
COMBINING PRIOR SYMBOLIC KNOWLEDGE ANDCONSTRUCTIVE NEURAL NETWORK LEARNINGJustin Fletcher Zoran Obradovi�cj
etche@eecs.wsu.edu zoran@eecs.wsu.eduSchool of Electrical Engineering and Computer ScienceWashington State University, Pullman WA 99164-2752AbstractThe concepts of knowledge-based systems and machine learning are combinedby integrating an expert system and a constructive neural networks learning al-gorithm. Two approaches are explored: embedding the expert system directlyand converting the expert system rule base into a neural network. This initialsystem is then extended by constructively learning additional hidden units in aproblem-speci�c manner. Experiments performed indicate that generalization ofa combined system surpasses that of each system individually.Contact: Dr. Zoran Obradovi�czoran@eecs.wsu.eduSchool of Electrical Engineering and Computer ScienceWashington State UniversityPullman, WA 99164-2752(509) 335-6601FAX: (509) 335-3818



COMBINING PRIOR SYMBOLIC KNOWLEDGE ANDCONSTRUCTIVE NEURAL NETWORK LEARNING�Justin Fletcher Zoran Obradovi�cyj
etche@eecs.wsu.edu zoran@eecs.wsu.eduSchool of Electrical Engineering and Computer ScienceWashington State University, Pullman WA 99164-2752AbstractThe concepts of knowledge-based systems and machine learning are combinedby integrating an expert system and a constructive neural networks learning al-gorithm. Two approaches are explored: embedding the expert system directlyand converting the expert system rule base into a neural network. This initialsystem is then extended by constructively learning additional hidden units in aproblem-speci�c manner. Experiments performed indicate that generalization ofa combined system surpasses that of each system individually.
�Research sponsored in part by the NSF Industry / University Cooperative Center for the Design ofAnalog-Digital ASICs (CDADIC) under grant NSF-CDADIC-90-1 and by Washington State UniversityResearch Grant 10C-3970-9966.yAlso a�liated with the Mathematical Institute, Belgrade, Yugoslavia.



COMBINING PRIOR SYMBOLIC KNOWLEDGE ANDCONSTRUCTIVE NEURAL NETWORK LEARNINGzJustin Fletcher Zoran Obradovi�cxj
etche@eecs.wsu.edu zoran@eecs.wsu.eduSchool of Electrical Engineering and Computer ScienceWashington State University, Pullman WA 99164-2752AbstractThe concepts of knowledge-based systems and machine learning are combinedby integrating an expert system and a constructive neural networks learning al-gorithm. Two approaches are explored: embedding the expert system directlyand converting the expert system rule base into a neural network. This initialsystem is then extended by constructively learning additional hidden units in aproblem-speci�c manner. Experiments performed indicate that generalization ofa combined system surpasses that of each system individually.1 IntroductionClassi�cation systems in arti�cial intelligence are primarily based on two concepts. The�rst is that of representing existing human knowledge in a form that can be interpretedby a machine. In particular, knowledge in an expert system is represented by the rulebase extracted from a domain expert [9]. The second concept is the extraction of theknowledge from the sample data which is the subject of machine learning research [18].The knowledge represented by a rule base may be either incomplete or inconsistent re-quiring techniques such as the con
ict resolution heuristics implemented by the inferenceengine of the expert system. In a machine learning system, the knowledge is usuallyincomplete as an incomplete set of examples is practically available. The examplesthemselves may also be noisy or con
icting, leading to incomplete knowledge. Thus, theknowledge retained by each concept may be incomplete or inconsistent. The goal of thisresearch is to integrate the two concepts in such a way that the knowledge from eachrepresentation is used.zResearch sponsored in part by the NSF Industry / University Cooperative Center for the Design ofAnalog-Digital ASICs (CDADIC) under grant NSF-CDADIC-90-1 and by Washington State UniversityResearch Grant 10C-3970-9966.xAlso a�liated with the Mathematical Institute, Belgrade, Yugoslavia.



The concepts are combined by embedding an expert system into a feed-forward ar-ti�cial neural network. Two approaches are explored. In the �rst, the expert systemis directly embedded into the neural network. In the second, the expert system rulebase is �rst converted into a neural network. In both approaches the neural networkis then extended by constructively adding hidden units to represent additional knowl-edge obtained from the sample data. By integrating both concepts, we obtain a systemin which pre-existing knowledge is complemented by the knowledge obtained from thesample data.In section 2, we propose an algorithm for learning separating hyperplanes from sam-ple data and constructively creating corresponding neural network hidden units. Sec-tion 3 combines this new algorithm with existing methods for representing prior symbolicknowledge. In section 4, the generalization abilities of each concept are studied sepa-rately and as well as combined performing experiments using the MONK's problems[16].2 A Constructive Neural Network Learning Algo-rithmA neural network is a highly parallel machine consisting of computational units basedoriginally upon the simple binary model of a neuron of McCulloch and Pitts [11]. Sincethe development of the backpropagation algorithm by Rumelhart [15] (among others),there has been increased interest in their usage for applications where traditional com-putation has performed poorly (e.g., ambiguous data or large contextual in
uence).In selecting an appropriate neural network topology for a classi�cation problem, thereare two opposing objectives. The network must be large enough to represent the problemand should be small enough in order to generalize well. In contrast to learning on a pre-speci�ed topology, a constructive algorithm also learns the topology in a manner speci�cto the problem. Examples include the tiling algorithm of M�ezard and Nadal [12] andthe cascade-correlation algorithm of Fahlman and Lebiere [5].An iterative construction of hidden units in a feed-forward neural network with asingle hidden layer is proposed by Baum [2]. This algorithm constructs a two layer neuralnetwork in polynomial time given examples and the ability to query for the classi�cationof speci�c points within the problem domain. In a neural network, a hidden unit withfan-in k is a representation of a k-1 dimensional hyperplane. Baum's method uses asequence of oracle queries in conjunction with training examples to �nd the points on2



each of the separating hyperplanes between di�erent classes. The hyperplane is thendetermined by solution of the equation system de�ned by k points on the hyperplane.In practice, the oracle required by Baum's algorithm may either be too expensive ornot available. Here we propose a modi�ed algorithm to construct the hidden units fromexamples alone (preliminary results appeared in [6]).In our algorithm, an approximation of the points on the separating hyperplane arefound by repeatedly interpolating between points of the di�erent classes in the trainingset T . The interpolation begins by selecting positive and negative examples m;n 2 T .The unknown region between m and n is then searched for the closest point q 2 T tothe midpoint of m and n. The unknown region is de�ned as the intersection of thecircles with centers m and n and a radius of the distance between m and n, as shownin Figure 1. If q is found, the search is then repeated in the smaller unknown regionbetween q and m or q and n respectively depending on whether q is positive or negative(Figure 2).
Figure 1: First unknown region Figure 2: Next unknown regionIf no point from T is found in the current unknown region, its midpoint p1 is theclosest approximation to a point on the separating hyperplane. A new pair of startingpoints is selected and the search is repeated if p1 is determined to be within a speci�edtolerance of an existing hyperplane. The remaining points p2 through pk on the separat-ing hyperplane are found by taking a random vector from p1 to a point v 2 T (Figure 3)and interpolating between either m and v or n and v to pi based on the class of v. Ifdistinct k points on the hyperplane cannot be determined after a pre-speci�ed number of3



trials are made, the current hyperplane search is abandoned and a new pair of startingpoints is then chosen to begin another hyperplane search. The generated hyperplane isshown in Figure 4.
Figure 3: Random vector Figure 4: Separating hyperplaneThe hyperplanes are determined from examples alone rather than from oracle queries.These hyperplanes may not correspond to an optimal separation of the training classes.To compensate for this we search for an additional point on the hyperplane. A moreaccurate separating hyperplane may then be constructed by averaging the k + 1 hyper-planes determined from k of the k + 1 points.The hidden layer representation of the generated network with the same number ofhidden units as in the minimal network for a given problemmay not be linearly separable.In order to account for this possibility, hidden units continue to be generated beyondthe minimal architecture; for example, until the data is exhausted, a number of datapoints have been examined without generating a new hidden unit or a predeterminednumber of units have been created. As in Baum's original algorithm, the connectionweights from the hidden units to the output layer must be learned once the hidden unitlayer has been generated.In generated networks there are no hidden connections to learn and so one can useany number of algorithms (including backpropagation) to train the output layer weights.A natural choice is the pocket algorithm [7], which is a single-layer neural network algo-rithm that �nds the optimal separation even for non-linearly separable problems. Thealgorithm keeps the best set of weights in the \pocket" while the perceptron is trained4



incrementally. A practical modi�cation of the pocket learning algorithm is proposedin [13] which is faster and still has the same guarantee for convergence to the optimalseparating hyperplane. We use this parallel dynamic algorithm to determine the outputlayer weights in the constructed network. Computational and generalization abilities ofthis algorithm are discussed in section 4.3 Embedding of Prior Symbolic KnowledgeIn arti�cial intelligence, prior knowledge is often represented as a set of rules to beinterpreted by an expert system. This rule base represents the knowledge of skilledprofessionals as interpreted by knowledge engineers. The knowledge may be incomplete,contradictory, be miscommunicated by the expert or be misinterpreted by the knowledgeengineer. Such a system is also static. Without modi�cation to the rule base, it cannotlearn from the sample data presented.As a sample expert system we used the C Language Integrated Production System(CLIPS) developed by the Software Technology Branch of NASA at the Lyndon B.Johnson Space Center [8]. Through the use of CLIPS, it was possible to embed anexpert system as a starting point for the iterative construction of a neural network. Asshown in Figure 5, the prior knowledge from the rule base is extended by incrementallyadding additional hidden units as necessary.
System
Expert

Units
Constructed

Figure 5: Integrated systemAn alternate approach is to convert the rule base into an explicit neural networkand use this network as a starting point for incremental learning. The knowledge-based5



neural network algorithms assume the existence of approximate pre-existing symbolicknowledge which is used to construct the initial hypothesis (network topology and initialset of weights). The learning algorithm described in the Section 2 is then used to expandthe hypothesis.KBANN, a method of generating knowledge-based arti�cial neural networks fromhierarchically-structured rules, was developed by Towell et. al. [17]. Although KBANNperforms well when much of the domain theory is known, it is restricted to re�ningthe existing rules rather than discovering new rules. The principal reason is that thenetwork's representational power is bounded by a �xed topology determined only bypre-existing set of rules.In our hybrid system the domain theory is transformed into an initial network throughan extended version of KBANN's symbolic knowledge encoding. As an example, considerthe rule base in Table 1 which is a modi�ed version of the simple �nancial advisor from[10]. if (savings adequate and income adequate) then invest stocksif dependent savings adequate then savings adequateif assets high then savings adequateif (dependent income adequate and earnings steady) then income adequateif debt low then income adequateif (savings � dependents � 5000) then dependent savings adequateif (income � 25000 + dependents �4000) then dependent income adequateif (assets � income � 10) then assets highif (debt payments < income � 0.30) then debt lowTable 1: Financial advisor rule baseThe KBANN algorithm is able to handle the �rst �ve rules of Table 1, which isrepresented in and/or graph form in Figure 6.The network topology corresponding to the and/or graph (rules 1{5) is created fol-lowing the KBANN transformation. The remaining hidden layer units are created byextending KBANN to handle rules 6{9 from Table 1. In the constructed network, allunits compute binary threshold functions. Figure 7 represents the generated networkwith connection weights and thresholds. In our algorithm KBANN's additional stepsof fully connecting the constructed network layers and training via backpropagation arenot performed. These steps, which compensate for an incomplete or contradictory rulebase, are replaced by incremental hidden unit generation. We treat the constructednetwork as the expert system of Figure 5 and add constructed units accordingly.As KBANN is restricted by a �xed network topology it re�nes the domain theory6



earnings steadydependent income adequatedependent savings adequate assets high��������� HHHHHHHHH������ debt lowZZZZZZ income adequate������� BBBBBBBQQQQQQQQQQ
invest stockssavings adequateFigure 6: Rule base and/or graphrather than extending it. Additional knowledge not anticipated in the pre-existing rulebase but contained in the examplesmay not be representable by the existing architecture.Combining prior symbol knowledge with the constructive approach of Section 2, there isno restriction on the representational ability of the separating surface since it is de�nedby the units constructed from the sample data.4 ResultsThe total running time of our hybrid algorithm depends on the time to embed priorsymbolic knowledge, the time required to construct neural network hidden units as wellas on the time required to learn the output layer weights. As the major cost is learningthe hidden layer, we examine the time required to determine if a separating hyperplanecan be determined from a given pair of points. Search for a point on the hyperplanetakes O(logN) interpolation steps since each interpolation removes at least half of theN training examples. O(logN) interpolations are required to search for a point on thehyperplane. In each interpolation step, �nding the closest point to the midpoint can bedetermined in time O(logN) through use of the k-d tree of Bentley [3]. Thus, the timerequired to search for one point on the hyperplane is O(log2N). A hyperplane is de�nedby k points, and so the time to determine if a hyperplane can be found from a givenpair of starting points is O(k log2N). With m and n points of each class, an exhaustivedata partitioning is performed in time O(mnk log2N).7



������������ �������� ������������
��� SSSEEEEEEEE�������� ��� AAAAAAAA BBBBBBBBBB���� ZZZZZZ%%%% ����� ,,,,, TTTT-4000 @@@@@savings assets dependents income earnings steady debt payments

3.70.7 0.73.70 0 25000 0
33 3333 33-5000 11 0.3 -11-10Figure 7: Initial networkThree hundred trials of our algorithm were performed using randomly generatednetworks. Each random network had two input units and averaged 6.28 units in thehidden layer. The constructed network averaged 9.47 units in its hidden layer. Usingone hundred training points and one thousand test points, an average accuracy of 99.45%was achieved on the training set with 95.75% accuracy on the test set.In order to evaluate our combined system generalization abilities, experiments wereperformed using the �nancial advisor previously described and the MONK's problems[16]. Integration with KBANN was tested by performing experiments based on the �-nancial advisor rule base presented earlier. For purposes of comparison, three previouslydescribed techniques were used for network construction using varying amounts of priorknowledge: extended KBANNusing rules alone, extended KBANNwith hidden unit gen-eration from examples and queries and extended KBANN with hidden unit generationfrom examples alone. In order to evaluate the e�ect of an incomplete knowledge base,rules and their antecedents were pruned to reduce prior knowledge. For example, elimi-nation of the savings adequate rule and its antecedents dependent savings adequate and8



assets high would be indicated by a prior knowledge pruning point of savings adequate.Average results of �ve tests performed using 500 training and 5000 test examples ran-domly generated consistent with the full rule base are show in Table 2.Prior Knowledge Algorithm Hidden Units Test DataPruning Point Constructed Success RateNo pruning Rules Alone n/a 100.00Queries, Examples & Rules 0 100.00Examples & Rules 0 100.00No prior knowledge Queries & Examples 175 94.98Examples Alone 33.2 79.26dependent savings adequate Rules Alone n/a 75.06Queries, Examples & Rules 139 98.14Examples & Rules 31 92.70assets high Rules Alone n/a 93.36Queries, Examples & Rules 81 98.82Examples & Rules 23 92.38dependent income adequate Rules Alone n/a 84.46Queries, Examples & Rules 57 98.94Examples & Rules 25 85.84earnings steady Rules Alone n/a 95.60Queries, Examples & Rules 0 95.60Examples & Rules 0 95.60debt low Rules Alone n/a 61.76Queries, Examples & Rules 189 97.94Examples & Rules 30 84.72savings adequate Rules Alone n/a 90.88Queries, Examples & Rules 65 98.82Examples & Rules 19 92.16income adequate Rules Alone n/a 64.64Queries, Examples & Rules 96 94.24Examples & Rules 32 81.18Table 2: Performance summaryIt is interesting to note that even without any prior knowledge the constructivealgorithms perform signi�cantly better than more traditional learning from examples9



on a pre-speci�ed architecture. In particular, observe in Table 2 that the constructivelearning without prior knowledge from examples alone has average 79.26% accuracy. Bycontrast, backpropagation on networks with between 10 and 150 hidden units fared nobetter than 56.56% accuracy when provided with the same training and test sets.Also note that when learning without the debt low rule, both constructive algorithmsshowed an impressive increase in prediction quality. Predictive quality of 61.76% fromrules alone increased to 97.84% for rules, examples and queries and to 84.72% for rulesand examples. In comparison, the knowledge re�nement technique of the extendedKBANN rule-based network using additional connections and backpropagation as in[17] provided an increase to 64.64%.Integration with an expert systemwas tested on theMONK's problems. The MONK'sproblems were developed in order to challenge a variety of machine learning approaches.Each of the three problems involves binary classi�cation of a six feature domain, whereeach feature has two to four possible values.The �rst problem is in disjunctive normal form. The second is similar to parityproblems, and the third is similar to the �rst with the addition of �ve percent noise.The rule base, representing good but imperfect prior knowledge, was generated bythe PRISM algorithm of Cendrowska [4] and is based on Quinlan's induction algorithmID3 [14]. Hyperplane determination from examples (HDE) is again used to combine theprior knowledge with the knowledge available from the example data.Problem 1 Problem 2 Problem 3Train Test Train Test Train TestHDE 94.35 85.19 95.27 73.61 91.80 75.69CLIPS 100.00 86.34 98.82 68.06 100.00 93.98CLIPS & HDE 91.13 87.04 100.00 81.02 92.62 93.98Table 3: Generalization on the MONK's problemsThe generalization accuracy of the individual learning algorithms on the MONK'sproblems and that of combining prior symbolic knowledge with machine learning isshown in Table 3. As anticipated, the generalization of a combined approach surpassesthat of each approach individually. 10



5 ConclusionsIn our experiments, the prediction quality increased markedly over rules alone whenthe constructive learning algorithm was used in conjunction with pre-existing symbolicknowledge. In all cases the performance increased when integrated with query-basedlearning. The performance also increased where the pre-existing knowledge is limitedwhen examples alone were used in the constructive portion of the algorithm. The con-structive learning technique appears to be most e�ective when integrated with query-based learning but still provides highly satisfactory results using rules and examples.Neural networks e�ciency and prediction quality depends signi�cantly on how we se-lect network architecture, learning algorithm and initial set of weights. The knowledge-based KBANN algorithm e�ciently constructs the initial topology and weights fromapproximate pre-existing symbolic knowledge. However, KBANN's discovery of newknowledge contained in examples is restricted by a �xed network topology. The con-structive algorithm e�ciently learns not just connection weights but also extends thearchitecture as needed. The advantage of our integrated system is that given a pre-existing set of rules, a better initial hypothesis is generated from which constructivelearning using examples and possibly queries may be used to e�ciently extend the hy-pothesis.6 AcknowledgementsThe authors wish to thank Dr. Geo�rey Towell for providing his implementation ofKBANN.
11



References[1] J. Anderson and E. Rosenfeld, editors. Neurocomputing: Foundations of Research.MIT Press, Cambridge, 1988.[2] E. B. Baum. Neural net algorithms that learn in polynomial time from examplesand queries. IEEE Transactions on Neural Networks, 2(1):5{19, January 1991.[3] J. L. Bentley. Multidimensional binary search tree used for associative searching.Communications of the ACM, 18(9):509{517, September 1975.[4] J. Cendrowska. PRISM: An algorithm for inducing modular rules. InternationalJournal of Man-Machine Studies, 26,27(1,2,4;2,3,4), 1987.[5] S. Fahlman and C. Lebiere. The cascade-correlation learning architecture. InD. Touretzky, editor, Advances in Neural Information Processing Systems, volume 2,pages 524{532, Denver 1989, 1990. Morgan Kaufmann, San Mateo.[6] J. Fletcher and Z. Obradovi�c. Creation of neural networks by hyperplane generationfrom examples alone. In Neural Networks for Learning, Recognition and Control,page 23, Boston, 1992.[7] S. I. Gallant. Perceptron-based learning algorithms. IEEE Transactions on NeuralNetworks, 1(2):179{191, June 1990.[8] J. C. Giarratano. CLIPS User's Guide. Athens, GA, 1991.[9] F. Hayes-Roth, D. A. Waterman, and D. B. Lenat, editors. Building Expert Systems.Addison-Wesley, Reading, MA, 1983.[10] G. F. Luger and W. A. Stubble�eld. Arti�cial Intelligence and the Design of ExpertSystems. Benjamin/Cummings, Redwood City, CA, 1989.[11] W. McCulloch and W. Pitts. A logical calculus of ideas immanent in nervousactivity. Bulletin of Mathematical Biophysics, 5, 1943. Reprinted in [1].[12] M. M�ezard and J.-P. Nadal. Learning in feedforward layered networks: The tilingalgorithm. Journal of Physics A, 22:2191{2204, 1989.[13] Z. Obradovi�c and R. Srikumar. Dynamic evaluation of a backup hypothesis. InNeural Networks for Learning, Recognition and Control, page 71, Boston, 1992.12



[14] J. Quinlan. Induction of decision trees. Machine Learning, 1:81{106, 1986.[15] D. Rumelhart, G. Hinton, and R. Williams. Learning internal representations byerror propagation. In D. Rumelhart and J. McClelland, editors, Parallel Dis-tributed Processing, volume 1, chapter 8, pages 318{362. MIT Press, Cambridge,1986. Reprinted in [1].[16] S. B. Thrun et al. The MONK's problems: A performance comparison of di�erentlearning algorithms. Technical Report CMU{CS{91{197, Department of ComputerScience, Carnegie Mellon University, Pittsburgh, PA, 1991.[17] G. G. Towell, J. W. Shavlik, and M. O. Noordwier. Re�nement of approximatedomain theories by knowledge-based neural networks. In Proceedings of the EighthNational Conference on Arti�cial Intelligence, pages 861{866, Boston, July 1990.[18] S. M. Weiss and C. A. Kulikowski, editors. Computer Systems That Learn. MorganKaufmann, San Mateo, 1991.

13


