tributions are different are [6]: 

Student’s t-test; 

0 F-test; 

0 chi-square test; 

0 Kolmogorov-Smirnov test. 

Student’s t-test is applied. to identify the statistical sig- 
nificance of a difference in means of two distributions 
assumed to have the same variance, whereas the F- 
test evaluates the statistical significance of a difference 
in variances. More commonly, if there aren’t any as- 
sumptions regarding the means or variances of the dis- 
tributions, a chi-square olr a Kolmogorov-Smirnov test 
are performed. 

In the chi-square test, the data range of the two 
data sets to be compared is divided into a number 
of intervals (bins). Assuming that Ri and Si represent 
the number of data samples in bin i for the first and the 
second data set, respectively, the chi-square statistic 
computes 

- 

(Ri - si)2 
&+Si ’ 

x2 = 
i 

with the sum taken over all bins. The complement of 
the incomplete gamma function, 

r00 
where 

is then evaluated and a small value of Q (close to 0) 
indicates that it is unlikely that the two distributions 
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are the same. Here, Y represents the number of de- 
grees of freedom which in the case when the two sets 
have the same number of data samples (E I?, = Si), 
equals the number of bins minus one. If the previous 
restriction is not imposed, then u equals the number 
of bins. 

The Kolmogomv-Smimov (K-S) test measures the 
absolute difference between two cumulative distribu- 
tion functions SN, and SN, with N I  and Nz data 
points, respectively. The K-S statistic computes 

D = max ISlvl(z) - S N , ( X ) ~ .  
-ca<l<ca 

The function QKS defined as 
00 

j =1  

is computed for 

where Ne is the effective number of data points com- 
puted as 

Nl Nz 
Nl + N 2 .  

Ne = 

A small value of'QKS (close to 0) indicates that it is 
unlikely that the two distributions are the same. 

3 NN for Time Series Prediction 

Neural network computational models consist of a 
number of relatively simple, interconnected processing 
units called neurons, working in parallel. Different 
neural network architectures can be used to solve a 
given classification or prediction problem. In an archi- 
tecture, the neurons are interconnected through syn- 
aptic links (weights) and are grouped into layers, with 
synaptic links usually connecting neurons in adjacent 
layers. Typically three different layer types can be dis- 
tinguished: input (the layer that external stimuli are 
applied to), output (the layer that outputs results to 
the external world) and hidden (the intermediate com- 
putational layers between input and output layers). 
The NNs used in this paper are of feedforward type, 
(in which the signal flow is from input layer towards 
output layer), with two hidden layers of neurons. 

The most distinctive property of neural networks, 
as opposed to traditional computational structures, is 
called learning. Learning (training) represents the o p  
timization of the neural network weights by using a 
set of examples (known outcomes of the problem for 

given conditions), so that the neural network computes 
a desired function. The final data modeling goal is not 
to memorize known patterns, but to generalize from 
prior examples (to be able to estimate the outcomes of 
the problem under unknown conditions). 

When predicting a time series, a feedforward NN 
with k input units is trained on n consecutive process 
values 21, . . . , x, ,  that are used to build a training win- 
dow consisting of n-k+l examples. Each example has 
the form < X t - k ,  . . . , x t - l ,  x t  >, where Xt-k, . . . , x t -  1 
are used as inputs to the neural network and xt is 
used for comparison to the actual process value at 
time step t .  In this paper, the NN training is per- 
formed using the backpropagation algorithm, which is 
an iterative gradient descent method for minimizing 
the total squared prediction error on the training win- 
dow [SI. The trained NN predicts the process value at 
time step m, where m > n, by using process values 
from IC previous time steps as neural network input 
values. More formally, 

irn = f (Zm-l,xm-2, . . . , x m - k ) ,  

where f is an NN function obtained through learning 
on a given training window. 

Although the prediction error plot represents a com- 
monly encountered attempt to estimate a predictor's 
accuracy, it only provides a subjective means of visual 
evaluation. A more informative quantitative error 
measure for time series prediction evaluation is the 
coefficient of determination, which is a function of the 
mean squared error normalized by the variance of the 
actual data. It is computed as: 

* n 

r2 = 1 - C ( X i  - &)2/ C(Xi - Z)2, 
i= 1 i=I 

where xi and 3i denote actual and predicted process 
values, respectively, while i denotes the mean of the 
actual data. For a perfect predictor, the coefficient 
of determination should be one, whereas for a trivial 
mean predictor (one that always predicts the mean of 
the actual data) the coefficient of determination is zero. 

4 Methodology 

In this study we consider three different time series 

1. switching between two historically successful NN 
forecasting scenarios: 

models (SWITCH); 

training a new one (REUSE); 
2. reusing a historically successful NN model, or 
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3. retraining a NN model when signaled, without re- 
lying on any historically successful model (RE- 
TRAIN). 

The SWITCH scenario assumes that two historically 
successful models were identified in the past. The ob- 
jective is to detect in real-time which of the two mod- 
els to use for prediction at any given time step. The 
REUSE scenario assumes an existing previously suc- 
cessful model. The objective is to decide in real-time 
whether to use the existing previously successful his- 
toric model for prediction, or to retrain a new NN on 
current data. Finally, the RETRAIN scenario is not 
assuming any previously successful model. The ob- 
jective is to decide in real-time when to discard a NN 
predictor and retrain a new one on current data. The 
SWITCH and the REUSE scenarios are proposed in 
order to efficiently forecast piece-wise stationary pro- 
cesses with full or partial understanding of the number 
of different regimes, while the RETRAIN scenario is 
proposed for forecasting completely unknown higher 
order non-stationary processes. 

The three scenarios were analyzed in the context of 
two different distribution-change signaling techniques, 
explained as follows. 

4.1 Statistics-Based Signaling 

This signaling technique attempts to identify 
changes in the data distribution by comparing the sim- 
ilarity of different data segments using either the chi- 
square or the K-S statistics. 

For the SWITCH scenario, two historical data seg- 
ments, Dhl and D h 2 ,  both of length p ,  along with their 
successful NN models, Mhl and M h 2 ,  trained on these 
segments are kept in a library. A current window, 
W ,  containing the p latest available data is compared 
distribution-wise (using either the chi-square or the K- 
S tests) to D h l  and D h 2 ,  in order to decide which of the 
two historical data segments is more similar to it. The 
library model corresponding to the more appropriate 
historical data segment is then used for predicting the 
next time series value. This process is repeated when 
a new data sample becomes available (each time step). 

For the REUSE scenario, a single historical data 
segment, D h ,  used to build a previously successful NN 
model, M A ,  as well as a temporary data segment, Dt , 
used to build a temporary NN model, Mt,  both of 
Iength p ,  are kept in a library. The models M h  and 
Mt are also stored in the library. A current window, 
W ,  containing the p latest available data is compared 
distribution-wise (using either the chi-square or the K- 
S tests) to D h  and Dt,  in order to decide whether to 

continue using one of the library models or to train 
a new model. For this purpose, a threshold has to 
be imposed on the confidence value obtained from the 
chi-square or K-S tests. If the test indicates more con- 
fidence in M h ,  provided that the confidence value for 
Mh is larger than the specified threshold, then M h  is 
used for the current predliction. Similarly, if we are 
more confident in Mt and the confidence value is lar- 
ger than the threshold, then Mt is used for the current 
prediction. Otherwise (none of the confidence values 
is larger than the imposed threshold), a new tempor- 
ary NN model is trained on W and it replaces Mt,  
whereas W replaces Dt in the library. The new model 
is then used for the current prediction and the process 
is repeated when a new data sample becomes available. 

In the case of the RETRAIN scenario, a data seg- 
ment, Dt, of length p used to build a temporary NN 
model, M t ,  is stored in a library. A current window, 
W ,  containing the p latest available data is compared 
distribution-wise (using either the chi-square or the K- 
S tests) to Dt,  in order to decide whether to continue 
using M t ,  or discard it and train a new NN model. 
For this purpose, a threshold imposed on the confid- 
ence value obtained from the chi-square or K-S tests 
is used to decide when th.e current model becomes in- 
appropriate. If Mt is considered to be inadequate, W 
replaces Dt and a new NN model trained on W re- 
places Mt in the library. The new model is then used 
for the current prediction and the process is repeated 
when a new data sample becomes available. 

4.2 Accuracy-Based Signaling 

This signaling technique attempts to identify 
changes in the data distribution by measuring recent 
prediction accuracies of previously successful models. 

For the SWITCH scenario, two historically success- 
ful NN models, M h l  and M h 2 ,  are kept in a library. At 
each time step, the two models are compared based on 
their accuracy measured on a buffer containing b most 
recent process values, arid the more accurate model is 
used for the current prediction. 

For the REUSE scen,ario, a historically successful 
NN model, M h ,  as welll as a temporary NN model, 
M t ,  are kept in a library. Similar to the SWITCH 
scenario, the accuracy of the two models is compared 
on the b most recent process values. The model hav- 
ing a better accuracy is used for predicting the cur- 
rent step, unless none of the models is a sufficiently 
good predictor on the b most recent process values. A 
model is considered to be sufficiently good if its ac- 
curacy on the b most recent process values is above 
amin{Ah,At}, where o is a prespecified threshold in 
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Figure 1: Regime Switching between Q and H Processes 

the (0,l) range, while Ah and At are the training ac- 
curacies for the historical and the temporary model, 
respectively, computed on the process values used to 
build them. If none of the two existing models is satis- 
factory] a new NN model is trained, that replaces Mc 
in the library and is also used for the current predic- 
tion. This process is repeated whenever a new data 
sample becomes available. 

In the case of the RETRAIN scenario, a temporary 
NN model, M t ,  is stored in a library. Additionally, 
a corresponding training accuracy, At, is measured as 
for the REUSE scenario. If the accuracy M t ,  measured 
on the b most recent process values is &At, model Mt 

. i s  used for the current prediction. Otherwise, a new 
NN model is trained that replaces Mt in the library 
that is aIso used for the current prediction. This pro- 
cess is repeated whenever a new data sample becomes 
available. 

Our experiments included two different accuracy 
measures. In the SWITCH scenario, the accuracy was 
computed as the mean of the absolute error values cor- 
responding to the predicted values stored in the buf- 
fer. This quality measure can be used just in cases 
in which a decision has to be taken regarding which 
library model is the most adequate, irrespective of its 
actual prediction quality. For this reason, the REUSE 
and RETRAIN scenarios employ as an accuracy meas- 
ure the coefficient of determination computed using the 
predicted values stored in the buffer. 

5 Experimental Results 

* a better understanding of the underlying phenom- 
ena; 

e a rigorous control of regime switching between 
distributions; 

e the possibility of computing the performance of 
an optimal predictor. 

However, the time series were generated in such a way 
that they provide sufficient insight into real-life fore- 
casting. 

The time series used in our experiments were con- 
structed by mixing data stemming from a deterministic 
chaotic process (Q) and a noisy, non-chaotic process 
(H), used earlier in [i']. The processes Q and H were 
generated according to the following rules: 

zt+i = tanh(-1.2zt + ( H ) ,  
where { e t }  is a white noise process with mean 0 and 
standard deviation 0.32. For both processes, the initial 
values 20 were taken from the [-1,1] range, and then 
the defining equations were applied repeatedly in order 
to generate additional process values. 

Two different ways of mixing the Q and the H pro- 
cesses for building a time series were considered. A 
first time series (QHQ) was created by concatenat- 
ing three data sections of lengths 300, 400, and 500 
samples, respectively, in which the first and the last 
data segments stem from the Q process, whereas the 
second data segment stems from the H process. Sim- 
ilarly, a second time series (HQH) was created by 
concatenating data segments of lengths 300, 400 and 
500 stemming from processes H, Q, and H, respect- 
ively. For conciseness, solely the results obtained on 
the QHQ series are presented here. For an in-detail 

The experiments were performed on generic data, in 
contrast to the usual approach of using real-life time 
series. The main reasons for this decision were: 

534 



Autaonrlrtlon for 6-mpbr '1-300 

. . .  . . . .  . . . . . . . . . . . . . . . . . . .  . .  
I . ,  -0.4 -. 

....... ,.,b i 
..................................... : ....................................... 7 ............... ........................................................................................................ 

Figure 2: Autocorrelation for Data Samples 1-300 
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Figure 3: Autocorrelation for Data Samples 301-600 

presentation of both the QHQ and the HQH series res- 
ults, the reader should consult [3]. 

A segment of the QHQ time series comprising the 
first regime switch from process Q to process H (time 
series data samples 251-350) is presented in Fig. 1. Al- 
though the Q and H processes have basically the same 
means and variances, as well as data ranges, Fig. 1 
illustrates the different time behavior of the two pro- 
cesses. Indeed, the autocorrelation plots for lags up to 
50 on the first 300 and the next 300 time series data 
samples (shown in Figs. 2 and 3) indicate a depend- 
ence of autocorrelation on time origin, meaning that 
the underlying mixed time series is not wide-sense sta- 
tionary 151. 

To get insight into the robustness of our proposed 
methodology with respect to the data noise level, a 
high-noise time series was constructed by corrupting 
the QHQ time series with Gaussian additive noise of 
zero mean and standard deviation equal to half of the 
standard deviation of the uncorrupted data (the result- 
ing time series, denoted as QHQ-N, is obviously not 
wide-sense stationary). 

5.1 Low-Noise Experiments 

Two feedforward neural networks MI and M2, hav- 
ing 2 input units, two hidden layers of 4 units each and 
1 output unit were trained (using the backpropagation 
algorithm) on two data segments of 200 samples each, 
stemming from the Q and the H processes, respect- 
ively. The statistics-biued signaling technique com- 
pared windows of 200 samples using both chi-square 
and K-S tests. In the REUSE and RETRAIN scen- 
arios, the threshold Q employed for deciding when a 
new NN model must be trained was set to 0.8. An a p  
propriate architecture, as well as an appropriate value 
for the parameter CY were obtained through a reason- 
ably short trial and error procedure and no claim is 
made that these are the optimal values. 

The SWITCH Scenario 

In our experiments, MI and M2 represent the lib- 
rary models Mhl and Mh2, discussed in Section 4. 
The experiments compared the results obtained using 
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Figure 4: Performance for SWITCH Scenario on Low-Noise Series 

statistics-based signaling and accuracy-based signal- 
ing to the results of both a single-model predictor as 
well as an optimal predictor. The single-model pre- 
dictor represents a library model used for predicting 
the entire time series (MI in this case), whereas the 
optimal predictor is obtained by using both library 
models MI and Mz and assuming that the switching 
points between distributions are detected without any 
delay (this is infeasible in practice unless the regime 
switching rules are entirely understood). The results 
obtained are shown in Fig. 4. 

Although the statistics-based signaling technique 
yields a significantly better prediction accuracy as 
compared to using the single-model predictor, the 
results show that the accuracy-based signaling tech- 
nique provides much better results as compared to 
the statistics-based one, using either the chi-square or 
the K-S tests. The accuracy-based signaling technique 
leads to excellent results for buffer sizes over a fairly 
wide range (2-30). It was also observed that small 
buffer sizes lead to performance that is comparable 
to that achieved when the regime switching points are 
completely known (optimal predictor curve). 

The REUSE Scenario 

In this case, M I  corresponds to the library model 
Mh . The results obtained using the accuracy-based 
signaling technique for buffer sizes 50 and 100 are 
presented in Table 1. 

The figures presented were obtained as averages 
over ten runs with different initial random weights 
for the retrained NNs. In all experiments included 
in Table 1 the standard deviations were very small. 
Consequently, by comparing Table 1 with Fig. 4, it 
can be concluded that even in the REUSE scenario 
the accuracy-based signaling technique yields signific- 

Table 1: Performance for REUSE Scenario 
on Low-Noise Series 

antly better results than the statistics-based signaling 
technique. For this reason, results obtained using the 
statistics-based signaling are not reported for the R E  
USE scenario. On the other hand, although the av- 
eraged value of the coefficient of determination ( T ~ )  

was larger when using a shorter buffer, a statistically 
significant difference cannot be claimed since the dif- 
ference in r2 mean values is smaller than the sum of 
the corresponding standard deviations. The number 
of NN retrainings observed in the experiments with 
buffer length 100 varied between 3 and 7, whereas it 
varied between 5 and, 14 in the case of buffer length 50. 
These figures indicate that the experiments on longer 
buffers are computationally more efficient. However, 
even for the shorter buffer, the number of retrainings 
is very small as compared to the total number of pre- 
dictions. 

The RETRAIN Scenario 

As in the REUSE scenario, the results presented in 
Table 2 were obtained using the accuracy-based sig- 
naling technique for buffer sizes 50 and 100. 

The figures presented were obtained as averages 
over ten runs with different initial random weights 
for the retrained NNs. Again, the accuracy-based sig- 
naling results were better (with small standard devi- 
ation) than those obtained by the statistics-based sig- 
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Figure 5: Performance for SWITCH Scenario on High-Noise Series 

rZ  Mean T~ Standard Deviation 
0.801190 0.0285059 
0.780692 0.0372022 

Buffer Size T Mean 
0.240188 
0.222303 

naling in the SWITCH scenario. Consequently, the 
statistics-based signaling was not considered in the 
REUSE scenario. The difference in performance for 
buffer sizes 50 and 100 was not statistically signific- 

’.ant, while the experiments on longer buffer needed less 
computational resources (3 to 8 retrainings for buffer 
length 100, as compared to 6 to 16 retrainings for buf- 
fer length 50). 

r2 Standard Deviation 
0.0154151 
0.013072 

5.2 High-Noise Experiments 

The NNs used in these experiments had the same 
architecture and parameters as those used in the low- 
noise experiments. However, the NNs M I  and M2 were 
now trained on two data segments of 200 samples each, 
stemming from the noise-corrupted Q and H processes. 
The window size used in the statistics-based signal- 
ing was again 200 sampIes, while the threshold CY em- 
ployed in the accuracy-based signaling was set to 0.6, 
smaller than in the low-noise experiments to account 
for the high noise level. Similar to the low-noise ex- 
periments, an appropriate architecture as well as an 
appropriate value for the parameter a were obtained 
through a reasonably short trial and error procedure 
and no claim is made that these are the optimal values. 

In the SWITCH scenario, in spite of an extremely 
high noise level, the accuracy-based signaling tech- 
nique lead once again to performance that was close 

to optimal. However, the statistics-based signaling 
technique was not only significantly less accurate, but 
not even consistently better than the single-model pre- 
dictor that used a library model trained entirely on one 
distribution (see Fig. 5). As expected, due to a much 
larger amount of noise, the “optimal” buffer sizes for 
the accuracy-based signaling are larger as compared to 
the corresponding ones from the low-noise experiments 
(compare Fig. 5 with Fig;. 4). 

Buffer Size T Mean I r2 Standard Deviation 
-2 1 0.00888212 
t 100 I 0.253184 1 0.0156959 

I I 

Table 3: Performance for REUSE Scenario 
on High,-Noise Series 

Table 4: Performance for RETRAIN Scenario 
on Highi-Noise Series 

Accuracy-based signaling results for the REUSE 
and the RETRAIN scenarios for high-noise experi- 
ments are again significiintly better (with small stand- 
ard deviation computed over 10 different runs) as 
compared to the statistics-based signaling results for 
the SWITCH scenario (compare Tables 3, 4 with 
Fig. 5). Consequently, without performing further ex- 
periments, it was possi’ble to conclude that statistics- 
based signaling for the: REUSE and the RETRAIN 
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scenarios were not appropriate. The number of NN 
retrainings in the high-noise experiments was consist- 
ently larger as compared to the low-noise ones (8 to 12 
for buffer 100 and 15 to 23 for buffer 50, for the REUSE 
scenario, and 10 to 18 for buffer 100 and 23 to 33 for 
buffer 50 for the RETRAIN scenario). It can also be 
observed that the computational resources needed in 
the RETRAIN scenario were significantly larger than 
those needed in the REUSE scenario. However, once 
again the number of retrainings is reasonably small as 
compared to the length of the time series considered. 

6 Conclusions and Further Research 

This paper proposed an accuracy-based signaling 
technique for detecting changes in data distribution as 
an alternative to a statistics-based signaling technique. 
The obtained results provided strong support in favor 
of the accuracy-based signaling for non-stationary time 
series prediction. The method appeared to be applic- 
able to both low-noise, as well as high-noise problems. 

The proposed technique is using two domain- 
dependent parameters, buffer size b and threshold a. 
Appropriate parameter values can be obtained through 
a reasonably short trial and error procedure. Exper- 
iments indicated that the buffer size is fairly robust 
(satisfactory prediction results can be obtained with 
parameter values over a fairly large interval). Our 
hypothesis is that for non-malicious distributions the 
prediction accuracy is a convex function of the buffer 
length (see Figs. 2,3,  6 and 7 for experimental support 
of this hypothesis). If so, the search for an optimal buf- 
fer length can be performed by starting with a small 
buffer length that is gradually increased until the pre- 
dictor’s accuracy stops increasing, a s  no larger buffer 
length is likely to yield any better prediction. This 
could be intuitively justified by observing that small 
buffers are unreliable due to imperfections in predict- 
ors and the existence of outliers, whereas large buffers 
result in long delays in distribution change detection. 
However, further research is needed in order to re- 
solve this practically important hypothesis. A similar 
robustness analysis is required for a better understand- 
ing of the sensitivity threshold a. 

Work on applying the proposed method to real-life 
time series prediction is currently in progress and res- 
ults will be reported elsewhere. It is worth noting 
that in those problems different accuracy measures are 
more appropriate (e.g. in trading systems, the annu- 
alized rate of return should replace the T’ accuracy 
measure used here). In this paper we investigated the 
possibility of reusing one or two historically successful 

models. However, it is worth mentioning that the ap- 
proach proposed in this paper is easily extensible to a 
larger library of somewhat less successful, but prom- 
ising, models that might be available in real-life time 
series predictions. 
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