
A DISCRETE APPROACH TOCONSTRUCTIVE NEURAL NETWORKLEARNINGJustin Fletcher and Zoran Obradovi�cSchool of Electrical Engineering and Computer ScienceWashington State University, Pullman WA 99164-2752 U.S.A.ABSTRACTConstructive algorithms have the objectives of improved generalization and simpli�edlearning through dynamic creation of a problem-speci�c neural network architecture.Here, a parallel learning algorithm which constructs such an architecture is proposed.The algorithm consists of three phases: search through examples for points near thedecision boundary; generation of a pool of candidate hyperplanes for boundary ap-proximation; and selection of the separating hyperplanes from the candidate pool.The form of the �nal architecture is speci�ed by the cardinality of the selected set ofhyperplanes, where each individual hyperplane determines connection strengths forone hidden unit of the constructed network. While the algorithm might be too com-putationally demanding for a sequential implementation, the analytical expressionsshow that speed-up linear in the number of processors is achievable on distributed orhighly parallel systems. The experimental benchmark results on a distributed net-work of DECStations and the Paragon supercomputer using p4 are in agreement withanalytical speed-up estimates and the architecture constructed by this algorithm issmall resulting in improved generalization.Keywords| machine learning, neural networks, parallel processing, constructivealgorithms. 1 INTRODUCTIONA neural network is a weighted graph of simple processing units (or neurons). Theinterconnection graph of a feed-forward network is acyclic with processing units ar-ranged in multiple layers consisting of input, zero or more hidden, and output layers.



All units in any layer are fully connected to the succeeding layer. Units computean activation function of their weighted input sum. Here we consider binary neuralnetworks where the activation function of each unit is of the form g(x) : R! f0; 1g,g(x) = 8<: 0 if x < t1 if x � twhere x is the unit's weighted input sum.Traditional neural network learning (e.g. backpropagation (Rumelhart et. al.,1986)) involves modi�cation of the interconnection weights between neurons on apre-speci�ed network. Determining the network architecture is a challenging problemwhich currently requires an expensive trial-and-error process. In selecting an appro-priate neural network topology for a classi�cation problem, there are two opposingobjectives. The network must be large enough to be able to adequately de�ne thedecision boundary and should be small enough to generalize well (Geman et. al.,1992). Rather than learning on a pre-speci�ed network topology, a constructive algo-rithm also learns the topology in a manner speci�c to the problem. The advantageof constructive learning is that it automatically �ts network size to the data with-out overspecializing which often yields better generalization. Examples include thetiling algorithm of (M�ezard & Nadal, 1989) and the cascade-correlation algorithm of(Fahlman & Lebiere, 1990).This research was inspired by Baum's e�cient constructive algorithm which de-termines separating hyperplanes between the data classes (Baum, 1991). In a singlehidden layer feed-forward binary neural network, each hidden unit with fan-in k isa representation of a k-1 dimensional hyperplane. The hyperplane corresponding tothe hidden unit may be determined through solution of the equation system de�nedby k points on the hyperplane. In Baum's algorithm a series of oracle queries is usedin conjunction with training examples to determine these k points on the separatinghyperplanes. The learner is allowed to ask an oracle for the correct class associatedwith arbitrary points in the problem domain in addition to using the training ex-amples provided. The hyperplanes are sequentially determined by partitioning theproblem domain space using training examples and queries. The hidden units of asingle hidden layer feed-forward binary neural network and corresponding connectionsare then created from the hyperplanes. The connection weights from the hidden layerto the output layer are determined by an algorithm which separates the hidden layerrepresentation of the problem by a single hyperplane (e.g. the perceptron algorithm(Rosenblatt, 1962)).While Baum's algorithm is applicable where an oracle for the classi�cation of anygiven point exists, in many cases such an oracle is not available or may be too expen-sive for practical use. In our previous work (Fletcher, 1993a) a constructive algorithm



similar to Baum's but without an oracle is integrated with prior symbolic knowledge.The hybrid system gives better generalization than each component individually.In this paper, we propose a three phase construction from examples alone. First,a search for points on the decision boundary is performed. Secondly, a pool of candi-date hyperplanes for boundary approximation is obtained from the boundary points.Finally, separating hyperplanes are selected from the candidate pool. The result is asigni�cant decrease in the complexity of the constructed network with a correspondingincrease in generalization ability.In Section 2 we describe our constructive learning algorithm. In Section 3 paral-lelization details are examined followed by experimental results.2 NETWORK CONSTRUCTIONConstruction of the neural network is performed in three phases:1. Determination of points on the decision boundary;2. Generation of a pool of candidate hyperplanes for boundary approximation fromthe obtained points; and3. Selection of the �nal separating hyperplanes from the candidate pool and cre-ation of hidden units from selected hyperplanes.The remainder of this section describes each of these phases in detail.2.1 Determination of Points on the Decision BoundaryFor all pairs of training examples belonging to di�erent classes, a search for cor-responding points on the boundary separating those examples is performed. Forsimplicity of explanation, we will assume that the examples from the training set Tbelong to two classes T1 and T2.Approximations to the points on the decision boundary are determined by repeat-edly interpolating between example points of the classes T1 and T2. The interpolationbegins by selecting two examples a 2 T1, b 2 T2. The unknown region between a andb is de�ned as the circle centered at the midpoint of segment de�ned by a and b with adiameter of the distance between a and b, as shown in Figure 1. The unknown regionbetween a and b is then searched for the training example nearest to the midpoint ofthe segment de�ned by a and b. If such an example q is found and q 2 T1 (T2) thesearch is then repeated in the smaller unknown region between between q and b (a).The next unknown region is shown in Figure 2.



Figure 1: First unknown region Figure 2: Next unknown regionIf no point from T is found in the current unknown region, its midpoint is theclosest approximation to a point on the decision boundary. If radius of this knownregion is within a speci�ed tolerance the boundary point is stored providing it has notbeen previously determined. Boundary points continue to be generated until a pre-determined number have been found or a number of data points have been examinedwithout �nding a new point on a decision boundary. The resultant boundary pointsare shown in Figure 3. Observe that this procedure requires two adjustable param-eters. However, in practice, the algorithm is not too sensitive to these parametersproviding they result in an oversized pool of boundary points.This search for the boundary points can be parallelized by assigning di�erentportions of the input space to available processors. While feasible, for a reasonabledata distribution such a step is unnecessary as each point on the decision boundarycan be found in a relatively small expected time if the training data is organized in ak-d tree structure (Bentley, 1975). In a k-dimensional space, the computational costfor organization of t training examples into a k-d tree is bounded by O(kt log t) steps.Assuming a non-malicious distribution (e.g. uniform) on the set of training examples,the expected search time for a boundary point is bounded by O(log t) unknown regionreductions since an average reduction eliminates more than half of the t trainingexamples from consideration. Using the constructed k-d tree, in each step the nearesttraining example to the center of an unknown region can be determined in expectedtime O(log t). Thus, for a non-malicious distribution, the expected time required tosearch for n boundary point is bounded by O(kt log t + log2 t). Consequently, theresources required for parallelization can be best applied to candidate hyperplane



Figure 3: Boundary points Figure 4: Candidate hyperplanesselection as described in Section 3.2.2 Generation of Candidate Hyperplane PoolOnce the points on the decision boundary have been found, the k-1 nearest boundarypoints are determined for each. As previously, k is the domain dimensionality. A poolof hyperplanes is then determined through solution of the equation system de�ned byeach set of the k boundary points. Each unique hyperplane is saved as a candidatehyperplane (Figure 4). Observe that if n boundary points are found in phase 1, thetotal number of candidate hyperplanes m generated using this construction is at mostn and at least n=k.This construction of a pool of hyperplanes is motivated by the reasonable assump-tion that it is more probable for neighboring boundary points than for distant bound-ary points to de�ne a hyperplane that approximates the optimal decision boundary.Alternatively, more hyperplanes can be constructed by using a less restrictive rule fora hyperplane determination. However, a large pool of candidates requires signi�cantlyhigher computational costs in selecting appropriate candidates in the next phase ofthe algorithm.2.3 Hyperplane SelectionThe �rst hidden unit is created from the candidate hyperplane which best classi-�es the training data. For simplicity, we assume that two classes are of reasonablybalanced size when a reasonable classi�cation criteria is the smallest number of clas-



Figure 5: Selected hyperplanes Figure 6: Decision boundarysi�cation errors on the training set data. The �rst created unit is removed from thecandidate list and each remaining hidden unit is created by parallel evaluation of theremaining candidate hyperplanes in conjunction with the previously created hiddenunits. This is accomplished by creating a hidden unit and iteratively setting the in-put layer connection weights to the corresponding equation of each of the candidatehyperplanes.The output layer weights of a candidate for the next intermediate network aredetermined by learning from the training examples. This task can be performed bya number of methods since it modi�es only the output layer parameters with nochanges to hidden units parameters. In selecting a training method for this task,one should observe that the hidden layer units are generated from examples aloneand consequently may not correspond to the optimal separating hyperplanes. Assuch, the hidden layer problem representation of the generated network may not belinearly separable. Here a variant of the perceptron algorithm that keeps the bestset of weights in a \pocket" while the perceptron is trained incrementally is used.This approach, the pocket algorithm (Gallant, 1990) yields with high probability theoptimal separation for non-linearly separable problems.Once an intermediate network has been constructed, its performance is evalu-ated by determining the classi�cation accuracy on the training set. The candidatehyperplane which results in an intermediate network with the greatest performanceimprovement on the training set is selected and a hidden unit is created from theselected hyperplane. Given m candidate hyperplanes generated in phase 2, O(m)evaluations are performed to select a hyperplane corresponding to a hidden unit in
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Figure 7: Parallel architecturethe network. Hidden layer construction is completed when no candidate hyperplaneresults in a signi�cant improvement in classi�cation on a cross validation set. Con-sequently, in selecting the �nal neural network architecture O(m2) evaluations areperformed.The �nal determination of the output layer weights are determined by use of thepocket algorithm. A �nal selection of hidden layer hyperplanes is shown in Figure 5with the resultant decision boundary depicted in Figure 6.3 EXPERIMENTAL RESULTSIn the following sections, we �rst propose and analyze parallelization and determinethe computational speedup. We then examine the complexity of the constructednetworks and test generalization on several well-known problems.3.1 Parallel ComputationOn a sequential computer, signi�cant resources are required for the multiple evalua-tion of candidate hyperplanes. However, this expensive operation can be performed inparallel. Figure 7 shows the proposed parallel architecture for candidate hyperplaneselection. Each processor may be either a workstation in a distributed environmentor a processor on a parallel machine. One processor is responsible for the master pro-cess. This process distributes the training data at initialization. During the selectionof separating hyperplanes from the candidate pool, the master process requests theslaves to create hidden units corresponding to the selected hyperplanes. While thereare more candidate hyperplanes available, each slave process requests candidates toevaluate. The evaluations performed by the slave processes are integrated by themaster process. If any new hyperplane is selected, a new hidden unit correspondingto the hyperplane is generated. As each slave process requests a hyperplane to eval-
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Figure 8: MONK's Problem 1 Speedupuate rather than being assigned an even distribution of hyperplanes, automatic loadbalancing is performed.In Section 2.3 we established that number of evaluations required to select ahyperplane is linear in the size of the candidate hyperplane pool. Consequently, thespeedup of parallel evaluation is linear in the number of available processors assumingthe size of the candidate pool is greater than the number of processors. Under thisassumption parallelization provides a near-linear speedup as candidate hyperplaneevaluation is the most expensive step of the algorithm.The algorithm was implemented using p4 (Butler & Lusk, 1992). Developed atArgonne National Laboratory, p4 supports parallel programming for both distributedenvironments and highly parallel computers. Two implementation platforms wereused: a local distributed system of DECStations and the Paragon at the San DiegoSupercomputer Center. The Paragon (San Diego Supercomputer Center, 1993) is anIntel high-speed concurrent multicomputer consisting of 416 nodes in a mesh archi-DECStation DECStations Paragon ParagonProcessors 1 16 1 16Problem 1 365.65 181.02 1324.80 148.52Problem 2 1334.52 357.72 794.02 70.25Problem 3 3952.60 726.12 2245.42 195.22Table 1: MONK's Problems: Total Execution Time (seconds)
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Figure 9: MONK's Problem 2 Speeduptecture where each node contains two i860 processors, one for computation and onefor communications. Of these, 16 nodes were allocated for our experiments. Develop-ment under p4 allowed identical code to be used for the Paragon and the DECStationnetwork.Candidate hyperplane selection and total execution times for the MONK's prob-lems (described in section 3.2) are shown in Table 1. Figures 8, 9 and 10 showthe overall speedup for distributed and parallel environments. The overall speedupis lower in the distributed environment due to higher communication costs and theadditional time required for slave process startup.Sequential Distributed ParallelProcessors 1 16 16Problem 1 Candidates 76.8 76.8 66.5Hidden Units 3.4 3.7 5.7Problem 2 Candidates 79.0 79.0 74.2Hidden Units 5.9 6.4 7.1Problem 3 Candidates 69.9 69.9 66.1Hidden Units 5.8 6.0 6.2Table 2: MONK's Problems: Network Construction
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Figure 10: MONK's Problem 3 Speedup3.2 GeneralizationExperiments were performed on �ve well-known benchmark problems for learningsystems. Three of these are highly-structured human constructed problems (theMONK's tests (Thrun et. al., 1991) and two are real-life problems (the 1984 U.S.Congressional Voting Records Database (Schlimmer, 1987; Murphy & Aha, 1994;Congressional Quarterly Inc., 1985) and the Ljubljana breast cancer domain (Zwitter& Soklic, 1988).In MONK's problems robots are classi�ed in one of two groups based on six multi-valued attributes. MONK 1 problem is in disjunctive normal form (DNF), MONK 2combines attributes in a way which makes it complicated to describe in DNF or CNFusing the given attributes only, and MONK 3 is in DNF in the presence of �ve percentof noise. In MONK problems only the classi�cation of a subset of 124, 169 and 122robots respectively is used for training. The learning task is to generalize using theseSequential Distributed ParallelProcessors 1 16 16Accuracy Train Test Train Test Train TestProblem 1 99.51 99.14 100.00 100.00 97.90 94.86Problem 2 74.91 68.05 75.79 67.73 74.79 67.68Problem 3 96.72 93.77 96.72 93.49 97.86 93.37Table 3: MONK's Problems: Percentage Accuracy



Average Minimum MaximumBoundary Points 100 100 100Candidate Hyperplanes 55.40 43 62Hidden Units 1.50 1 5Training Set Accuracy 94.50 92.33 96.17Test Set Accuracy 93.55 84.09 100.00Table 4: Voting Problem: Network Construction and Percentage Accuracypatterns. Each problem was learned ten times with random initializations by thesequential, distributed and parallel implementations. Each of the ten experimentswere limited to the determination of 100 points on the decision boundary. Table 2shows the average number of generated candidate hyperplanes and the constructedhidden units for sequential, distributed and parallel implementations. Observe thatin all cases the hyperplane selection phase drastically reduced size of the candidatepool to a small number of selected hyperplanes with their corresponding constructedhidden units. The classi�cation and generalization abilities of the three implementa-tions each averaged over ten runs are compared in Table 3. The results on di�erentplatforms vary slightly since the algorithm is stochastic and each system is using adi�erent random number generator. This result is a signi�cant gain in generalizationability over the two-phase algorithm where units are constructed directly from thegenerated pool of hyperplanes. In such an approach, performance on the training setis comparable to results shown in Table 3 but generalization is 85.42%, 70.37% and72.92% for problems 1, 2 and 3 respectively (Fletcher, 1993b).The 1984 Congressional Voting Records Database contains the records of 16 keyvotes for 435 Congressmen as identi�ed by the Congressional Quarterly Almanac.Each congressman is recorded as voting yes, no or having no de�nitive vote recorded.Given this information, the task is to determine whether the congressman is a Re-publican or Democrat. The results of a ten-fold cross-validation experiment with adistributed environment of 16 DECStations is shown in Table 4. These generaliza-tion results are somewhat better and the constructed network is smaller comparedto results obtained by other constructive algorithms. In (Romaniuk & Hall, 1993),cascade-correlation was reported to have 91.3% generalization while a divide andconquer neural network achieved 93.4% generalization. Both algorithms generatedan average of three hidden units over the ten experiments.The breast cancer domain was obtained from the University Medical Centre,Institute of Oncology, Ljubljana, Slovenia, courtesy of M. Zwitter and M. Soklic.



Average Minimum MaximumBoundary Points 90 90 90Candidate Hyperplanes 72.12 67.60 78.80Hidden Units 4.20 3.20 5.00Training Set Accuracy 78.82 77.27 79.37Test Set Accuracy 70.48 66.07 73.76Table 5: Breast Cancer: Network Construction and Percentage AccuracyThis data set contains 286 examples each with nine features, some linear and somenominally valued. The learning task is to predict whether cancer will recur followingtreatment. Previous results (Michalski et. al., 1986; Clark & Niblett, 1987; Tan &Eshelman, 1988; Cestnik et. al., 1987) have a reported accuracy between 66 and 78%.Using ten �ve-fold cross-validation experiments, our constructive approach performscomparably as shown in Table 5.4 CONCLUSIONSThe generalization ability of a classi�cation and prediction system depends on its com-plexity. In traditional neural network systems interconnection strengths are learnedfrom examples on a prespeci�ed architecture. Consequently, the learning process ismanually iterated by varying the architecture until one of appropriate complexityis found. In contrast, a constructive algorithm dynamically creates the appropriatenetwork architecture required for a speci�c problem.The algorithm presented here constructs such an architecture by determining apool of candidate hyperplanes to approximate the decision boundary between classesin the example data. Once a candidate pool is determined, a small number of hiddenunits are created from selected hyperplanes. While the algorithm requires signi�cantcomputational resources, linear speedup in the number of processors in processors ispossible through parallelization. The increasing availability of networked workstationenvironments make this algorithm practical.As the algorithm learns not only the connection weights but also creates therequired architecture the usual manual iterative process is no longer required. The�nal constructed architecture is both small and problem-speci�c resulting in improvedgeneralization.
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