Regime Signaling Techniques for Non-stationary Time Series
Forecasting

Radu Drossu

Zoran Obradovié

School of Electrical Engineering and Computer Science
Washington State University

rdrossu@eecs.wsu.edu

Abstract

An accuracy-based signaling technique 18 proposed
as an alternative to a statistics-based signaling for de-
tecting changes in a time series distribution. Three
different forecasting scenarios are analyzed in order to
decide whether to reuse historically successful neural
network models or retrain new ones when a change in
the distribution is signaled. The results obtained on
low-noise and high-noise, non-stationary time series
provide strong evidence in favor of the accuracy-based
signaling technique.

1 Introduction

The theoretical work shows that, similar to tradi-
tional approximation techniques based on Taylor func-
tion expansion or Fourier series, neural networks (NN)
are powerful computational structures able to approx-
imate almost any arbitrary continuous function [2].
In addition, NNs can effectively construct approxima-
tions for unknown functions by learning from examples
(known outcomes of the function), which makes them
attractive in practical applications where traditional
computational structures have performed poorly (e.g.
ambiguous data or large contextual influence).

Many real-life time series are the result of com-
plex and insufficiently understood interdependencies.
Hence, forecasting models make use of incomplete in-
formation, while other factors not included in the mod-
els act as noise. In addition, real-life time series are
sometime non-stationary, meaning that the data dis-
tribution is changing over time. Most often for non-
stationary domains, a single model built on a certain
data segment and used for all subsequent predictions is
inadequate. A straightforward attempt is to stationar-
ize the data by performing a de-trending preprocessing
(e.g. a first or a second order discrete differentiation).
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More sophisticated methods provide solutions for cer-
tain types of non-stationarity (e.g. a reversible power
transformation is successfully used to stabilize the vari-
ance of a series affected by a strong trend that cannot
be removed by differencing [1]). However, not all non-
stationary processes can be stationarized through data
preprocessing. Forecasting such processes requires on-
line learning techniques, where a given model is used
for a limited time and a new model is constructed
whenever a change of the underlying data distribution
is detected. Although the on-line learning received re-
cently considerable attention in the literature on com-
putational learning theory [4], and is already applied
to some specific classification problems [9], many im-
portant issues related to efficient forecasting of non-
stationary time series are still unsolved. If time is not
an issue, on-line learning can be accomplished by a
sliding window technique, in which a new prediction
model is built whenever a new data sample becomes
available. However, in many real-life problems the data
arrival rate is high, which makes this approach com-
pletely infeasible due to the computational complexity
involved in repeatedly building NN prediction models.
An alternative encountered in practice is the uniform
retraining technique, in which an existing NN predic-
tion model is used for a prespecified number of pre-
diction steps (called reliable prediction interval), fol-
lowed by the replacement of the existing model by one
constructed using more recent data. A major disad-
vantage of uniform retraining is that it is often hard to
determine an appropriate reliable prediction interval,
as it might be changing over time.

Although theoretically possible, in practice it might
be very difficult to efficiently learn a single global
NN model for a non-stationary time series forecast-
ing. An obvious difficulty of such a global approach
is the selection of NN modeling parameters that are
appropriate for all data segments. Additional seri-
ous problems include different noise levels in various



data segments resulting in local overfitting and under-
fitting conflicts (it would be desired to stop training
as not to overfit some data segments, while other data
segments would still require additional training). An
interesting multi-model attempt to forecasting prece-
wise stationary time series, where the process switches
between different regimes, is by using a gating net-
work, in which a number of NN experts having an
identical structure are trained in parallel, and their
responses are integrated by another NN also trained
in parallel with the expert networks [7]. Briefly, due
to an interesting combination of activation and error
functions that encourages localization, in a gating net-
work each expert network tends to learn only a subset
of the training data, thus devoting itself solely to a
sub-region of the input space. This competitive integ-
ration method showed quite promising results when
forecasting a non-stationary time series having two re-
gimes, but is not likely to extend well to more complex
non-stationary processes due to overfitting problems
of training a gating network system consisting of too
many expert networks. In addition, the time required
to train a complex gating network is likely to be pro-
hibitively long for many real-life time series forecasting
problems.

The multi-model forecasting approach proposed in
- this paper implies the use of a NN predictor until
it is signaled that a new predictor is needed. This
paper compares a statistics-based with an accuracy-
based signaling technique for deciding whether to reuse
“trusted” models or retrain new ones. The statistics-
based signaling attempts to identify changes in the dis-
tribution by analyzing the statistical similarity of dif-
ferent data segments. An alternative signaling tech-
nique proposed in this paper for deciding when a new
prediction model is needed is the accuracy-based sig-
naling, in which changes in the distribution are iden-
tified based on prediction errors from previous time
steps. Both for prediction accuracy and for compu-
tational efficiency it is desirable to make use of any
previously successful prediction model.

Sections 2 and 3 provide the necessary statistics
and neural network background concepts, while Sec-
tion 4 explains the methodology employed. The ex-
perimental results obtained on relatively noise-free, as
well as on extremely noisy, non-stationary time series
with or without model reuse are presented in Section
5, followed by conclusions provided in Section 6.

2 Non-stationary Time Series

A time series {z,} can be defined as a function z of
an independent variable ¢ stemming from an unknown
process. Its main characteristic is that its future be-
havior cannot be predicted exactly as in the case of a
known deterministic function.

A non-stationary time series can be described as
a time series whose characteristic parameters change
over time. Different measures of stationarity can be
employed to decide whether a process is stationary or
not [5]. In practice, confirming that a given time series
is stationary is a very difficult task, unless a closed-
form expression of the underlying time series is known.
Non-stationarity detection can be reduced to identify-
ing two sufficiently long, distinct data segments that
have significantly different statistics (distributions). In
practice, common tests for comparing whether two dis-
tributions are different are [6]:

e Student’s t-test;

o F-test;

o chi-square test;

¢ Kolmogorov-Smirnov test.

Student’s t-test is applied to identify the statistical sig-
nificance of a difference in means of two distributions
assumed to have the same variance, whereas the F-
test evaluates the statistical significance of a difference
in variances. More commonly, if there aren’t any as-
sumptions regarding the means or variances of the dis-
tributions, a chi-square or a Kolmogorov-Smirnov test
are performed.

In the chi-square test, the data range of the two
data sets to be compared is divided into a number
of intervals (bins). Assuming that R; and S; represent
the number of data samples in bin 7 for the first and the
second data set, respectively, the chi-square statistic
computes

s (R: ~ Si)°
= — R+ S;
with the sum taken over all bins. The complement of
the incomplete gamma function,

2 1 ® tia-1
= = ~tge-ldt,
Q(v, x*) o) /x= €
where -
F(z):/ "~ letdt,
Jo

is then evaluated and a small value of @ (close to 0)
indicates that it is unlikely that the two distributions
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are the same. Here, v represents the number of de-
grees of freedom which in the case when the two sets
have the same number of data samples (3 R; = > S;),
equals the number of bins minus one. If the previous
restriction is not imposed, then v equals the number
of bins.

The Kolmogorov-Smirnov (K-S) test measures the
absolute difference between two cumulative distribu-
tion functions Sy, and Sy, with N; and N, data
points, respectively. The K-S statistic computes

D= max |Sv(z)— Sn,(z)]

—coLrLo

The function Qxs defined as

o0

Qks(A) =2

ji=1

(__l)j—le-2j"')\2

is computed for

A= D(y/Ne +0.12+ 0.11/v/Ne),

where N, is the effective number of data points com-

puted as
N1 Nz

= Ny+ Ny’

A small value of Qg5 (close to 0} indicates that it is
unlikely that the two distributions are the same.

N,

3 NN for Time Series Prediction

Neural network computational models consist of a
number of relatively simple, interconnected processing
units called neurons, working in parallel. Different
neural network architectures can be used to solve a
given classification or prediction problem. In an archi-
tecture, the neurons are interconnected through syn-
aptic links (weights) and are grouped into layers, with
synaptic links usually connecting neurons in adjacent
layers. Typically three different layer types can be dis-
tinguished: input (the layer that external stimuli are
applied to), output (the layer that outputs results to
the external world) and hidden (the intermediate com-
putational layers between input and output layers).
The NNs used in this paper are of feedforward type,
(in which the signal flow is from input layer towards
output layer), with two hidden layers of neurons.

The most distinctive property of neural networks,
as opposed to traditional computational structures, is
called learning. Learning (training) represents the op-
timization of the neural network weights by using a
set of examples (known outcomes of the problem for
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given conditions), so that the neural network computes
a desired function. The final data modeling goal is not
to memorize known patterns, but to gereralize from
prior examples (to be able to estimate the outcomes of
the problem under unknown conditions).

When predicting a time series, a feedforward NN
with k input units is trained on n consecutive process
values 1, ..., 2y, that are used to build a training win-
dow consisting of n—k+1 examples. Each example has
the form < ¢yk,..., 241, Te >, where 4k, ..., 211
are used as inputs to the neural network and z. is
used for comparison to the actual process value at
time step ¢. In this paper, the NN training is per-
formed using the backpropagation algorithm, which is
an iterative gradient descent method for minimizing
the total squared prediction error on the training win-
dow [8]. The trained NN predicts the process value at
time step m, where m > n, by using process values
from k previous time steps as neural network input
values. More formally,

&m = f(zm-1,2m-2, .-, Tm-k),

where f is an NN function obtained through learning
on a given training window.

Although the prediction error plot represents a com-
monly encountered attempt to estimate a predictor’s
accuracy, it only provides a subjective means of visual
evaluation. A more informative quantitative error
measure for time series prediction evaluation is the
coefficient of determination, which is a function of the
mean squared error normalized by the variance of the
actual data. It is computed as:

n n
rP=1- Z(x; - i'g)Z/Z(:c; - £)2,

=1 i=1
where z; and #; denote actual and predicted process
values, respectively, while £ denotes the mean of the
actual data. For a perfect predictor, the coefficient
of determination should be one, whereas for a trivial
mean predictor (one that always predicts the mean of
the actual data) the coefficient of determination is zero.

4 Methodology

In this study we consider three different time series
forecasting scenarios:

1. switching between two historically successful NN
models (SWITCH);

. reusing a historically successful NN model, or
training a new one (REUSE);



3. retraining a NN model when signaled, without re-
lying on any historically successful model (RE-
TRAIN).

The SWITCH scenario assumes that two historically
successful models were identified in the past. The ob-
jective is to detect in real-time which of the two mod-
els to use for prediction at any given time step. The
REUSE scenario assumes an existing previously suc-
cessful model. The objective is to decide in real-time
whether to use the existing previously successful his-
toric model for prediction, or to retrain a new NN on
current data. Finally, the RETRAIN scenario is not
assuming any previously successful model. The ob-
jective is to decide in real-time when to discard a NN
predictor and retrain a new one on current data. The
SWITCH and the REUSE scenarios are proposed in
order to efficiently forecast piece-wise stationary pro-
cesses with full or partial understanding of the number
of different regimes, while the RETRAIN scenario is
proposed for forecasting completely unknown higher
order non-stationary processes.

The three scenarios were analyzed in the context of
two different distribution-change signaling techniques,
explained as follows.

4.1 Statistics-Based Signaling

This signaling technique attempts to identify
changes in the data distribution by comparing the sim-
ilarity of different data segments using either the chi-
square or the K-S statistics.

For the SWITCH scenario, two historical data seg-
ments, Dyy and Dp2, both of length p, along with their
successful NN models, Mp; and M2, trained on these
segments are kept in a library. A current window,
W, containing the p latest available data is compared
distribution-wise (using either the chi-square or the K-
S tests) to Dy and Dya, in order to decide which of the
two historical data segments is more similar to it. The
library model corresponding to the more appropriate
historical data segment is then used for predicting the
next time series value. This process is repeated when
a new data sample becomes available (each time step).

For the REUSE scenario, a single historical data
segment, Dy, used to build a previously successful NN
model, M}, as well as a temporary data segment, D;,
used to build a temporary NN model, M;, both of
length p, are kept in a library. The models M} and
M, are also stored in the library. A current window,
W, containing the p latest available data is compared
distribution-wise (using either the chi-square or the K-
S tests) to Dy and D, in order to decide whether to

continue using one of the library models or to train
a new model. For this purpose, a threshold has to
be imposed on the confidence value obtained from the
chi-square or K-S tests. If the test indicates more con-
fidence in M, provided that the confidence value for
My, is larger than the specified threshold, then M} is
used for the current prediction. Similarly, if we are
more confident in M; and the confidence value is lar-
ger than the threshold, then M, is used for the current
prediction. Otherwise (none of the confidence values
is larger than the imposed threshold), a new tempor-
ary NN model is trained on W and it replaces M,
whereas W replaces D; in the library. The new model
is then used for the current prediction and the process
is repeated when a new data sample becomes available.

In the case of the RETRAIN scenario, a data seg-
ment, D;, of length p used to build a temporary NN
model, M;, is stored in a library. A current window,
W, containing the p latest available data is compared
distribution-wise (using either the chi-square or the K-
S tests) to Dy, in order to decide whether to continue
using M;, or discard it and train a new NN model.
For this purpose, a threshold imposed on the confid-
ence value obtained from the chi-square or K-S tests
is used to decide when the current model becomes in-
appropriate. If M, is considered to be inadequate, W
replaces D, and a new NN model trained on W re-
places M; in the library. The new model is then used
for the current prediction and the process is repeated
when a new data sample becomes available.

4.2 Accuracy-Based Signaling

This signaling technique attempts to identify
changes in the data distribution by measuring recent
prediction accuracies of previously successful models.

For the SWITCH scenario, two historically success-
ful NN models, M5, and My, are kept in a library. At
each time step, the two models are compared based on
their accuracy measured on a buffer containing b most
recent process values, and the more accurate model is
used for the current prediction.

For the REUSE scenario, a historically successful
NN model, Mj, as well as a temporary NN model,
M;, are kept in a library. Similar to the SWITCH
scenario, the accuracy of the two models is compared
on the b most recent process values. The model hav-
ing a better accuracy is used for predicting the cur-
rent step, unless none of the models is a sufficiently
good predictor on the b most recent process values. A
model is considered to be sufficiently good if its ac-
curacy on the b most recent process values is above
amin{A;, A;}, where a is a prespecified threshold in
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Figure 1: Regime Switching between Q and H Processes

the (0,1) range, while A4 and A, are the training ac-
curacies for the historical and the temporary model,
respectively, computed on the process values used to
build them. If none of the two existing models is satis-
factory, a new NN model is trained, that replaces Af;
in the library and is also used for the current predic-
tion. This process is repeated whenever a new data
sample becomes available.

In the case of the RETRAIN scenario, a temporary
NN model, M,, is stored in a library. Additionally,
a corresponding training accuracy, A;, is measured as
for the REUSE scenario. If the accuracy M;, measured
on the b most recent process values is aA;, model M;

".is used for the current prediction. Otherwise, a new
NN model is trained that replaces M; in the library
that is also used for the current prediction. This pro-
cess is repeated whenever a new data sample becomes
available.

Our experiments included two different accuracy
measures. In the SWITCH scenario, the accuracy was
computed as the mean of the absolute error values cor-
responding to the predicted values stored in the buf-
fer. This quality measure can be used just in cases
in which a decision has to be taken regarding which
library model is the most adequate, irrespective of its
actual prediction quality. For this reason, the REUSE
and RETRAIN scenarios employ as an accuracy meas-
ure the coefficient of determination computed using the
predicted values stored in the buffer.

5 Experimental Results

The experiments were performed on generic data, in
contrast to the usual approach of using real-life time
series. The main reasons for this decision were:
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e a better understanding of the underlying phenom-
ena;

e a rigorous control of regime switching between
distributions;

e the possibility of computing the performance of
an optimal predictor.

However, the time series were generated in such a way
that they provide sufficient insight into real-life fore-
casting.

The time series used in our experiments were con-
structed by mixing data stemming from a deterministic
chaotic process (Q) and a noisy, non-chaotic process
(H), used earlier in [7]. The processes Q and H were
generated according to the following rules:

s =2(1-z) -1 (Q)
(H),

where {¢;} is a white noise process with mean 0 and
standard deviation 0.32. For both processes, the initial
values zg were taken from the [-1,1] range, and then
the defining equations were applied repeatedly in order
to generate additional process values.

Two different ways of mixing the Q and the H pro-
cesses for building a time series were considered. A
first time series (QHQ) was created by concatenat-
ing three data sections of lengths 300, 400, and 500
samples, respectively, in which the first and the last
data segments stem from the Q process, whereas the
second data segment stems from the H process. Sim-
ilarly, a second time series (HQH) was created by
concatenating data segments of lengths 300, 400 and
500 stemming from processes H, Q, and H, respect-
ively. For conciseness, solely the results obtained on
the QHQ series are presented here. For an in-detail

Tty1 = tanh(—l.?xt + 63.*.1)
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Figure 2: Autocorrelation for Data Samples 1-300
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Figure 3: Autocorrelation for Data Samples 301-600

presentation of both the QHQ and the HQH series res-
ults, the reader should consult {3].

A segment of the QHQ time series comprising the
first regime switch from process Q to process H (time
series data samples 251-350) is presented in Fig. 1. Al-
though the Q and H processes have basically the same
means and variances, as well as data ranges, Fig. 1
illustrates the different time behavior of the two pro-
cesses. Indeed, the autocorrelation plots for lags up to
50 on the first 300 and the next 300 time series data
samples (shown in Figs. 2 and 3) indicate a depend-
ence of autocorrelation on time origin, meaning that
the underlying mixed time series is not wide-sense sta-
tionary [5}].

To get insight into the robustness of our proposed
methodology with respect to the data noise level, a
high-noise time series was constructed by corrupting
the QHQ time series with Gaussian additive noise of
zero mean and standard deviation equal to half of the
standard deviation of the uncorrupted data (the result-
ing time series, denoted as QHQ-N, is obviously not
wide-sense stationary).
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5.1 Low-Noise Experiments

Two feedforward neural networks M; and Ms, hav-
ing 2 input units, two hidden layers of 4 units each and
1 output unit were trained (using the backpropagation
algorithm) on two data segments of 200 samples each,
stemming from the Q and the H processes, respect-
ively. The statistics-based signaling technique com-
pared windows of 200 samples using both chi-square
and K-S tests. In the REUSE and RETRAIN scen-
arios, the threshold a employed for deciding when a
new NN model must be trained was set to 0.8. An ap-
propriate architecture, as well as an appropriate value
for the parameter a were obtained through a reason-
ably short trial and error procedure and no claim is
made that these are the optimal values.

The SWITCH Scenario

In our experiments, M; and M, represent the lib-
rary models My, and My, discussed in Section 4.
The experiments compared the results obtained using
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statistics-based signaling and accuracy-based signal-

ing to the results of both a single-model predictor as Buffer Size | r Mean | r’ Standard Deviation
well as an optimal predictor. The single-model pre- 50 0.866323 0.0117669
dictor represents a library model used for predicting 100 0.832089 0.0317474

the entire time series (M; in this case), whereas the
optimal predictor is obtained by using both library
models M; and M» and assuming that the switching
points between distributions are detected without any
delay (this is infeasible in practice unless the regime
switching rules are entirely understood). The results
obtained are shown in Fig. 4.

Although the statistics-based signaling technique
vields a significantly better prediction -accuracy as
~compared to using the single-model predictor, the
results show that the accuracy-based signaling tech-
nique provides much better results as compared to
the statistics-based one, using either the chi-square or
the K-S tests. The accuracy-based signaling technique
leads to excellent results for buffer sizes over a fairly
wide range (2-30). It was also observed that small
buffer sizes lead to performance that is comparable
to that achieved when the regime switching points are
completely known {optimal predictor curve).

The REUSE Scenario

In this case, M; corresponds to the library model
M}y, The results obtained using the accuracy-based
signaling technique for buffer sizes 50 and 100 are
presented in Table 1.

The figures presented were obtained as averages
over ten runs with different initial random weights
for the retrained NNs. In all experiments included
in Table 1 the standard deviations were very small.
Consequently, by comparing Table 1 with Fig. 4, it
can be concluded that even in the REUSE scenario
the accuracy-based signaling technique yields signific-

Table 1: Performance for REUSE Scenario
on Low-Noise Series

antly better results than the statistics-based signaling
technique. For this reason, results obtained using the
statistics-based signaling are not reported for the RE-
USE scenario. On the other hand, although the av-
eraged value of the coefficient of determination (r?)
was larger when using a shorter buffer, a statistically
significant difference cannot be claimed since the dif-
ference in 72 mean values is smaller than the sum of
the corresponding standard deviations. The number
of NN retrainings observed in the experiments with
buffer length 100 varied between 3 and 7, whereas it
varied between 5 and 14 in the case of buffer length 50.
These figures indicate that the experiments on longer
buffers are computationally more efficient. However,
even for the shorter buffer, the number of retrainings
is very small as compared to the total number of pre-
dictions.

The RETRAIN Scenario

As in the REUSE scenario, the results presented in
Table 2 were obtained using the accuracy-based sig-
naling technique for buffer sizes 50 and 100.

The figures presented were obtained as averages
over ten runs with different initial random weights
for the retrained NNs. Again, the accuracy-based sig-
naling results were better (with small standard devi-
ation) than those obtained by the statistics-based sig-
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Figure 5: Performance for SWITCH Scenario on High-Noise Series

Table 2: Performance for RETRAIN Scenario
on Low-Noise Series

naling in the SWITCH scenario. Consequently, the
statistics-based signaling was not considered in the
REUSE scenario. The difference in performance for
~ buffer sizes 50 and 100 was not statistically signific-
“ant, while the experiments on longer buffer needed less
computational resources (3 to 8 retrainings for buffer
length 100, as compared to 6 to 16 retrainings for buf-
fer length 50).
5.2 High-Noise Experiments

The NNs used in these experiments had the same
architecture and parameters as those used in the low-
noise experiments. However, the NNs M; and M, were
now trained on two data segments of 200 samples each,
stemming from the noise-corrupted Q and H processes.
The window size used in the statistics-based signal-
ing was again 200 samples, while the threshold o em-
ployed in the accuracy-based signaling was set to 0.6,
smaller than in the low-noise experiments to account
for the high noise level. Similar to the low-noise ex-
periments, an appropriate architecture as well as an
appropriate value for the parameter a were obtained
through a reasonably short trial and error procedure
and no claim is made that these are the optimal values.

In the SWITCH scenario, in spite of an extremely
high noise level, the accuracy-based signaling tech-
nique lead once again to performance that was close

to optimal. However, the statistics-based signaling

Buffer Size | r* Mean | r° Standard Deviation technique was not only significantly less accurate, but
30 0.801190 0.0285059 not even consistently better than the single-model pre-
100 0.780692 0.0372022 dictor that used a library model trained entirely on one

distribution (see Fig. 5). As expected, due to a much
larger amount of noise, the “optimal” buffer sizes for
the accuracy-based signaling are larger as compared to
the corresponding ones from the low-noise experiments
{compare Fig. 5 with Fig. 4).

Buffer Size | r* Mean | r* Standard Deviation
50 0.271352 0.00888212
100 0.253184 0.0156959

Table 3: Performance for REUSE Scenario
on High-Noise Series

Buffer Size | »® Mean | r¢ Standard Deviation
50 0.240188 0.0154151
100 0.222303 0.013072

Table 4: Performance for RETRAIN Scenario
on High-Noise Series

Accuracy-based signaling results for the REUSE
and the RETRAIN scenarios for high-noise experi-
ments are again significantly better (with small stand-
ard deviation computed over 10 different runs) as
compared to the statistics-based signaling results for
the SWITCH scenario (compare Tables 3, 4 with
Fig. 5). Consequently, without performing further ex-
periments, it was possible to conclude that statistics-

based signaling for the REUSE and the RETRAIN
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scenarios were not appropriate. The number of NN
retrainings in the high-noise experiments was consist-
ently larger as compared to the low-noise ones (8 to 12
for buffer 100 and 15 to 23 for buffer 50, for the REUSE
scenario, and 10 to 18 for buffer 100 and 23 to 33 for
buffer 50 for the RETRAIN scenario). It can also be
observed that the computational resources needed in
the RETRAIN scenario were significantly larger than
those needed in the REUSE scenario. However, once
again the number of retrainings is reasonably small as
compared to the length of the time series considered.

6 Conclusions and Further Research

This paper proposed an accuracy-based signaling
technique for detecting changes in data distribution as
an alternative to a statistics-based signaling technique.
The obtained results provided strong support in favor
of the accuracy-based signaling for non-stationary time
series prediction. The method appeared to be applic-
able to both low-noise, as well as high-noise problems.

The proposed technique is using two domain-
dependent parameters, buffer size b and threshold a.
Appropriate parameter values can be obtained through
a reasonably short trial and error procedure. Exper-
iments indicated that the buffer size is fairly robust
(satisfactory prediction results can be obtained with
parameter values over a fairly large interval). Our
hypothesis is that for non-malicious distributions the
prediction accuracy is a convex function of the buffer
length (see Figs. 2, 3, 6 and 7 for experimental support
of this hypothesis). If so, the search for an optimal buf-
fer length can be performed by starting with a small
buffer length that is gradually increased until the pre-
dictor’s accuracy stops increasing, as no larger buffer
length is likely to yield any better prediction. This
could be intuitively justified by observing that small
buffers are unreliable due to imperfections in predict-
ors and the existence of outliers, whereas large buffers
result in long delays in distribution change detection.
However, further research is needed in order to re-
solve this practically important hypothesis. A similar
robustness analysis is required for a better understand-
ing of the sensitivity threshold a.

Work on applying the proposed method to real-life
time series prediction is currently in progress and res-
ults will be reported elsewhere. It is worth noting
that in those problems different accuracy measures are
more appropriate {e.g. in trading systems, the annu-
alized rate of return should replace the r? accuracy
measure used here). In this paper we investigated the
possibility of reusing one or two historically successful

models. However, it is worth mentioning that the ap-
proach proposed in this paper is easily extensible to a
larger library of somewhat less successful, but prom-
ising, models that might be available in real-life time
series predictions.
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