Constructively Learning a Near-Minimal
Neural Network Architecture

Justin Fletcher and Zoran Obradovié

Abstract— Rather than iteratively manu-
ally examining a variety of pre-specified ar-
chitectures, a constructive learning algorithm
dynamically creates a problem-specific neu-
ral network architecture. Here we present
an revised version of our parallel constructive
neural network learning algorithm which con-
structs such an architecture. The three steps
of searching for points on separating hyper-
planes, determining separating hyperplanes
from separating points and selecting sepa-
rating hyperplanes generate a near-minimal
architecture. As expected, experimental re-
sults indicate improved network generaliza-
tion.

[. INTRODUCTION

Traditional neural networks learning (e.g. back-
propagation [10]) involves modification of the inter-
connection weights between neurons on a pre-speci-
fied network. Determining the network architecture
is a challenging problem which currently requires
an expensive trial-and-error process. In selecting an
appropriate neural network topology for a classifi-
cation problem, there are two opposing objectives.
The network must be large enough to be able to
adequately define the separating surface and should
be small enough to generalize well [7]. Rather than
learning on a pre-specified network topology, a con-
structive algorithm also learns the topology in a
manner specific to the problem. The advantage of
such constructive learning is that it automatically
fits network size to the data without overspecial-
izing which often yields better generalization. Ex-
amples include the tiling algorithm of Mézard and
Nadal [8] and the cascade-correlation algorithm of
Fahlman and Lebiere [3].

This research was inspired by a constructive al-
gorithm proposed by proposed by Baum [1] which

This work was supported in part by the National Science Foun-
dation under grant IRI-9308523.

The authors are with the School of Electrical Engineering and
Computer Science, Washington State University, Pullman WA
99164-27632, USA.

Z. Obradovi¢ is also affiliated with the Mathematical Institute,
Belgrade, Yugoslavia.

0-7803-1901-X/94 $4.00 ©1994 IEEE

determines the separating hyperplanes between the
data classes. In a single hidden layer feed-forward
binary neural network, each hidden unit with fan-in
k is a representation of a k-1 dimensional hyper-
plane. The hyperplane corresponding to the hid-
den unit may be determined through solution of
the equation system defined by k points on the hy-
perplane. In Baum’s algorithm a series of oracle
queries is used in conjunction with training exam-
ples to determine these k points on the separat-
ing hyperplanes. Here the learner is allowed to ask
an oracle for the correct class associated with arbi-
trary points in the problem domain in addition to
using the training examples provided. The hyper-
planes are sequentially determined by partitioning
the problem domain space using training examples
and queries. The hidden units of a single hidden
layer feed-forward binary neural network and cor-
responding connections are then created from the
hyperplanes. The connection weights from the hid-
den layer to the output layer are determined by an
algorithm which separates the hidden layer repre-
sentation of the problem by a single hyperplane (e.g.
the perceptron algorithm [9]).

While Baum’s algorithm is applicable where an
oracle for the classification of any given point ex-
ists, in many cases such an oracle is not available
or may be too expensive for practical use. On our
previous work [4] instead of depending on an ora-
cle to determine points on separating hyperplanes,
approximations to the points on the separating hy-
perplanes are determined by repeatedly interpolat-
ing between example points of the various classes in
the training set. A parallelized construction under
p4 [2] using a network of workstations and a Touch-
stone Delta was recently proposed [5]. This work
suggests further improvement significantly affecting
constructed network complexity and generalization.

In Section 2 we describe our parallel constructive
learning algorithm which generates a near-minimal
architecture and does not require oracle queries. In
Section 3 experimental results from this algorithm
are presented.

204

Figure 1: First unknown region

II. NETWORK (CONSTRUCTION

In our previous work [5], separating hyperplanes
were determined sequentially and thus previously
determined points on the separating hyperplanes
were not maintained. As a result, effort was wasted
by repeatedly determining the same points on the
hyperplanes. This modification of the algorithm
maintains all points on the separating hyperplanes.
This was accomplished by modifying the algorithm
to initially determine the separating points and then
create the candidate hyperplanes. The best candi-
dates are then selected through an iterative process
resulting in a near-minimal architecture.

Construction of the neural network is thus per-
formed in three stages:

1. Determination of points on separating hyper-
planes

2. Determination of candidate hyperplanes from
points on the separating hyperplanes and

3. Creation of hidden units from selected hyper-
planes.

A. Determination of Separating Points

For all pairs of training examples belonging to dif-
ferent classes, a search for corresponding points on
the hyperplanes separating those examples is done.
This search for the separating points can be per-
formed in parallel. Each separating point is found
as follows. Approximations to the points on the hy-
perplane are initially determined by repeatedly in-
terpolating between example points of the various
classes 7} and T; in the training set 7. The inter-
polation begins by selecting positive and negative
examples m € Ty, n € T;. The unknown region
between m and n is then searched for the nearest
point ¢ € T to the midpoint of m and n. The un-

Figure 2: Next unknown region

known region is defined as the the circle centered
at the midpoint of m and n with a diameter of the
distance between m and n, as shown in Figure 1. If
q is found, the search is then repeated in the smaller
unknown region between ¢ and m or ¢ and n respec-
tively depending on whether g is positive or negative
(Figure 2).

If no point from T is found in the current unknown
region, its midpoint p! is the closest approximation
to a point on the separating hyperplane. If the dis-
tance from p! to an endpoint is within a specified
tolerance the separating point is stored. The resul-
tant separating points are shown in Figure 3.

B. Determination of Candidate Hyperplanes

Once the separating points hyperplanes have been
determined, the k-1 nearest separating points are
found for each separating point where k is the input
dimensionality. Hyperplanes are determined
through solution of the equation system defined by
the k points on the hyperplane. Each unique hyper-
plane is saved as a candidate hyperplane (Figure 4).
Observe that if n separating points are determined
in step 1, the total number of candidate hyperplanes
using this construction is at most n.

The construction is motivated by the hope that
nearest separating points define the same hyper-
plane. Alternatively, one can construct more hyper-
planes using some less restrictive rule for a hyper-
planes determination. However, a large pool of can-
didates means significantly higher computational
costs in selecting appropriate candidates in the next
step of the algorithm.

C. Hyperplane Selection

The first hidden unit is created from the candidate
hyperplane which best classifies the training data.

205

Figure 5: Selected hyperplanes

This hyperplane is then removed from the candi-
date list. The remaining hidden units are created
by parallel evaluation of each of the remaining can-
didate hyperplanes in conjunction with the previ-
ously created hidden units. This is accomplished
by creating a hidden unit and iteratively setting the
input layer connection weights to the corresponding
equation of each the candidate hyperplanes. The
output layer weights for a candidate for the next
intermediate network are then determined from the
training examples. The candidate hyperplane which
results in an intermediate network with the great-
est performance improvement on the training set is
added to the selected hyperplanes. Given n candi-
date hyperplanes, O(n) evaluations are performed
to select a hyperplane corresponding to a hidden
unit in the network. Hidden layer construction is
completed when no candidate hyperplane results in

Figure 6: Separating surface

a significant improvement in classification on the
training set. Comsequently, O(n?)) evaluations are
performed in selecting the final neural network ar-
chitecture. A final selection of hidden layer hyper-
planes is shown in Figure 5 with the resultant sep-
arating surface depicted in Figure 6. The master
process then performs the final task of training the
output layer weights as explained in the following
section.

D. Output Layer Weights

The hidden layer units are generated from exam-
ples alone, and so they may not correspond to the
optimal separating hyperplanes. As such, the hid-
den layer problem representation of the generated
network may not be linearly separable. The pocket
algorithm [6] is a single-layer neural network learn-
ing algorithm that finds the optimal separation un-

206

[Gooooog

o
-
8 1 | . Master
aoooo0
$ Slaves
& [a]a]s[s]n{s] EDDDDD% EDDDDD: EDDDDD% Igl:luuuu 2
[s] a
- W E .
ST T T e I EmE—] 1=
(mlly Emlly smlle cmliE el
[a[s[s[a[x]u]s] [a[S[<[]a]a]s] oooooog [a[w[[a[s]s]s] [a[s]S[a[s]=]s]
Figure 7: Parallel architecture
Average Number of Average Best Case Worst Case
Accuracy Hidden Units Train | Test | Train | Test | Train | Test
Problem 1 4.8 | 99.19 | 96.66 | 100.00 | 100.0 | 97.58 | 88.43
Problem 2 6.3 | 73.60 | 66.73 78.11 | 68.98 | 62.13 | 63.89
Problem 3 5.7 | 96.14 | 94.00 98.36 | 97.22 | 93.44 | 87.50

Table 1: Generated Architecture and Percentage Accuracy on the MONK’s Problems

Sequential Distributed Parallel |
Processors 1 19 64
Accuracy Train | Test | Train | Test | Train | Test
Problem 1 | 100.00 | 85.42 | 100.00 } 81.02 | 100.00 | 81.71
Problem 2 81.07 | 70.37 | 85.80 | 72.45 91.72 | 75.23
Problem 3 96.72 | 72.92 99.18 | 77.08 | 100.00 | 78.94

Table 2: Previous Percentage Accuracy on the MONK’s Problems

der a given topology for problems that are not lin-
early separable. This algorithm keeps the best set
of weights in the “pocket” while the perceptron is
trained incrementally. This variant of the percep-
tron algorithm is used to determine the output layer
weights of the intermediate networks.

E. Implementation

As significant computational resources are
required due to the multiple evaluation of candidate
hyperplanes this operation is performed in parallel.
Figure 7 shows the parallel architecture for candi-
date hyperplane selection. Each processor may be
either a workstation in a distributed environment or
a processor on a parallel machine. One processor is
responsible for the master process. This master pro-
cess distributes the training data at initialization.
During the selection of separating hyperplanes from
the candidate pool, the master process informs the
slaves to create hidden units corresponding to the se-

lected hyperplanes. While there are more candidate
hyperplanes available, each slave processor requests
candidates to evaluate. The evaluations performed
by the slave processors are integrated by the mas-
ter processor. If any new hyperplane is selected, a
new hidden unit corresponding to the hyperplane is
generated. A system with a balanced computational
load is obtained by this distribution of the candidate
hyperplane analysis.

[II. EXPERIMENTAL RESULTS

Experiments were performed on the MONK’s prob-
lems [11] using a sequential implementation to com-
pare the quality of generalization between the previ-
ous and current constructive algorithm. The
MONK’s problems consist of three six-feature bi-
nary classification problems which represent specific
challenges for standard machine-learning algorithms,
such as the ability to learn data in disjunctive nor-
mal form, parity problems and performance in the

207

presence of noise.

Table 1 show results from ten runs of a sequen-
tial simulation of this algorithm. Significant perfor-
mance gains over previous algorithm (Table 2) are
obtained for problems 1 and 3. Note that as pre-
dicted by neural network theory, network general-
ization is best with the fewest number of generated
units as excess hidden units may result in data over-
fitting.

IV. CONCLUSIONS

Neural networks efficiency and prediction quality
depend significantly on how we select the network
architecture, learning algorithm and initial set of
weights. The constructive learning algorithm pre-
sented here learns not just the connection weights
but also creates the required near-minimal architec-
ture resulting in improved generalisation. Parallel
implementation using p4 is under development. Fur-
ther study will be performed on large scale bench-
marks and real-life problems such as protein sec-
ondary structure prediction.

REFERENCES

[1] E. B. Baum. Neural net algorithms that

learn in polynomial time from examples and

queries. IEEE Transactions on Neural Nei-

works, 2(1):5-19, January 1991.

R. Butler and E. Lusk. User’s guide to the p4

parallel programming system. Technical Re-

port ANL-92/17, Argonne National Labora-

tory, Argonne, IL, 1992.

[3] S. Fahlman and C. Lebiere. The cascade-
correlation learning architecture. In D. Touret-
zky, editor, Advances in Neural Information
Processing Systems, volume 2, pages 524-532,
Denver 1989, 1990. Morgan Kaufmann, San
Mateo.

{4] 3. Fletcher and Z. Obradovié. Combining
prior symbolic knowledge and constructive neu-
ral network learning. Connection Science,
5(3,4):365-375, 1993.

(5] J. Fletcher and Z. Obradovié. Parallel and dis-
tributed systems for constructive neural net-
work learning. In Proceedings of the Sec-
ond International Symposium on High Perfor-
mance Distributed Computing, pages 174-178,
Spokane, WA, July 1993. IEEE Computer So-
ciety Press, Los Alamitos.

[6] S. 1. Gallant. Perceptron-based learning al-
gorithms. IEEE Transactions on Neural Net-
works, 1(2):179-191, June 1990.

[7] S. Geman, E. Bienstock, and R. Doursat. Neu-
ral networks and the bias / variance dilemma.
Neural Computation, 4(1):1-58, 1992.

[2

—_—

[8] M. Mésard and J.-P. Nadal. Learning in feed-
forward layered networks: The tiling algorithm.
Journal of Physics A, 22:2191-2204, 1989,

[9] F. Rosenblatt. Principles of Neurodynamics.
Spartan, New York, 1962.

[10] D. Rumelhart, G. Hinton, and R. Williams.
Learning internal representations by error
propagation. In D. Rumelhart and J. McClel-
land, editors, Parallel Distributed Processing,
volume 1, chapter 8, pages 318-362. MIT Press,
Cambridge, 1986.

[11] S. B. Thrun et al. The MONK’ prob-
lems: A performance comparison of different
learning algorithms. Technical Report CMU-
CS-91-197, Department of Computer Science,
Carnegie Mellon University, Pittsburgh, PA,
1991.

208

