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Abetract- Rather than iteratively manu- 
ally examining a variety of pre-specified ar- 
chitectures, a constructive learning algorithm 
dynamically creates a problem-specific neu- 
ral network architecture. Here we present 
an revised version of our parallel constructive 
neural network learning algorithm which con- 
structs such an architecture. The three steps 
of searching for points on separating hyper- 
planes, determining separating hyperplanes 
from separating points and selecting sepa- 
rating hyperplanes generate a near-minimal 
architecture. As expected, experimental re- 
sults indicate improved network generalisa- 
tion. 

I. INTRODUCTION 
Traditional neural networks learning (e.g. back- 
propagation [lo]) involves modification of the inter- 
connection weights between neurons on a pre-speci- 
fied network. Determining the network architecture 
is a challenging problem which currently requires 
an expensive trial-and-error process. In selecting an 
appropriate neural network topology for a classifi- 
cation problem, there are two opposing objectives. 
The network must be large enough to be able to 
adequately define the separating surface and should 
be small enough to generalize well [7]. Rather than 
learning on a pre-specified network topology, a con- 
rtructiue dgorithm also learns the topology in a 
manner specific to the problem. The advantage of 
such constructive learning is that it automatically 
fits network size to the data without overspecial- 
izing which often yields better generalisation. Ex- 
amples include the tiling algorithm of Mizard and 
Nadal [B] and the cascade-correlation algorithm of 
Fahlman and Lebiere [3]. 

This research was inspired by a constructive al- 
gorithm proposed by proposed by Baum [l] which 
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determines the separating hyperplanes between the 
data classes. In a single hidden layer feed-forward 
binary neural network, each hidden unit with fan-in 
k is a representation of a k-1 dimensional hyper- 
plane. The hyperplane corresponding to the hid- 
den unit may be determined through solution of 
the equation system defined by k points on the hy- 
perplane. In Baum’s algorithm a series of oracle 
queries is used in conjunction with training exam- 
ples to determine these k points on the separat- 
ing hyperplanes. Here the learner is allowed to ask 
an oracle for the correct class associated with arbi- 
trary points in the problem domain in addition to 
using the training examples provided. The hyper- 
planes are sequentially determined by partitioning 
the problem domain space using training examples 
and queries. The hidden units of a single hidden 
layer feed-forward binary neural network and cor- 
responding connections are then created from the 
hyperplanes. The connection weights from the hid- 
den layer to the output layer are determined by an 
algorithm which separates the hidden layer repre- 
sentation of the problem by a single hyperplane (e.g. 
the perceptron algorithm [9]). 

While Baum’s algorithm is applicable where an 
oracle for the classification of any given point ex- 
ists, in many cases such an oracle is not available 
or may be too expensive for practical use. On our 
previous work [4] instead of depending on an ora- 
cle to determine points on separating hyperplanes, 
approximations to the points on the separating hy- 
perplanes are determined by repeatedly interpolat- 
ing between example points of the various classes in 
the training set. A parallelieed construction under 
p4 [2] using a network of workstations and a Touch- 
stone Delta was recently proposed [5]. This work 
suggests further improvement significantly affecting 
constructed network complexity and generalization. 

In Section 2 we describe our parallel constructive 
learning algorithm which generates a near-minimal 
architecture and does not require oracle queries. In 
Section 3 experimental results from this algorithm 
are presented. 

0-7803-1901-X/94 $4.00 01994 IEEE 204 



Figure 1: First unknown region 

11. NETWORK CONSTRUCTION 
In our previous work [5], separating hyperplanes 
were determined sequentially and thus previously 
determined points on the separating hyperplanes 
were not maintained. As a result, effort was wasted 
by repeatedly determining the same points on the 
hyperplanes. This modification of the algorithm 
maintains all points on the separating hyperplanes. 
This was accomplished by modifying the algorithm 
to initially determine the separating points and then 
create the candidate hyperplanes. The best candi- 
dates are then selected through an iterative process 
resulting in a near-minimal architecture. 

Construction of the neural network is thus per- 
formed in three stages: 

1. Determination of points on separating hyper- 

2. Determination of candidate hyperplanes from 

3. Creation of hidden units from selected hyper- 

planes 

points on the separating hyperplanes and 

planes. 

A .  Determination of Separating Points 
For all pairs of training examples belonging to dif- 
ferent classes, a search for corresponding points on 
the hyperplanes separating those examples is done. 
This search for the separating points can be per- 
formed in parallel. Each separating point is found 
as follows. Approximations to the points on the hy- 
perplane are initially determined by repeatedly in- 
terpolating between example points of the various 
classes TI and Ta in the training set T. The inter- 
polation begins by selecting positive and negative 
examples m E TI, n E Ta. The unknown region 
between m and n is then searched for the nearest 
point q E T to the midpoint of m and n. The un- 

Figure 2: Next unknown region 

known region is defined as the the circle centered 
at the midpoint of m and n with a diameter of the 
distance between m and n, as shown in Figure 1. If 
q is found, the search is then repeated in the smaller 
unknown region between q and m or q and n respec- 
tively depending on whether q is positive or negative 
(Figure 2). 

If no point from T is found in the current unknown 
region, its midpoint p1 is the closest approximation 
to a point on the separating hyperplane. If the dis- 
tance from p 1  to an endpoint is within a specified 
tolerance the separating point is stored. The resul- 
tant separating points are shown in Figure 3. 

B. Determination of  Candidate Hyperplanes 

Once the separating points hyperplanes have been 
determined, the k-1 nearest separating points are 
found for each separating point where k is the input 
dimensionality. Hyperplanes are determined 
through solution of the equation system defined by 
the k points on the hyperplane. Each unique hyper- 
plane is saved as a candidate hyperplane (Figure 4). 
Observe that if n separating points are determined 
in step 1, the total number of candidate hyperplanes 
using this construction is a t  most n. 

The construction is motivated by the hope that 
nearest separating points define the same hyper- 
plane. Alternatively, one can construct more hyper- 
planes using some less restrictive rule for a hyper- 
planes determination. However, a large pool of can- 
didates means significantly higher computational 
costs in selecting appropriate candidates in the next 
step of the algorithm. 

C.  Hyperplane Selection 
The first hidden unit is created from the candidate 
hyperplane which best classifies the training data. 
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Figure 3: Determined separating points 

Figure 5: Selected hyperplanes 

This hyperplane is then removed from the candi- 
date list. The remaining hidden units are created 
by parallel evaluation of each of the remaining can- 
didate hyperplanes in conjunction with the previ- 
ously created hidden units. This is accomplished 
by creating a hidden unit and iteratively setting the 
input layer connection weights to the corresponding 
equation of each the candidate hyperplanes. The 
output layer weights for a candidate for the next 
intermediate network are then determined from the 
training examples. The candidate hyperplane which 
results in an intermediate network with the great- 
est performance improvement on the training set is 
added to the selected hyperplanes. Given n candi- 
date hyperplanes, O(n) evaluations are performed 
to select a hyperplane corresponding to a hidden 
unit in the network. Hidden layer construction is 
completed when no candidate hyperplane results in 

Figure 4: Candidate hyperplanes 

Figure 6: Separating surface 

a significant improvement in classification on the 
training set. Consequently, O(n2))  evduations are 
performed in selecting the final neural network ar- 
chitecture. A final selection of hidden layer hyper- 
planes is shown in Figure 5 with the resultant sep- 
arating surface depicted in Figure 6. The master 
process then performs the final task of training the 
output layer weights as explained in the following 
section. 

D. Output Layer Weights 

The hidden layer units are generated from exam- 
ples alone, and so they may not correspond to the 
optimal separating hyperplanes. As such, the hid- 
den layer problem representation of the generated 
network may not be linearly separable. The pocket 
algorithm [6] is a single-layer neural network learn- 
ing algorithm that finds the optimal separation un- 
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Master 
0 0 0 0 0 0 0 

Accuracy 
Problem 1 
Problem 2 
Problem 3 

Figure 7: Parallel architecture 

Average Number of Average Best Case Worst Case 
Hidden Units Train Test Train Test Train Test 

4.8 99.19 96.66 100.00 100.0 97.58 88.43 
6.3 73.60 66.73 78.11 68.98 62.13 63.89 
5.7 96.14 94.00 98.36 97.22 93.44 87.50 

Processors 

Table 1: Generated Architecture and Percentage Accuracy on the MONK’s Problems 

Sequential I Distributed I Parallel 
1 19 64 

Accuracy 
Problem 1 
Problem 2 
Problem 3 

Train Test Train Test Train Test 
100.00 85.42 100.00 81.02 100.00 81.71 

81.07 70.37 85.80 72.45 91.72 75.23 
96.72 72.92 99.18 77.08 100.00 78.94 

Table 2: Previous Percentage Accuracy on the MONK’s Problems 

der a given topology for problems that are not lin- 
early separable. This algorithm keeps the best set 
of weights in the “pocket” while the perceptron is 
trained incrementally. This variant of the percep- 
tron algorithm is used to determine the output layer 
weights of the intermediate networks. 

E. Implementation 

As significant computational resources are 
required due to the multiple evaluation of candidate 
hyperplanes this operation is performed in parallel. 
Figure 7 shows the parallel architecture for candi- 
date hyperplane selection. Each processor may be 
either a workstation in a distributed environment or 
a processor on a parallel machine. One processor is 
responsible for the master process. This master pro- 
cess distributes the training data at initialization. 
During the selection of separating hyperplanes from 
the candidate pool, the master process informs the 
slaves to create hidden units corresponding to the se- 

lected hyperplanes. While there are more candidate 
hyperplanes available, each slave processor requests 
candidates to evaluate. The evaluations performed 
by the slave processors are integrated by the mas- 
ter processor. If any new hyperplane is selected, a 
new hidden unit corresponding to the hyperplane is 
generated. A system with a balanced computational 
load is obtained by this distribution of the candidate 
hyperplane analysis. 

111. EXPERIMENTAL RESULTS 

Experiments were performed on the MONK’s prob- 
lems [11] using a sequential implementation to  com- 
pare the quality of generalization between the previ- 
ous and current constructive algorithm. The 
MONK’s problems consist of three six-feature bi- 
nary classification problems which represent specific 
challenges for standard machine-learning algorithms, 
such as the ability to learn data in disjunctive nor- 
mal form, parity problems and performance in the 
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presence of noise. 
Table 1 show results from ten runs of a sequen- 

tial simulation of this algorithm. Significant perfor- 
mance gains over previous algorithm (Table 2) are 
obtained for problems 1 and 3. Note that aa pre- 
dicted by neural network theory, network general- 
ization is best with the fewest number of generated 
units aa excess hidden units may result in data over- 
fitting. 

IV. CONCLUSIONS 

Neural networks efficiency and prediction quality 
depend significantly on how we select the network 
architecture, learning algorithm and initial set of 
weights. The Constructive learning algorithm pre- 
sented here learns not just the connection weights 
but also creates the required near-minimal architec- 
ture resulting in improved generalization. Parallel 
implementation using p4 is under development. Fur- 
ther study will be performed on large scale bench- 
marks and real-life problems such aa protein sec- 
ondary structure prediction. 
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