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Abstract: The analysis of social networks often assumes time invariant scenario, while in practice actor attributes and links
in such networks often evolve over time and are inextricably dependent on each other. In this article, we propose a new method
to predict actor attributes and links in temporal networks. Our approach takes into account the attributes corresponding to the
participating actors together with topological and structural changes of the network over time. This is achieved by building two
conditional predictors to jointly infer links and actor attributes. The proposed prediction method was significantly more accurate
than alternatives when evaluated on synthetic data sets and two well-studied real-life temporal social networks. In addition,
the new algorithm is computationally more efficient than a related alternative scaling up linearly with the number of temporal
observations and quadratically with the number of actors considered.  2011 Wiley Periodicals, Inc. Statistical Analysis and Data
Mining 4: 470–486, 2011
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1. INTRODUCTION

A social network describes the interactions (relation-
ships) between participating social entities (actors). The
well-known web applications, Facebook and MySpace, are
examples of social networks, where each social actor is a
person and two persons can be linked together if there are
interactions between them (e.g., email exchanges). Another
example of social networks is the informal relationship
graph of farming estates [1], where each social actor is a
family that owns the farm. In this farming community net-
work, a social visit constitutes a link between two social
entities. Actors and links are two essential elements of
social networks regardless of their semantics, while directed
graphs are the main representation and analytical tool of
social network analysis (SNA). A social network can be
either static or dynamic. To analyze temporal dynamic
social networks, one needs to investigate the evolving
patterns of the networks along the time axis, including
the network trends, the changes of actor’s roles, and the
strengthening or weakening of the relationships. The typ-
ical prediction problems associated with temporal social
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networks are inferences of links or actor roles, determin-
ing the strengths of the relationships and imputation of the
missing links.

While temporal SNA is a well-studied subject [2,3], the
topic of prediction in such structures is less explored. Many
published works in the field such as Ref. [4] investigate the
social networks from the perspective of statistical inference.
Their objective is to infer the most probable statistics which
would explain the network evolution process. For example,
Ref. [4] also addresses the network evolution and changes
of the actors attributes, but not to the forecasting end. The
objective of our work is to create a state-of-the-art model
capable of predicting how the social network will look in
the future.

Most published works on predictions of temporal social
networks are focused on link predictions. In particular,
the time a specified group of social interactions will
occur is predicted in a recent study [5]. Another recently
studied temporal prediction problem is inferencing network
structures at the next yet unseen step [6,7]. The social
network link imputation problem is also considered for
data stored in relational databases [8]. These models predict
how the network evolves. However, the attribute values
of the participating actors are typically not considered (an
exception is the method proposed by Popescul et al. [8]).

 2011 Wiley Periodicals, Inc.
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The prediction models employed in previous studies of
temporal social networks are solely based on network
structures and their topologies, albeit the temporal aspects
of the social networks are always considered. However, in
many cases, attribute values of actors are also available in
social networks and are useful for accurate link prediction.
Moreover, predicting the attribute values of participating
actors could be as important as predicting the network
graphs. However, to the best of our knowledge, none of
the published work thus far attempts to predict both the
links and the attribute values in a single concise model.

In this article, we develop a novel model that facilitates
simultaneous predictions of the links and the attribute
values in temporal social networks based solely on
historical data.

Given the evolving structure of a temporal network
and the changing nonstatic attribute values of the network
actors, the goal is to predict the network structure and actor
values at the next unobserved time step. Figure 1 shows a
graphical representation of the prediction task. This figure
demonstrates how the relationship graph of the invariant
set of actors and actors’ attributes is changing as time
progresses from time steps T − 2 to T . Then based on this
historical data, we want to predict the relationship graph and
attribute value of each actor at unobserved time step T + 1.
Instead of training a single joint probability prediction
model for this prediction task, we build two conditional
exponential random graph models, based on the observation
over Gibbs sampling inference. These two conditional
predictors are mutually dependent on each other, and can
then be used to predict the network structures, that is, the
links, and the attribute values in an alternative way. Our
empirical study suggests that this novel approach achieves
better performance than baseline approaches.

Preliminaries of social networks are introduced in
Section 2 of this article. Section 3 presents a brief review of
related models. In Section 4, a novel approach is proposed
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Fig. 1 A conceptual representation of the prediction task
addressed in this article.

that facilitates simultaneous predictions of the links and
the attribute values in temporal social networks based
solely on historical data. This is followed by a summary
of experimental evaluations on synthetic and real-life
problems presented in Section 5. Finally, the discussion and
some directions for future work are contained in Section 6.

2. PRELIMINARIES

A typical representation model for analysis of temporal
social networks consists of a series of dichotomous
adjacency matrices (also called sociomatrices) which define
the states of a set of participating agents at each given
observation time [9]. For example, to represent T temporal
observations of k actors we will use T adjacency matrices,
N1 · · · NT , where each entry Nt

ij = 1 indicates the presence
of a link between the actor i and actor j at time step t ;
conversely Nt

ij = 0 indicates the absence of such a link.
For example, in a social network over the friendships of a
class of students, a sociomatrix Nt is used to indicate the
links between the students based on their friendship status at
time t . The entry Nt

ij = 1 indicates that student i considered
student j as his/her friend at time t . It is important to note
that a relationship matrix does not have to be symmetric.
In this example, we can have Nt

ij = 1 and Nt
ji = 0 at the

same time, which means that while student i considered
student j as his/her friend, student j did not reciprocate
the feelings. Moreover, the actors should not have self-
referenced relations, thus diagonals of matrices N1 · · · NT

should be always populated with zeros.
In the past, the p∗ class of statistical models [10], also

known as Exponential Random Graph Models (ERGMs)
[9,11,12] has been successfully applied to analyze and
describe the sociomatrices discussed above. The ERGM is
a log-linear model and is expressed as:

P (N) = 1

Z(θ)
exp

{
θ

′
u(N)

}
, (1)

which defines the probability of a given social network N

from the set N of all possible social networks. Here θ
′

is a
transposed parameter vector, u(N) is a vector of sufficient
statistics of the network N , and Z(θ) is the normalization
constant. An extended version of ERGM, the Temporal
Exponential Random Graphical Model (tERGM), is pro-
posed in Ref. [13], which specifically deals with the tempo-
ral aspect of social network analysis. This temporal model
takes the Markovian assumption that each network matrix
Nt , that is, the observation matrix at the time t , is condition-
ally independent of all other prior observations N1 · · · Nt−2

given its immediate prior observed matrix Nt−1, which is:

P
(
Nt |Nt−1, Nt−2 · · · N1) = P

(
Nt |Nt−1). (2)
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Thus the joint distribution in tERGM can be expressed as:

P
(
N1:T |θ) = P

(
N1) T∏

t=2

P
(
Nt |Nt−1, θ

)
, (3)

where the conditional transition distribution is an extension
of the log-linear model in Eq. (1), and can be expressed as

P
(
Nt |Nt−1, θ

) = 1

Z
(
θ , Nt−1)exp

{
θ

′
ψ

(
Nt , Nt−1)}. (4)

Here, ψ is a function of Rk×k × Rk×k → Rl , where k is
number of actors, which defines the statistics, that is, the
features. In Ref. [13], four statistics are defined, including
density, stability, reciprocity, and transitivity :

ψD
(
Nt , Nt−1) = 1

k − 1

k∑
ij

Nt
ij , (5)

ψS
(
Nt , Nt−1) = 1

k − 1

k∑
ij

× [
Nt

ijN
t−1
ij

+ (
1 − Nt

ij

)(
1 − Nt−1

ij

)]
, (6)

ψR
(
Nt , Nt−1) = k

[∑k
ij Nt

jiN
t−1
ij

]
[∑k

ij Nt−1
ij

] , (7)

ψT
(
Nt , Nt−1) = k

∑k
pqr Nt

prN
t−1
pq Nt−1

qr∑k
pqr Nt−1

pq Nt−1
qr

, (8)

where k is number of actors (all statistics are scaled to
be in [0; k] range). The conditional probability function in
Eq. (4) is a function of the parameters, θ = {θD, θS, θR, θT},
which correspond to the statistics {ψD, ψS, ψR, ψT}. Thus
θD controls the density of the network, that is, the number
of existing links. θS controls the stability, or whether a link
(or its absence) at time step t − 1 continues to exist at time
step t . θR drives the reciprocity, which is the degree that
a link presented at time t − 1 from actor i to j will result
in a reciprocal link from j to i at time t . θT governs the
transitivity, which is the propensity of the links from p to
q and from q to r at t − 1 resulting in a transitive link from
r to p at time t .

Parameters of the tERGM are estimated from the
sequence of temporal network observations N1 · · · NT using
the Markov Chain Monte Carlo (MCMC) techniques
[12,13]. After the model parameters were learned, it is
possible to make prediction over the network structure
at future time step T + 1 by applying Gibbs sampling
method [12], which samples networks according to the
conditional model given in Eq. (4) and the previous
observation NT .

The tERGM model introduced above considers only
the structures and topologies of the temporal networks,
while actor attributes are ignored. However, when the
actor attributes are available and useful to know, one
needs to make predictions over both the network structures
and the attribute values in future steps. For instance, in
the student friendship network example, the Grade Point
Average (GPA) of each student can be easily obtained at
each observation step. Thus, in addition to an array of
sociomatrices, one can have T numbers of k × 1 attribute
vectors x1:T where xi contains the GPA for all the students
at time step i. The GPAs could be a factor that affects
the friendships among students. Thus, it is reasonable to
assume that the network structures and the attribute values
are interactively dependent. Our proposed work is based
on such a dependence assumption over the links and the
attributes. Our method extends tERGM by building two
mutually dependent conditional models which are used to
jointly predict both NT +1 and xT +1.

3. RELATED WORK

Temporal networks research is mostly applied to the
domains of genetics and social network analysis. In genet-
ics, a predominant question addressed by the research com-
munity is construction of the genes’ pathways (networks)
based on temporal observation of gene expressions. A num-
ber of interesting models have been developed in this
field [14,15]. The question answered by these models is
fundamentally different from our research subject. Genetic
temporal models recover the network structure, based on
underlying time series data. Our temporal model predicts
future network structure and actor attributes based on time
series of networks and actor attributes. Despite such a
fundamental difference, network recovery models consider
both links and data, and therefore we pay close attention to
these models.

Contrary to genetics, the main question of the temporal
SNA community is link prediction. There are two camps in
this field. An overwhelming majority of publications on this
topic predicts the network structure solely based on network
topology [5–7]. The other camp also predicts links, but
considers the actor attributes. Reported results that pursue
such an approach were mostly concerned with specific types
of data sets such as academic collaboration or business co-
operation networks [16]. These data sets are textually rich,
and therefore specialized models were applied to them. To
the best of our knowledge, the SNA community has not
yet considered simultaneously predicting data and links for
temporal networks.

The brief review of the previous work in this section
covers two groups of models. The first group of models
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is ‘related models’ that cannot be readily applied to the
problem we are trying to solve, but at the same time
is important to us because we drew upon it when we
develop our approach. The second type, ‘baseline models’,
is link prediction models that can be applied in a temporal
setting. Most of these baseline models do not predict actor
attributes. We use them as baselines in our link predictions
experiments on temporal social networks.

3.1. Related Models

A novel Hidden Temporal Exponential Random Graph
Model (htERGM) was introduced [17] to recover latent
temporal network structures based on attributes of observed
nodes (actors). Specifically, it is shown how to recover
the temporal network of the Drosophila gene expressions
from the observations over the gene expression levels (node
attributes). This approach incorporates the learning of both
network structures and node (gene) attributes in a single,
combined htERGM expressed as

P
(
N1:T , x1:T

∣∣, N0) =
T∏

t=1

P
(
Nt

∣∣Nt−1, θ
)
P

(
x t

∣∣Nt , �
)
. (9)

Note that Eq. (9) consists of two conditional models.
The first part is the transition model given in Eq. (4),
which defines how the gene network evolves over time.
The second model, shown in Eq. (10):

P
(
xt

∣∣Nt , �
) = 1

Z
(
η, Nt

)exp


η

∑
ij

�
(
xt

i , xt
j , Nt

ij , �ij

)



(10)

is called an ‘emission model’, and it defines the depen-
dency of the node attributes over the underlying network
topology. The � in Eq. (10) is a time invariant activa-
tion function specific to Drosophila data set. This function
provides the degree of mutual activation or suppression
or activation between two genes and has [−1, 1] range.
Presence of the activation function � is a rather strong
assumption, which might be perfectly valid for the gene
expression network, but perhaps is inappropriate for the
temporal social networks. As two models, transition and
emission, are involved so that one needs to learn two sets of
unknown parameters: θ and η, while the activation function
� is directly estimated from the training data set. Param-
eters θ and η are treated as latent variables in htERGM
and an Expectation-Maximization (EM) method is used for
training. This approach is computationally slow so applica-
tions were limited to the retrieval of subnetworks of up to
ten genes. The new approach that we propose in this arti-
cle learns two sets of model parameters separately which

makes the learning process much faster and applicable for
larger networks.

A follow up work to Ref. [17] was presented by
Ahmed and Xing [14], who introduced an algorithm
named TESLA to address the slowness of the htERGM.
In this new approach, the latent model is simplified
to a convex temporal smoothed l1-regularized logistic
regression problem

P
(
xt |θ t

) = exp


∑

i∈V

θ t
iix

t
i +

∑
(i,j)∈Et

θ t
ij x

t
i x

t
j − A

(
θ t

) ,

(11)

where A(θ t ) is the log partition function, V is the set of
nodes, and Et is a set of edges at time t . TESLA first learns
parameters θ for each node for all available time steps
t = 1 · · ·T . Given θ , a simple sign function is applied to
determine whether a link is present between nodes i and j at
time t . However, in TESLA the transition model is omitted.
It can only be applied to recover unknown structures of the
temporal network based on the observed node values x t for
t = 1 · · ·T . Direct predictions of the future values for x t+1

and the edge set Et+1 are impossible in this model.
Another approach [4] models the network dynamics as a

stochastic actor-driven process where each change occurs
at one microstep at a time. This approach models the
changes of actor links as a function of node covariates
(or ‘actor covariates’) and characteristics of pairs of nodes
(‘dyadic covariates’). It takes the Markovian assumption of
the network evolution process and posits that changes in the
links are actor driven. Its main characteristic is modeling
of the network events (appearance or disappearance of
a link) as occurring at infinitesimal time intervals where
only one actor gets the opportunity to change one link
at a time. The modeling process works as follows, the
actor is chosen for a given micro time-step who gets the
opportunity to change one of his/her outgoing links. The
choice of actor can be made either with equal probability
among all actors or with probability corresponding to the
actor’s standing in the network. After the actor is chosen
he/she gets the opportunity to change one outgoing link
with probability proportional to the objective function.
The objective function consists of the network, actor
and dyadic covariates effects. To simulate the network
evolution the process is repeated until the convergence
of the estimation parameters. The stochastic actor-based
model is used by researchers to study which of the network
effects, or covariates, are prominent factors in evolution
of the network. In our work we are more concerned
with the predictive power of our proposed approach and
other methods. The actor-driven stochastic model has some
similarities with our methodology such as the Markovian
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assumption of the network evolution and utilizing log-
linear functions to model probabilities. The main difference
between our model and that in Ref. [4], is that the model in
Ref. [4] looks at a longitudinal process and models latent
link changes in continuous time as taking place between
the actual observations, whereas our model only considers
the discrete time steps when the network was observed.

The previous work [18] compares discrete versus con-
tinuous time approach. It asserts that discrete observations
do not capture the full dynamic of the network evolu-
tion because there is a possibility that there could have
been many unobserved link changes in-between the net-
work surveys. In Ref. [18] an example is cited where the
network surveys done at times t and t + 1 recorded the
creation of a link between two actors with similar charac-
teristic (both nondrinkers in this example). Appearance of
such a link in any discrete model is unequivocally classi-
fied as a homophily selection. The possibility here is that
we did not observe an interim process between times t

and t + 1 where one actor had become a drinker, which
caused the other actor to start a therapeutic relationship with
him/her (thus creating the outgoing link). This relationship
had influenced the actor-drinker to stop consuming alcohol,
so at the time t + 1 we finally observe two nondrinkers
in a social relationship. The fact that homophilic selection
had nothing to do with what had actually transpired went
completely unnoticed. The time-continuous approach is a
plausible modeling solution for longitudinal networks, but
missing element here is that it cannot be verified with real-
life data sets available today. The only way to validate
the model assertion that there was an unobserved activity
between the surveys would be to retroactively ask network
participants a follow up questions. Unfortunately, such ret-
rospective studies are very rare and prone to error [19].
Nevertheless, the question of whether a discrete model can
deal with unobserved changes has to be addressed. One way
to address it is to determine whether the studied temporal
network has too many link changes between observations
which would suggest that it is unsuitable for treatment by
a discrete model. A social network which evolves too fast
between the survey times would not be a good candidate
because of the increased likelihood that self-canceling link
creations/deletions were not recorded. In Ref. [4] it was
proposed to use the Jaccard index to measure the network
change rate between the surveys. This measure calculates
the rate of change between two observations by

C11

C11 + C01 + C10
, (12)

where C11 is count of links present in both network, C01

is number of newly created ties, and C10 is number of ties
which were terminated. A low value of this index, less than
0.2, suggests that network is undergoing rapid change and it

is likely that surveys missed a lot of activity. An index value
close to 1.0 tells us that not much has happened between
two observations. In our experiments we used two synthetic
and two real-life data sets, which are described in great
detail in Section 5. We calculated the Jaccard index for
all our data sets to ensure that networks are not changing
too fast and are suitable for our model. The rate change
for synthetic Data set1 and Data set2 averaged 0.39 and
0.30, respectively with a small variation of the index along
the time axis. For the real-life data sets Delinquency and
Teenagers the average values were 0.40 and 0.35, also with
very little variations. These values suggest that changes in
temporal networks used in our experiments are adequately
gradual and therefore our data sets are good candidates for
treatment by a discrete model such as ours.

3.2. Baseline Models

A comprehensive description of a static graph link pre-
diction algorithm which can also be applied to temporal net-
work link prediction problem was recently published [20].
The article [20] introduced a new approach which enhances
the accuracy of temporal network link prediction by com-
bining a time-series approach with time-invariant algo-
rithms. We provide brief descriptions of these methods
because we will use them as baselines in our experiments
on real-life and synthetic data sets. The output of these algo-
rithms is always score matrix S, where each entry S(i, j)

assigns the link occurrence score proportional to the pre-
dicted probability of the link from actor i to actor j at time
step T + 1. Contrary to our approach, these methods do not
exploit information available as attributes of actors.

Finally, here we also describe an alternative approach
based on tensor factorization which predicts both links and
attributes (Section 3.2.4).

3.2.1. Time invariant models

In order to predict links at T + 1, the time invari-
ant link prediction algorithms reduce series of socioma-
trices N1 · · · NT to a time invariant adjacency matrix M1:T ,
where M1:T (i, j) = ∑T

t=1 Nt (i, j). The matrix M1:T is fur-
ther reduced to the binary matrix M∗ where M∗(i, j) =
1 if M1:T (i, j) > 1, and 0 otherwise. The time invari-
ant link prediction algorithms usually use such matrix
representation.

The Common Neighbor algorithm assigns the probabilis-
tic score for each entry in the score matrix S as the num-
ber of common neighbors shared by each possible pair of
actors. In a matrix form: S = M∗ ∗ M∗. Common Neigh-
bor exploits the notion of transitivity; the higher count of
common neighbors shared by two actors, the more likely
these actors will be connected. The concept of transitivity
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as applied to social relationships was thoroughly studied in
Ref. [21].

The Adamic-Adar method [22] is a measure similar
to Common Neighbor. Adapted for the link prediction
problem, Adamic-Adar assigns the link score between
actors i and j as

S(i, j) =
∑

k∈V,(i,k)∈E(M∗),(j,k)∈E(M∗)

1

log(d(k))
, (13)

where d is degree of the actor. The Adamic-Adar measure
is well known in information retrieval domain.

The Katz measure [23] is based on a principle similar
to Common Neighbor and Adamic-Adar. However, it also
considers paths beyond length 2 between pairs of actors.
The Katz sums paths of all possible lengths between two
actors and exponentially dampens the longer paths to give
them less weight than to the shorter paths. For the purpose
of links prediction

S(i, j) =
∞∑
l=1

βl||paths<l>
i,j ||, (14)

where l is the length of the paths and β is a dampening
parameter which has to be estimated from the training data.
In Ref. [6] it was shown that a score matrix based on Katz
measure can be derived as:

S = (I − βM∗)−1 − I. (15)

The Preferential Attachment method sets the link score
in matrix S as the product of the degrees of participat-
ing actors, namely S(i, j) = d(i) ∗ d(j), where function d

is the actor’s degree. The Preferential Attachment algo-
rithm assumes that the highly connected actors are more
likely to be linked. This assumption is based on a pref-
erential attachment phenomenon discovered in real-world
networks [24].

3.2.2. Time series model

An application of the autoregressive integrated moving
average ARIMA model [25] is also proposed for the link
prediction in temporal social networks [20]. Each possible
link (i, j) between actors i and j during observations
t = 1 · · ·T can be viewed as a time series of the link
occurrence frequency. The ARIMA model then can be
fitted by exploring its parameter space p = 0, 1, 2, 3; d =
0, 1; q = 0, 1, 2, 3, where p is the number of autoregressive
terms, d is the number of nonseasonal differences and q

is the number of lagged forecast errors in the prediction
equation. To determine the quality of the model the Akaike
information criterion AIC measure is used [20,26]. The

model with the lowest AIC score is selected to predict the
link frequency at time T + 1. This prediction is defined as
N̂ij

T +1
, and the prediction error as sd(N̂ij

T +1
). The link

occurrence score of matrix S is populated with probabili-
ties of the link frequency at T + 1 to be greater than

1: S(i, j) = Pr(N̂ij

T +1
> 1). The time series model [20] is

simple in the sense that it does not consider the temporal
networks’ topology. It only looks into a link’s occurrence
frequency independently from other actors. Therefore, its
concern is the temporal nature of the link occurrence,
whereas models described in the previous section were only
considering the network’s topology and did not consider the
temporal aspect. Thus, the time-series model and models
described in Section 3.2.1 are ‘orthogonal’.

3.2.3. Combined model

The same study [20] exploits orthogonality of time
invariant link prediction models and a time-series model by
combining score matrices produced by both to yield a more
accurate predictor. Authors introduced the Hybrid Time
Series Link Prediction Algorithm which combines the score
matrix generated by any of the time invariant algorithms
(Common Neighbor, Preferential Attachment, Adamic-Adar,
and Katz ) and time-series algorithm introduced in prior
section. Namely, the new score matrix is derived as

S(i, j) =
(

SS(i, j) + ms

α

)
∗

(
ST(i, j) + mt

α

)
, (16)

where α is a parameter greater than 1, SS is normalized
score matrix outputted by any of the static graph link predic-
tion algorithms, ST is a normalized score matrix generated
by time-series link prediction algorithm and ms and mt are
the minimum nonzero scores from corresponding matrices.
The comprehensive set of experiments on two real-life data
sets demonstrated the advantage of this approach. Experi-
ments have shown that a combination of time-series ARIMA
and time invariant Katz yields the most accurate combined
model.

3.2.4. Tensor factorization model

A robust and innovative approach by Dunlavy et al. [27]
based on CANDECOMP/PARAFAC (CP) tensor decompo-
sition [28] avoids the loss of the temporal information. Its
output is also a score matrix S, but instead of collapsing the
temporal networks into the time time-invariant adjacency
matrix it takes the three-way tensor representation Z (the
size of k × k × T , where k is number of actors) of the tem-
poral network. We define Z(i, j, t) = 1 if there was a link
from actor i to actor j at time t and Z(i, j, t) = 0 otherwise.
Given such a tensor its L components CP decomposition is
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given by

Z ≈
L∑

l=1

λlal◦bl◦cl . (17)

The symbol ◦ denotes the outer vector product, λl is
a positive real number, al and bl are k-size real value
vectors and cl is real value vector of size T . The CP
tensor decomposition is analogous to the Singular Value
Decomposition (SVD) with some notable differences (for
more details see Ref. [27]). This approach is using the
extracted components to assign a score proportional to
the likelihood of future link appearance to each pair of
actors. The outer product of vectors al and bl captures
the relationship between the actors in the component l,
the temporal interactions are stored in vectors cl . Authors
propose a simple heuristic to account for the temporal
activity stored in temporal profiles cl by averaging the
scores for the last three observations. Therefore the score
matrix SL for L-component decomposition is calculated as

SL =
L∑

l=1

γlλlal◦bl , (18)

where

γl = 1

T0

T∑
t=T −T0+1

cl (t), (19)

and T0 is customarily set to 3. Here, it is impossible
to determine the number of components L ‘a priori ’.
Instead, authors use an ensemble approach where the
score matrices SL are calculated for various values of L ∈
{l, l+1, l+2 . . . lmax} and the final matrix S is composed as

S =
∑

L∈{l,l+1,l+2,...,lmax}

SL

||SL||F , (20)

where ||SL||F is the Frobenius norm of the score matrix SL.
Besides the link prediction, the tensor decomposition can
also be used for the prediction of actors’ attributes. In our
experiments we use the tensor decomposition (implemen-
tation provided by MATLAB Tensor Toolbox [29]), as a
baseline for both link and attribute predictions.

4. THE PROPOSED MODEL

A new efficient approach to make mutual predictions
over the social network structure and actor attributes based
on the historical data is described in this section. Specifi-
cally, given the social network link observations N1 · · · NT ,
where Nt is a binary k × k sociomatrix, and the actor

attribute observations x1 · · ·xT , where x t is a k-length vec-
tor and k is a number of participating actors, we aim to
make accurate predictions of the NT +1 and xT +1 in the
future step.

Note that the network structure and the attribute values
in a social network are mutually dependent on each other.
Learning a joint distribution over them will end up predict-
ing each of them alternatively using derived conditional
models from the joint model. On the basis of this obser-
vation, we propose to learn directly two interdependent
conditional prediction models, link prediction model, and
actor prediction model, which can then be used to predict
the network structure and attribute values interdependently
to avoid the expensive inference in htERGM. Our overall
model will be called extended tERGM (etERGM), as the
conditional models are still formulated under the similar
framework as in tERGM.

4.1. Actor Attribute Prediction Model

For actor attribute prediction we use the following log-
linear model:

P
(
x t |x t−1, Nt , γ

)

= 1

Z(xt−1, Nt , γ )
exp

{
γ

′
ψ

(
x t , x t−1, Nt

)}
N(x t ). (21)

It describes the transition of attributes from time t − 1 to
time t , conditioning on the network structure Nt at time
t . Here, Z(x t−1, Nt ,γ ) is a normalization constant, and
N(x t ) is the regularization prior. As the basis for the prior,
we used Gaussian multivariate distribution. The mean and
covariance for our Gaussian regularized prior are estimated
from training data. We choose Gaussian as a prior because
of its smoothening effect on actor attributes along the time
axis and thus inhibiting the oscillation of the predicted val-
ues. Our choice of prior regularizes the attribute predictions
such that they stay within the range of their domain.

This model encodes the dependency of the attribute val-
ues x t over the network structure represented by Nt in a
direct way. The transposed model parameter γ

′
is a vector

corresponding to the statistic vectors ψ(x t ,x t−1, Nt) which
encodes the dependencies between the links among actors
and theirs attributes. We used three statistics ψlinks, ψsim,
and ψdyads:

ψlinks(Nt , xt ) = k

∑k
i<j Nt

ijN
t
jiI(|xt

i − xt
j | < σ)∑k

i<j Nt
ijN

t
ji

, (22)

ψsim
(
x t , xt−1) =

k∑
i

I
(
xt

i , xt−1
i , σ

)
, (23)

ψdyads
(
Nt , xt

) = k

∑k
ij Nt

ij I(|xt
i − xt

j | < σ)∑k
ij Nt

ij

. (24)

Statistical Analysis and Data Mining DOI:10.1002/sam



Ouzienko, Guo and Obradovic: Temporal Social Networks 477

To derive the ψlinks statistics we exploited the homophily
effect often found in social network, also stated as ‘birds
of feather flock together’. We tested our assumption on two
real-life data sets. For each data set we measured the aver-
age of the absolute values of the actor attributes differences,
defined as |xt

i − xt
j |, for three distinct cases. We measured

the average distance between the actors that are not con-
nected, that is, Nt

ij = Nt
ji = 0; that are partially connected

by a single link: Nt
ij = 1 or Nt

ji = 1; and that are fully con-
nected: Nt

ij = Nt
ji = 1. We discovered that fully connected

actors on average have lesser absolute attribute difference
than actors who are connected partially or not connected
at all. On the basis of this discovery, we defined the ψlinks

statistics as the ratio of the count of the fully connected
pairs where actors attributes are similar, to the count of the
fully connected pairs in graph Nt . We deem actor’s i and j

attributes similar if |xt
i − xt

j | < σ , where σ is a parameter
and is estimated from the training data. In our experiments
the training data were normalized to one standard deviation
and we customarily set σ = 0.3. For example, if the num-
ber of actors is k = 50, the total number of fully linked
pairs is 40 and out of those ten are between actors with
similar attributes, the value of ψlinks is 50 × 10

40 = 12.5.
ψsim captures temporal stability of actors’ attributes. If

actors’ attributes do not change between the observations,
ψsim is large and is small otherwise. I is the indicator func-
tion which returns 1 if actor value at times t and t − 1 is
similar, that is, |xt

i − xt−1
i | < σ and returns 0 otherwise.

For example, if xt
i = 0.6, xt−1

i = 0.4, and parameter σ is
set to 0.3, we increase ψsim by 1.

Statistics ψdyads measures the similarity of attributes for
the connected actors. It is a fraction of the total count of
the linked pairs, which have similar attributes (as defined
by I(xt

i , xt
j , σ )) to the total count of all linked pairs of

the graph. For example, if the number of actors is k = 50,
the total number of links in the network Nt is 25 and out
of those there are 12 links between actors having similar
attributes (as defined by indicator function I), the value of
ψdyads is 50 × 12

25 = 24.

All three statistics are scaled such that their values are
always in the [0; k] range, where k is the number of actors.

4.2. Link Prediction Model

The links are predicted by a log-linear model defined as

P (Nt |Nt−1, xt , θ)

= 1

Z(Nt−1, xt , θ)
exp

{
θ

′
ψ

(
Nt , Nt−1, xt

)}
. (25)

Similar to the tERGM model, this link prediction model
defines the transition from Nt−1 to Nt . However, different

from before, we incorporate the dependency of Nt over the
attributes x t into the model directly.

In this log-linear model, ψ(Nt , Nt−1,x t ) denotes a list of
statistics. Here, we reused the four statistics already used
at tERGM, which were shown in Eqs (5)–(8). Statistics
defined in Eqs (5)–(8) capture only dependencies between
matrices Nt−1 and Nt and they do not link attribute values
to the network. Thus, we define the additional statistics to
capture such linkage ψlinks —the same statistics that were
used in the actor attribute prediction model.

4.3. Learning Algorithm

The actor attribute prediction model and link prediction
model proposed in Sections 4.1 and 4.2 are both log-linear
models. Two sets of parameters, θ and γ , need to be learned
there.

4.3.1. Learning the link prediction model parameter

The parameter θ of the link prediction model consists
of five coefficients {θD, θS, θR, θT, θlinks} correspond-
ing to the statistics {ψD, ψS, ψR, ψT, ψlinks}, respectively.
To learn θ we can apply Newton’s optimization method
demonstrated in Ref. [13] in straightforward fashion. The
algorithm works as following: the θ parameter is ran-
domly initialized to a sensible value, then in an iterative
manner it approximates the expectation using Gibbs sam-
pling [9], followed by an update of parameter θ such that
it increases log-likelihood function of the observed tem-
poral network. The algorithm repeats approximation with
updated parameters until updates to θ become very small
(we reach convergence). The Gibbs sampling of sociomatri-
ces used in learning link prediction model parameters was
well described in Ref. [12] and here we provide its brief
description. To draw sociomatrix samples from posterior
distribution initial matrix N(1) is chosen, and each element
of this matrix is stochastically updated. The updating algo-
rithm circles through the matrix N(1) defining the Markov
chain stochastic process which asymptotically approximates
required random graph distribution. At each update step
only one element of the matrix is considered and stochasti-
cally updated, therefore the matrices N(u) and N(u+1) differ
in one element at update step u. If element N(u)

ij at time u

is being updated, then the probability of this element being
0 or 1 is defined by this conditional distribution:

Pθ
(
N

(u+1)
ij = a

)|N(u)
)

= Pθ
(
Nij = a| N

(u)
hk ∀(h, k) 	= (i, j)

)
(a = 0, 1).

(26)

The update process works as following, for a given
sociomatrix N define two sociomatrices Nij0 and Nij1,
where both matrices are exact copies of matrix N, except
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the i, j element of matrices Nij0 and Nij1, defined, respec-
tively, as N

ij0
ij and N

ij1
ij , are set to: N

ij0
ij = 0, N

ij1
ij = 1.

The conditional distribution given in Eq. (26) is defined as

logit
{
Pθ

(
N

(u+1)
ij = 1| N

(u)
hk ∀(h, k) 	= (i, j)

)}
= θ

′
(ψ(Nij1) − ψ(Nij0)). (27)

The formula (27) defines the Gibbs sampling process for
the time-invariant sociomatrix. We redefine formula (27)
for our link prediction model as:

logit
{
Pθ

(
N

t,(u+1)
ij = 1| N

t,(u)
hk ∀(h, k) 	=(i, j), Nt−1, xt

)}
= θ ′{ψ(

Nt,(u),ij1, Nt−1, xt
)

−ψ(Nt,(u),ij0, Nt−1, x t )}. (28)

We set i, j element of sampled sociomatrix Nt,(u+1) to 1
at update step u with probability defined in formula (28),
while leaving all other element of the matrix intact. Sam-
pling one link at a time requires recalculation of model
statistics, which can be slow. To speed up the sociomatrix
sampling process the techniques ‘big update’ and ‘inversion
step’ were described in Ref. [12]. The ‘big update’ tech-
nique specifies the update of large set of cells of the sampled
sociomatrix instead of the single link. The ‘inversion step’
technique randomly inverts the whole sampled sociomatrix
with a very small probability. It has been shown that ‘big
update’ speeds up the sampling process and ‘inversion step’
leads to better Markov chain mixing [12]. We implemented
both techniques in our approach.

4.3.2. Learning the actor attribute prediction model
parameter

Learning γ coefficients {γlinks, γsim, γdyads} of actor
attribute prediction model which correspond to the statistics
{ψlinks, ψsim, ψdyads} is done similarly to learning θ of the
link prediction model. Let,

L
(
γ ; x1, . . . , xT

)
= log P

(
x2, x3, . . . , xT

∣∣x1, N1 · · · NT , γ
)
, (29)

M(t, γ ) = Eγ
[
ψ

(
x t , x t−1, Nt

)|x t−1, Nt
]
, (30)

C(t, γ ) = Eγ
[
ψ

(
x t , x t−1, Nt

)
ψ

× (
x t , x t−1, Nt

)′|x t−1, Nt
]
, (31)

where expectations are taken based on samples from
random variable xt . We note, that


L
(
γ ; x1, x2, . . . , xT

)

=
T∑

t=2

(
ψ

(
x t , xt−1, Nt

) − M
(
t, γ

))
, (32)

and


2L
(
γ ; x1, x2, . . . , xT

)

=
T∑

t=2

(M(t, γ )M(t, γ )′ − C(t, γ )). (33)

Similarly to Ref. [13] for learning link prediction model we
apply Newton’s optimization procedure to learn parameters
γ . The following procedure is used to approximate the
expectations and update parameter values so that the log-
likelihood function (29) is increased:

1. Randomly initialize γ

2. For i = 1 up until convergence

3. For t = 2, 3, . . . , T

4. Sample x̂
t,1
(i) , . . . , x̂

t,C
(i) ∼ P (x t |x t−1, Nt , γ i )

5. µ̂
t
(i) = 1

C

∑C
c=1 ψ

(
x̂

t,c
(i), x t−1, Nt

)
6. Ĉt

(i) = 1
C

∑C
c=1 ψ

(
x̂

t,c
(i), x t−1, Nt

)
ψ

(
x̂

t,c
(i),

x t−1, Nt
)′

7. Ĥ(i) = ∑T
t=2

[
µ̂

t
(i)µ̂

t
(i)

′ − Ĉt
(i)

]
8. γ (i+1) ← γ (i) − αĤ−1

(i)

∑T
t=2

[
ψ(x t , x t−1, Nt )

− µ̂
t
(i)

]

The parameter C in this algorithm specifies the number
of samples drawn from posterior distribution. A greater
value of C provides a finer update of parameter γ and
usually achieves faster convergence. Also, for brevity,
we omit the ‘burn-in’ parameter. ‘Burn-in’ specifies the
number of samples that had to be thrown out for the
good MCMC chain mixing. The main modification of our
algorithm as compared to [13] is line 4. In a previous
study [13], Gibbs sampling was used to sample from
conditional distribution of sociomatrices. Here, we replaced
Gibbs sampling with the Metropolis–Hastings algorithm
to sample from P (xt |x t−1, Nt , γ i ) distribution. Parameter
α shown at line 8 specifies the learning rate of the
optimization procedure.

For high dimensional data (large number of actors), it is
useful to use the ‘block-at-a-time’ technique discussed in
Ref. [30]. In fact, this technique was implemented in our
experiments.

4.4. Inference Algorithm

The goal of learning the etERGM is to make predictions
over the social network structure and attribute values
at time step t + 1; that is to infer the Nt+1 and x t+1.
As the actor prediction model and the link prediction
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model are interdependent, we developed the following
iterative algorithm to predict the network structure and actor
attributes alternatively in a Gibbs sampling manner:

1. Randomly initialize x̂t+1, N̂
t+1

2. iter = 1

3. Do while iter < maxiterations

4. Randomly pick and sample one link (u, v):

N̂
t+1,(u,v) ∼ P

(
Nt+1|Nt , x̂

t+1
,θ

)
5. Set N̂

t+1
(u, v) = N̂

t+1,(u,v)

6. Randomly pick and sample one attribute (w):

x̂
t+1,(w) ∼ P

(
x t+1|x t , N̂

t+1
,γ

)
7. Set x̂

t+1
(w) = x̂

t+1,(w)

8. if all attributes in x̂
t+1 were updated

9. add x̂
t+1 to X

10. if all links in N̂
t+1

were updated

11. add N̂
t+1

to N

12. iter = iter + 1

13. x t+1 = mean(X)

14. S = ∑
N̂∈N

N̂

The algorithm starts by randomly initializing the
attributes x t+1 and sociomatrix Nt+1. We initialize the
sociomatrix Nt+1 such that its link density is equal to the
density of Nt . In lines 4–7 of the algorithm we iteratively
sample one link and one attribute at a time in a Gibbs
sampling manner. In line 4 of the algorithm we sample
one randomly selected link and use the resulting updated
sociomatrix as input into the sampling distribution on line
6. In line 6 we repeat the process by sampling the attribute
value of one randomly selected actor and input the updated
vector of attributes into the sampling distribution in line 4.
At each iteration we check if all attributes or links were
updated by our sampling process. If they were, we add
sampled actors’ attributes vector to the collection X and
sociomatrix to the collection N. We continue collecting
samples of sociomatrices and actors’ attributes until we
reach the maximum number of iterations. Our prediction
for the actors’ attributes is mean of the collected samples
(line 13). Our score matrix of the link probabilities is the
sum of the collected sociomatrices (line 14). Our algorithm
is in essence a Gibbs sampling from a joint posterior distri-
bution. We sample one link and one attribute at a time but
to speed up the sampling process it is also possible to use
a ‘block-at-a-time’ technique [30] for actors’ attributes as
well as a ‘big update’ and ‘inversion step’ techniques for
sociomatrices [12].

4.5. Convergence

In the previous section we described the etERGM’s
inference algorithm. Its main idea is an iterative substi-
tution of the drawn samples into interlocking probabil-
ity distributions. The inference algorithm is intuitive by
itself but we need to ensure that our inference procedure
indeed converges. To evaluate convergence property of our
algorithm we applied the standard convergence measure-
ment for ERGM’s [12]. It works as following: (i) estimate
the ERGM’s parameter vector θ , (ii) draw the multiple
samples from the estimated model, (iii) for each drawn
sample calculate the model’s statistics ψk , (iv) estimate
t-ratio as

tk = Eθ(ψk) − ψ0

SDθ(ψk)
, (34)

where ψ0 is the actual value of the statistic. It was sug-
gested [12] that |tk| ≤ 0.1 indicates an excellent conver-
gence, 0.1 < |tk| ≤ 0.2 is good and 0.2 < |tk| ≤ 0.3 is
fair.

To calculate t-ratios for each statistic of both prediction
models we trained etERGM on a single transition step
from t = 2 to t = 3 of the Delinquency, a real-life data set
which will be described in the experiments section. Using
estimated model parameters θ and γ we ran our inference
algorithm. After the sufficient burn-in we sampled 1000
sociomatrices and 1000 vectors of the actors attributes.
In Table 1 we report average differences between the
simulated statistics and true values, the standard deviations
of the simulated statistic and statistics’ t-ratios.

Applying convergence criteria from Ref. [12], the results
on average are fair or close to fair. The notable exception is
the ψdyads statistics of the attribute prediction model which
showed poor convergence characteristic with the t-ratio of
0.79. We do have to consider, however, that the average
difference for ψdyads is 2.00, which is not a lot considering
that statistic can range from 0 to 26 (Delinquency has 26
actors so all statistics are scaled proportional to k = 26,
from 0 to 26). Overall, the results in Table 1 suggest that

Table 1. Convergence estimates of the inference algorithm on
time steps t = 2, 3 of the real-life data set Delinquency.

Statistic
Average

difference
Standard
deviation t-ratio

ψlinks −1.09 2.42 −0.45
ψsim 1.35 2.18 0.62
ψdyads 2.00 2.54 0.79
ψD 0.12 0.36 0.33
ψS −0.16 0.36 −0.44
ψR 0.42 1.13 0.37
ψT 0.19 0.86 0.22
ψlinks −0.70 2.18 −0.32
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link prediction model has better convergence properties
than attribute prediction model.

The complex question of good chain mixing for
Markov’s processes is well studied [31]. In our experiments
the number of throw away samples and total number of
samples drawn from the Markov chain were derived empir-
ically. During training we recorded the total number of
samples versus the number of throw away samples drawn
from posterior distribution and evaluated it against achieved
accuracy. As a rule of thumb we set the number of throw
away examples to be a half of the total number of the drawn
samples.

4.6. Sufficiency

The often cited work Ref. [9] described the now
canonical sufficient statistics for the ERGM’s such as triad
counts and 2-stars. Many more sufficient statistics for the
nontemporal networks were published in later works [32].
The sufficient statistics for ERGM’s can be derived because
of the discovery made by Besag [33], who states that the
probabilities of a random graph (social network in our
case) are sufficiently described by cliques of its dependence
graph. Here, the dependence graph D of a network N

describes the conditional dependencies between links in N .
The vertices in D are links connecting nodes in N and
edges are conditional dependencies between the links given
the rest of the graph N . The application of the dependence
graph to define sufficient statistic was applied so far to the
static nontemporal networks. It is not clear how it can be
used for the temporal models such as ours because most of
the statistics in etERGM are calculated on two temporally
adjacent networks.

One possible way to determine the sufficiency for
tERGM/etERGM could be to create a composition net-
work C containing all T temporal sequences. The networks
within C could be tied to each other by creating links
between nodes at time step t and their own copies in the
adjacent time steps t − 1 and t + 1. The dependence graph
on such a network could be analyzed to confirm sufficiency
of tERMG’s statistics or to create a new statistics. The
sufficiency question for the temporal models is a separate
research topic by itself so that we do not address it in
this article; however, this direction is very worthy future
investigation.

5. EXPERIMENTS

To evaluate the proposed method, we conducted exper-
iments on two synthetic data sets and two well-studied
real-life data sets.

5.1. Synthetic Data Sets

The purpose of experiments on synthetic data was to
investigate the proposed model under controlled conditions.
The synthetic data sets were generated by applying
Markovian process, that is, each generated network (time
step) was derived from the previous network. To derive the
next network from the previous one, we randomly selected
50% of the links in the previous network and reversed
their direction. We proceeded by randomly selecting 10%
of the links in the resulting network and deleting them.
We counted the number of the links we have just deleted
and randomly added the same number of the links to the
actor pairs that were not connected. Next, we identified
all incomplete transitive relationships in the network , that
is, relationships where links were present from actor p to
actor q and from actor q to actor r , but link from actor
r to actor p was absent. The 20% of those identified
incomplete transitive relationships were randomly picked
and we completed their transitivity by adding link from
actor r to actor p. To keep the density of the generated
network steady, we counted the number of the transitive
links we just have added and randomly deleted the same
number of the links from resulting network. This completed
generation of one time step. The consequent network was
generated by going through the same procedure, and we
used the network we have just created as the starting point.
The first network in the sequence was derived from the
random graph. The data values of the actors were generated
after the network time series were completed. Similarly
to how the sequence of the networks was generated, the
values of the actors from the previous time step were used
to populate the next time step. To transform the k-length
vector of actor attributes, where k is the number of actors,
from the previous time step into the next, we randomly
picked 30% of the actors from the previous time step and
added to their values zero mean one standard deviation
random Gaussian noise. Additionally, the fully linked actor
pairs were identified, that is, where the link was present
from actor i to actor j and from actor j to actor i, and
for these actors we set the value of one actor equal to the
value of its neighbor plus small random Gaussian noise.
This procedure completed the generation of actor attributes
for one time step. The consecutive time step was generated
by applying the same procedure, where the actor attributes
vector we just created was used as the starting point. To
generate the first time step k-length vector of actor attributes
we started off from the random Gaussian vector with zero
mean and standard deviation one.

We created two synthetic data sets by following our
Markovian procedure. Data set1 consists of 30 networks
(average network density was 30%), each network consist-
ing of 30 actors. Here, density is defined as the proportion
of links to the possible number of links. Data set2 is a
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time series graph of 100 actors observed over 30 time
steps. The average network density in Data set2 is 10%.
The purpose of our synthetic experiments was to investi-
gate the prediction accuracy of actors attributes and test
our conjecture that the proposed model, which in inter-
locking fashion learns network structure and actors val-
ues, is superior in link prediction task to the models that
only use network topology and/or time-series information.
To test this assumption, we compared our algorithm with
algorithms of Common Neighbor (CN), Preferential Attach-
ment (PA), Adamic-Adar (AA), Katz (KZ), ARIMA (AR),
Hybrid Time Series Link Prediction Algorithm (HA), Ten-
sor Factorization (TF), and Temporal Exponential Random
Graph Model (tERGM). For HA (Section 3.2.3) we used
ARIMA and Katz as its input algorithms, because it was
reported that these combined predictors achieve the high-
est accuracy [20]. For Tensor Factorization (Section 3.2.4)
we used the number of decompositions in increments of
10: L ∈ {10, 20, . . . , k}. We also compared our algorithm
to tERGM, which uses a similar exponential model frame-
work as our model, but does not consider the actors’
attributes, whereas our approach does. Also, a baseline
‘T − 1’ approach was used which assumes NT +1 is net-
work NT . As we shall see, the ‘T − 1’ algorithm in many
circumstances performs quite well.

To measure link prediction performance we used the
area under curve (AUC). The AUC is a preferred way
to measure performance of the link prediction algorithms
because social networks usually have a low link density
(as low as 0.1%), which makes these data sets imbal-
anced [20,27]. The output of a CN, PA, KZ, AR, HA, and
TF algorithms is a score matrix S, where each entry S(i, j)

assigns the link occurrence score proportional to the pre-
dicted probability of the link from actor i to actor j at
time step T + 1. Our inference algorithm can also produce
such score matrix. At line 4 of our inference procedure
(Section 4.4) we can add the sampled matrices which will

result in score matrix S: S = ∑B
k=i N̂

i
. To derive AUC from

score matrix S, we moved the threshold parameter in small
increments from matrix’s smallest to its largest value. Each
time we incremented the threshold, we created the inter-
mediate binary matrix and set its entries for all i and j

where S(i, j) < threshold to 0 and the rest of the entries
to 1. Thus, initially, our binary prediction matrix contained
all 1’s and at the end it contained all 0’s. While contin-
uously moving our threshold parameter, we recorded the
percentage of true positive links, that is, the number of
correctly predicted links divided by the total number of
positive links in the target matrix, and percentage of false
positive links, that is, the number of predicted links that
were not in the target matrix divided by the total number
of negative links. The Receive Operating Characteristics
(ROC) curve [34] is constructed by using the x -axis for

false positive percentages and the y-axis for true positive
ones. We calculated AUC, bounded between 0 and 1, based
on generated ROC. A perfect algorithm will have AUC =
1, whereas a random algorithm will have AUC = 0.5. A
better predictor will always have larger AUC. A similar
procedure was used to obtain the prediction score matrix S
from tERGM.

We calculated the mean square error (MSE) between
the predicted attribute vector and true attribute vector
to measure the accuracy of actor attributes prediction.
The proposed method was compared with three baseline
methods. One baseline method assumes that the actor
attributes do not change between time steps T and T + 1,
that is, xT +1 = xT . The second baseline was to use the
history mean as the prediction, that is, xT +1 = mean(x1 :
xT ). Although these two baseline predictors are simple they
are difficult to beat in practice. Our third baseline was
the Tensor Factorization technique from Section 3.2.4. We
found that low values of L (number of decompositions)
are preferable when using Tensor Factorization to predict
attributes and in our experiments we set L = 3.

We also investigated how the length of the historical data
used for training influences our predictors. We compared
predictors by training on 1, 2, 5, and 10 previous time
steps by setting up sliding windows of 1, 2, 5, and 10
training time steps. For example, in the experiments with
five training time steps we trained predictors on time steps
from 6 to 10 to predict time step 11, from 7 to 11 to
predict time step 12 and so on until we predicted 30th time
step. Because we only did predictions for the time steps
from 11 to 30 we collected 20 AUC and MSE values for
each experiment. The AUC average and sample standard
deviation of each predictor on synthetic Data set1 are
presented in Table 2. We report the MSE averages and
sample standard deviation of each predictor actor attribute
predictor on synthetic Data set1 in Table 3.

The t-test pairwise statistics, comparing etERGM results
with that of the second best predictor, for each set of
experiments reported in Tables 2 and 3 were statistically
significant with p-values less than 0.01.

Some of the entries in Table 2 are not filled in. We did
not conduct ARIMA experiments using 1 and 2 training
time steps because such short time-series do not provide
enough data points for meaningful time-series predictions.
The corresponding entries for the hybrid algorithm (HA)
are not filled in either, because it uses an ARIMA score
matrix as its input. For the Tensor Factorization baseline
we only considered tensors with at least two time steps.

Our model requires at least one transition step for train-
ing, that is, two time steps, that is why the first column in
etERGM row in Tables 2 and 3 is absent. All entries for
the ‘T − 1’ algorithm are the same, because no matter how
many time steps used for training, ‘T − 1’ needs just one
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Table 2. Links prediction on synthetic Data set1 : AUC averages and sample standard deviations of 20 experiments.

Number of training time steps

Predictor 1 2 5 10

AR — — 0.58 ± 0.02 0.55 ± 0.03
PA 0.62 ± 0.03 0.61 ± 0.03 0.60 ± 0.02 0.58 ± 0.03
T-1 0.71 ± 0.02 0.71 ± 0.02 0.71 ± 0.02 0.71 ± 0.02
CN 0.53 ± 0.03 0.53 ± 0.03 0.54 ± 0.03 0.55 ± 0.03
AA 0.51 ± 0.07 0.52 ± 0.03 0.54 ± 0.03 0.54 ± 0.04
KZ 0.71 ± 0.03 0.73 ± 0.03 0.68 ± 0.03 0.65 ± 0.02
HA — — 0.69 ± 0.03 0.65 ± 0.02
TF — 0.75 ± 0.03 0.75 ± 0.02 0.73 ± 0.02
tERGM — 0.78 ± 0.03 0.83 ± 0.02 0.84 ± 0.01
etERGM — 0.83 ± 0.01 0.87 ± 0.01 0.88 ± 0.01

Table 3. Attributes prediction on synthetic Data set1 : MSE averages and sample standard deviations of 20 experiments.

Number of training time steps

Predictor 1 2 5 10

Previous network 1.29 ± 0.04 1.29 ± 0.04 1.29 ± 0.04 1.29 ± 0.04
Average 1.29 ± 0.04 0.79 ± 0.04 1.01 ± 0.04 1.12 ± 0.02
TF — 0.75 ± 0.45 1.02 ± 0.42 1.15 ± 0.26
etERGM — 0.74 ± 0.03 0.70 ± 0.04 0.67 ± 0.03

previous time step to make prediction. Results presented
in Table 2 are in many ways similar to results reported in
Ref. [20] on real-life data. Just like in Ref. [20], we see
that when predicting from a short history (two previous
networks) Katz performs exceptionally well, and when it
is used in conjunction with ARIMA as a hybrid link pre-
diction algorithm (HA), the result is even better. We also
noticed close correlations between Common Neighbor and
Adamic-Adar, which were also reported in Ref. [20]. The
Tensor Factorization algorithm also performs very well.
We can see from Table 2 that in the link prediction task
our model outperformed models that do not exploit actor
attributes. etERGM performed better as we added more his-
torical data to the training data set, whereas time-invariant
algorithms show the reverse trend. This observation makes
sense, as under Markovian assumption our model will per-
form better given more historical steps to train, whereas
for the time-invariant algorithms the excess of historical
data will appear as noise. The results for attributes predic-
tions reported in Table 3 are somewhat similar to the link
prediction results. The only exception is Tensor Factoriza-
tion which shows great variance predicting 20 time steps,
its variance is decreasing however as the volume of train-
ing data increases. We can see that etERGM accuracy is
getting better as more history was provided for training.
Also, the Markovian nature of the data set is evident by
poor accuracy of the ‘Average’ predictor as compared to
the ‘Previous Network’.

We repeated the same set of experiments on Data set2.
This data set also consists of 30 time steps, with networks

of 100 actors. The results of these experiments are reported
in Tables 4 and 5.

Here we observed trends similar to experiments on Data
set1. The pairwise t-test comparison showed that etERGM
accuracy improvement are statistically significant compared
to that of the second best predictor (p-values were less than
0.01).

5.2. Real-Life Data Sets

We have also conducted experiments on two real-life data
sets. The first, Delinquency, is a well-studied data set [4]
consisting of four temporal observation of 26 students in
a Dutch school class. For each observation, the researches
asked each student to identify up to 12 pupils as friends.
Also, the researchers collected delinquency measures every
time the questioning was done. Delinquency measure is
a five-point scale score ranging from 1 to 5, defined as
a rounded average of stealing, vandalizing, fighting, and
graffiti. The delinquency score 1–5 was assigned based
on frequency of incidents over the last three months,
where: 1 = never, 2 = once, 3 = 2–4 times, 4 = 5–10
times, 5 = more than 10 times. The distribution of the
delinquency varied between each measurement and was
highly skewed. The density of the network formed using
student relationships was low (on average between 13
and 17%). The objective was to predict the relationship
network and delinquency score of each student at the
observation time step t = 4, based only on previous three
surveys.
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Table 4. Links prediction on synthetic Data set2 : AUC averages and sample standard deviations of 20 experiments.

Number of training time steps

Predictor 1 2 5 10

AR — — 0.66 ± 0.03 0.64 ± 0.03
PA 0.68 ± 0.04 0.66 ± 0.04 0.67 ± 0.04 0.64 ± 0.04
T-1 0.71 ± 0.01 0.71 ± 0.01 0.71 ± 0.01 0.71 ± 0.01
CN 0.62 ± 0.05 0.59 ± 0.05 0.64 ± 0.05 0.57 ± 0.04
AA 0.62 ± 0.05 0.58 ± 0.07 0.62 ± 0.06 0.58 ± 0.03
KZ 0.75 ± 0.03 0.73 ± 0.03 0.75 ± 0.02 0.70 ± 0.03
HA — — 0.76 ± 0.03 0.71 ± 0.03
TF — 0.78 ± 0.02 0.80 ± 0.01 0.79 ± 0.01
tERGM — 0.79 ± 0.02 0.81 ± 0.03 0.82 ± 0.03
etERGM — 0.86 ± 0.01 0.87 ± 0.01 0.88 ± 0.01

Table 5. Attributes prediction on synthetic Data set2 : MSE averages and sample standard deviations of 20 experiments.

Number of training time steps

Predictor 1 2 5 10

Previous network 0.82 ± 0.03 0.82 ± 0.03 0.82 ± 0.03 0.82 ± 0.03
Average 0.82 ± 0.03 0.35 ± 0.01 0.46 ± 0.01 0.57 ± 0.02
TF — 0.35 ± 0.15 0.46 ± 0.15 0.58 ± 0.11
etERGM — 0.30 ± 0.01 0.29 ± 0.01 0.27 ± 0.03

The second real-life data set used in our experiments
is called Teenagers [35,36]. This data set consists of
three temporal observations of 50 teenagers. Just like in
Delinquency, teenagers were asked to identify their 12 best
friends. The other measurement was the student’s alcohol
consumption. This measurement was defined on a 5 points
scale: 1 = none, 2 = once or twice a year, 3 = once a
month, 4 = once a week, and 5 = more than once a week.
The goal in this data set was to predict the relationship
graph and the teenager’s alcohol consumption score at
the observation time step t = 3, based on two previous
observations. The Teenagers’ network density is even lower
than in Delinquency, and is hovering at about 4.5%.

To learn the model, we have used parameters specified
in Table 6 for Delinquency data and Table 7 for Teenagers.
Once parameters were obtained, we used our inference
technique (Section 4.4) to obtain predictions reported at
Tables 8 and 9. Table 8 contains the accuracies of each
baseline prediction model and our proposed approach
measured by AUC. In Table 9 we report the average and
sample standard deviation for TF, tERGM, and etERGM
predictors based on 20 runs per each experiment. We can
see that our approach had achieved the higher accuracy in
links prediction than any other predictor on Delinquency.
The pairwise t-test comparison showed that etERGM
accuracy improvement are statistically significant compared
to that of the Tensor Factorization —the second best
predictor (p-values were less than 0.01). For the Teenagers
data set, the results of TF and etERGM were the same.
Table 9 contains the averages, sample standard deviation,

Table 6. Parameters of Delinquency data set.

Parameter
Parameter

value Description

K 26 Number of actors
B 1000 Number of network samples
C 10000 Number of data samples
T 4 Number of time steps
σ 0.3 Similarity threshold

Table 7. Parameters of Teenagers data set.

Parameter
Parameter

value Description

K 50 Number of actors
B 1000 Number of network samples
C 10000 Number of data samples
T 3 Number of time steps
σ 0.3 Similarity threshold

and analysis of statistical significance of the actor attributes
predictions on both real-life data sets, which are based
on the same 20 runs. Here, the proposed approach, as
measured by MSE, outperforms baseline predictors. The
Tensor Factorization algorithm performs very well in link
prediction task, however, for the attribute prediction its
results seem to correlate with Average predictor.

Overall, in both experiments on real-life data sets
the etERGM outperformed the conventional predictors in
prediction of actor’s attributes and the link prediction in
most cases.
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Table 8. Links prediction on Delinquency and Teenagers data sets: AUC averages and sample standard deviations of 20 experiments.

Link prediction AUC

PA T − 1 CN AA KZ TF tERGM etERGM

Delinquency 0.68 0.76 0.68 0.68 0.76 0.83 ± 0.00 0.82 ± 0.00 0.84 ± 0.00
Teenagers 0.62 0.76 0.60 0.61 0.69 0.84 ± 0.00 0.83 ± 0.00 0.84 ± 0.00

Table 9. Attributes prediction on Delinquency and Teenagers data sets: MSE averages and sample standard deviations of 20 experiments.

Actor attributes (MSE)

Previous
network Average TF etERGM p-value

Delinquency 1.12 1.01 1.00 ± 0.00 0.94 ± 0.02 p < 0.05
Teenagers 0.90 0.87 0.87 ± 0.00 0.83 ± 0.01 p < 0.05

5.3. Scalability

Empirical observations suggest that our approach is
scalable to handle networks with hundreds of actors. The
largest network size we conducted our experiments on had
500 actors and it is possible to handle a number slightly
larger than that. This is sizable improvement compared to
the htERGM model [17], which we consider to be closely
related to ours. htERGM can only handle networks of up to
10 nodes (actors). The increase in efficiency over htERGM
was achieved by decoupling link prediction and attribute
prediction probabilistic models, whereas htERGM’s model
was joint.

Our approach is not directly scalable to the networks
the size of Youtube or Facebook. This is attributable to
the fact that most of our statistics/features have runtime
of O(n2). Also, the features are constantly recalculated
as part of the Gibbs sampling, which is inherently slow.
However, it has been noted that networks of such size
are impractical for the problem we are addressing here,
because humans are incapable of handling more than couple
hundred relations simultaneously. Consider a class with 500
students where researchers conducted multiple temporal
observations of social relationships by asking each student
to identify each student’s friends. We know that any given
student will indicate an absence of a link to the majority
of other students. The links will be absent not because of
the student’s personal dislike, but simply because he/she
never had a chance to get to know so many pupils. The
similar conclusion that social networks with an invariant
set of actors should not exceed a couple hundred nodes
can be found in Ref. [4]. One possible way to scale up our
approach to handle large networks is to run a community
detection algorithm which would find the network clusters
containing up to a few hundred nodes. The etERGM then
can be applied on detected communities separately to make
predictions. Such an approach would make it unnecessary
for etERGM to consider all n2 − n relationships, which is

a valid assumption because we know that people in large
networks (such as Facebook) are only aware of the people
within or close to their social circle. How to scale the
etERGM to the large networks is out of scope of this work,
but we will try to address it in our future research.

In recently published work on tERGM [37], our pre-
decessor, authors discovered that with a smart choice of
statistics for link transition probabilities it is possible to
completely avoid costly parameter estimation procedure
described in the previous sections. In a special case the
choice of the tractable ψ function makes it unnecessary
to perform expensive sampling steps, because it becomes
possible to do exact Newton’s updates. We leave investi-
gation of such statistics and their empirical effects on the
prediction accuracy for future research.

We have investigated the runtime behavior of our
approach on two sets of experiments. In the first experiment
we measured how the length of the historical data used
for training influences the runtime of our approach. We
achieved this by running our algorithm on the synthetic
data set with 30 actors. For each run we changed the
number of time steps used for training and we recorded
the time the algorithm took to learn the parameters of
both models and to do the inference. Results of this
experiment are shown in Fig. 2. We can see that there
is an obvious linear trend between the runtime and the
amount of historical data used for training. In the second
experiment we used the synthetic data set with four previous
networks, where three were used for training and one for
prediction.

In this experiment we were gradually changing the
number of actors from 30 to 100 in increments of 5 and for
each change we recorded the time it took for the algorithm
to run. The results of the second experiment are reported
in Fig. 3. Here we observe the quadratic trend between the
runtime and the network size. This is expected, because as
the number of actors grows we considered the quadratic
increase in the number of possible relationships.
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Fig. 2 etERGM runtime in seconds versus the number of time
steps used for training for network with 30 actors.
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Fig. 3 etERGM runtime in seconds versus the number of actors
in the network (three time steps used for training).

Despite the network size limitation, there are real-life
problems that could benefit from our approach. Besides
the two real-life data sets presented in this article, there
are temporal network of similar size in sociological and
biological domain. We are presently investigating a problem
from zoological domain which could benefit from our
approach.

6. DISCUSSION AND FUTURE WORK

We have shown that the etERGM is a viable predictor
for links and attributes in temporal social networks. One
of its core strengths is the separate learning of its two
component models, which makes it applicable to larger
problems. To the best of our knowledge, no published
work had attempted to do simultaneous attributes and link

predictions for temporal social networks. We foresee a
number of improvements and future work directions based
on our proposed method. As we have already mentioned,
the Gibbs sampling technique for learning sociomatrix
transition parameters is inherently slow.

In our study, only actors with a single real-valued
attribute were considered. In many settings, more infor-
mation is collected about participating actors. As a more
general task in our ongoing research we are exploring
the effects of augmenting etERGM to include multivariate
attributes. Despite the fact that we specifically conducted
the testing on temporal social networks, it would be also
interesting to find out how the new method would perform
on gene expression networks.
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