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ABSTRACT

Constructive algorithms have the objectives of improved generalization and simplified
learning through dynamic creation of a problem-specific neural network architecture.
Here, a parallel learning algorithm which constructs such an architecture is proposed.
The algorithm consists of three phases: search through examples for points near the
decision boundary; generation of a pool of candidate hyperplanes for boundary ap-
proximation; and selection of the separating hyperplanes from the candidate pool.
The form of the final architecture is specified by the cardinality of the selected set of
hyperplanes, where each individual hyperplane determines connection strengths for
one hidden unit of the constructed network. While the algorithm might be too com-
putationally demanding for a sequential implementation, the analytical expressions
show that speed-up linear in the number of processors is achievable on distributed or
highly parallel systems. The experimental benchmark results on a distributed net-
work of DECStations and the Paragon supercomputer using p4 are in agreement with
analytical speed-up estimates and the architecture constructed by this algorithm is

small resulting in improved generalization.

Keywords — machine learning, neural networks, parallel processing, constructive

algorithms.

1 INTRODUCTION

A neural network is a weighted graph of simple processing units (or neurons). The
interconnection graph of a feed-forward network is acyclic with processing units ar-

ranged in multiple layers consisting of input, zero or more hidden, and output layers.



All units in any layer are fully connected to the succeeding layer. Units compute
an actiwation function of their weighted input sum. Here we consider binary neural
networks where the activation function of each unit is of the form g(z) : R — {0, 1},
0 if z<t
g(az):{ 1 if z>¢
where z is the unit’s weighted input sum.

Traditional neural network learning (e.g. backpropagation (Rumelhart et. al.,
1986)) involves modification of the interconnection weights between neurons on a
pre-specified network. Determining the network architecture is a challenging problem
which currently requires an expensive trial-and-error process. In selecting an appro-
priate neural network topology for a classification problem, there are two opposing
objectives. The network must be large enough to be able to adequately define the
decision boundary and should be small enough to generalize well (Geman et. al.,
1992). Rather than learning on a pre-specified network topology, a constructive algo-
rithm also learns the topology in a manner specific to the problem. The advantage
of constructive learning is that it automatically fits network size to the data with-
out overspecializing which often yields better generalization. Examples include the
tiling algorithm of (Mézard & Nadal, 1989) and the cascade-correlation algorithm of
(Fahlman & Lebiere, 1990).

This research was inspired by Baum'’s efficient constructive algorithm which de-
termines separating hyperplanes between the data classes (Baum, 1991). In a single
hidden layer feed-forward binary neural network, each hidden unit with fan-in % is
a representation of a k-1 dimensional hyperplane. The hyperplane corresponding to
the hidden unit may be determined through solution of the equation system defined
by k& points on the hyperplane. In Baum'’s algorithm a series of oracle queries is used
in conjunction with training examples to determine these k£ points on the separating
hyperplanes. The learner is allowed to ask an oracle for the correct class associated
with arbitrary points in the problem domain in addition to using the training ex-
amples provided. The hyperplanes are sequentially determined by partitioning the
problem domain space using training examples and queries. The hidden units of a
single hidden layer feed-forward binary neural network and corresponding connections
are then created from the hyperplanes. The connection weights from the hidden layer
to the output layer are determined by an algorithm which separates the hidden layer
representation of the problem by a single hyperplane (e.g. the perceptron algorithm
(Rosenblatt, 1962)).

While Baum’s algorithm is applicable where an oracle for the classification of any
given point exists, in many cases such an oracle is not available or may be too expen-

sive for practical use. In our previous work (Fletcher, 1993a) a constructive algorithm



similar to Baum’s but without an oracle is integrated with prior symbolic knowledge.
The hybrid system gives better generalization than each component individually.

In this paper, we propose a three phase construction from examples alone. First,
a search for points on the decision boundary is performed. Secondly, a pool of candi-
date hyperplanes for boundary approximation is obtained from the boundary points.
Finally, separating hyperplanes are selected from the candidate pool. The result is a
significant decrease in the complexity of the constructed network with a corresponding
increase in generalization ability.

In Section 2 we describe our constructive learning algorithm. In Section 3 paral-

lelization details are examined followed by experimental results.

2 NETWORK CONSTRUCTION

Construction of the neural network is performed in three phases:

1. Determination of points on the decision boundary;

2. Generation of a pool of candidate hyperplanes for boundary approximation from

the obtained points; and

3. Selection of the final separating hyperplanes from the candidate pool and cre-

ation of hidden units from selected hyperplanes.

The remainder of this section describes each of these phases in detail.

2.1 Determination of Points on the Decision Boundary

For all pairs of training examples belonging to different classes, a search for cor-
responding points on the boundary separating those examples is performed. For
simplicity of explanation, we will assume that the examples from the training set T
belong to two classes 77 and T5.

Approximations to the points on the decision boundary are determined by repeat-
edly interpolating between example points of the classes T and T,. The interpolation
begins by selecting two examples a € 11, b € T3. The unknown region between a and
bis defined as the circle centered at the midpoint of segment defined by a and b with a
diameter of the distance between a and b, as shown in Figure 1. The unknown region
between a and b is then searched for the training example nearest to the midpoint of
the segment defined by a and b. If such an example g is found and ¢ € T; (T3) the
search is then repeated in the smaller unknown region between between ¢ and b (a).

The next unknown region is shown in Figure 2.



Figure 1: First unknown region Figure 2: Next unknown region

If no point from 7' is found in the current unknown region, its midpoint is the
closest approximation to a point on the decision boundary. If radius of this known
region i1s within a specified tolerance the boundary point is stored providing it has not
been previously determined. Boundary points continue to be generated until a pre-
determined number have been found or a number of data points have been examined
without finding a new point on a decision boundary. The resultant boundary points
are shown in Figure 3. Observe that this procedure requires two adjustable param-
eters. However, in practice, the algorithm is not too sensitive to these parameters
providing they result in an oversized pool of boundary points.

This search for the boundary points can be parallelized by assigning different
portions of the input space to available processors. While feasible, for a reasonable
data distribution such a step is unnecessary as each point on the decision boundary
can be found in a relatively small expected time if the training data is organized in a
k-d tree structure (Bentley, 1975). In a k-dimensional space, the computational cost
for organization of ¢ training examples into a k-d tree is bounded by O(ktlogt) steps.
Assuming a non-malicious distribution (e.g. uniform) on the set of training examples,
the expected search time for a boundary point is bounded by O(log ¢) unknown region
reductions since an average reduction eliminates more than half of the ¢ training
examples from consideration. Using the constructed k-d tree, in each step the nearest
training example to the center of an unknown region can be determined in expected
time O(logt). Thus, for a non-malicious distribution, the expected time required to
search for n boundary point is bounded by O(ktlogt + log®t). Consequently, the

resources required for parallelization can be best applied to candidate hyperplane
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Figure 3: Boundary points Figure 4: Candidate hyperplanes

selection as described in Section 3.

2.2 Generation of Candidate Hyperplane Pool

Once the points on the decision boundary have been found, the k-1 nearest boundary
points are determined for each. As previously, k is the domain dimensionality. A pool
of hyperplanes is then determined through solution of the equation system defined by
each set of the & boundary points. Each unique hyperplane is saved as a candidate
hyperplane (Figure 4). Observe that if n boundary points are found in phase 1, the
total number of candidate hyperplanes m generated using this construction is at most
n and at least n/k.

This construction of a pool of hyperplanes is motivated by the reasonable assump-
tion that it is more probable for neighboring boundary points than for distant bound-
ary points to define a hyperplane that approximates the optimal decision boundary.
Alternatively, more hyperplanes can be constructed by using a less restrictive rule for
a hyperplane determination. However, a large pool of candidates requires significantly
higher computational costs in selecting appropriate candidates in the next phase of

the algorithm.

2.3 Hyperplane Selection

The first hidden unit is created from the candidate hyperplane which best classi-
fies the training data. For simplicity, we assume that two classes are of reasonably

balanced size when a reasonable classification criteria is the smallest number of clas-



Figure 5: Selected hyperplanes Figure 6: Decision boundary

sification errors on the training set data. The first created unit is removed from the
candidate list and each remaining hidden unit is created by parallel evaluation of the
remaining candidate hyperplanes in conjunction with the previously created hidden
units. This is accomplished by creating a hidden unit and iteratively setting the in-
put layer connection weights to the corresponding equation of each of the candidate
hyperplanes.

The output layer weights of a candidate for the next intermediate network are
determined by learning from the training examples. This task can be performed by
a number of methods since it modifies only the output layer parameters with no
changes to hidden units parameters. In selecting a training method for this task,
one should observe that the hidden layer units are generated from examples alone
and consequently may not correspond to the optimal separating hyperplanes. As
such, the hidden layer problem representation of the generated network may not be
linearly separable. Here a variant of the perceptron algorithm that keeps the best
set of weights in a “pocket” while the perceptron is trained incrementally is used.
This approach, the pocket algorithm (Gallant, 1990) yields with high probability the
optimal separation for non-linearly separable problems.

Once an intermediate network has been constructed, its performance is evalu-
ated by determining the classification accuracy on the training set. The candidate
hyperplane which results in an intermediate network with the greatest performance
improvement on the training set is selected and a hidden unit is created from the
selected hyperplane. Given m candidate hyperplanes generated in phase 2, O(m)

evaluations are performed to select a hyperplane corresponding to a hidden unit in
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Figure 7: Parallel architecture

the network. Hidden layer construction is completed when no candidate hyperplane
results in a significant improvement in classification on a cross validation set. Con-
sequently, in selecting the final neural network architecture O(m?) evaluations are
performed.

The final determination of the output layer weights are determined by use of the
pocket algorithm. A final selection of hidden layer hyperplanes is shown in Figure 5

with the resultant decision boundary depicted in Figure 6.

3 EXPERIMENTAL RESULTS

In the following sections, we first propose and analyze parallelization and determine
the computational speedup. We then examine the complexity of the constructed

networks and test generalization on several well-known problems.

3.1 Parallel Computation

On a sequential computer, significant resources are required for the multiple evalua-
tion of candidate hyperplanes. However, this expensive operation can be performed in
parallel. Figure 7 shows the proposed parallel architecture for candidate hyperplane
selection. Each processor may be either a workstation in a distributed environment
or a processor on a parallel machine. One processor is responsible for the master pro-
cess. This process distributes the training data at initialization. During the selection
of separating hyperplanes from the candidate pool, the master process requests the
slaves to create hidden units corresponding to the selected hyperplanes. While there
are more candidate hyperplanes available, each slave process requests candidates to
evaluate. The evaluations performed by the slave processes are integrated by the
master process. If any new hyperplane is selected, a new hidden unit corresponding

to the hyperplane is generated. As each slave process requests a hyperplane to eval-
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Figure 8: MONK’s Problem 1 Speedup

uate rather than being assigned an even distribution of hyperplanes, automatic load
balancing is performed.

In Section 2.3 we established that number of evaluations required to select a
hyperplane is linear in the size of the candidate hyperplane pool. Consequently, the
speedup of parallel evaluation is linear in the number of available processors assuming
the size of the candidate pool is greater than the number of processors. Under this
assumption parallelization provides a near-linear speedup as candidate hyperplane
evaluation is the most expensive step of the algorithm.

The algorithm was implemented using p4 (Butler & Lusk, 1992). Developed at
Argonne National Laboratory, p4 supports parallel programming for both distributed
environments and highly parallel computers. Two implementation platforms were
used: a local distributed system of DECStations and the Paragon at the San Diego
Supercomputer Center. The Paragon (San Diego Supercomputer Center, 1993) is an

Intel high-speed concurrent multicomputer consisting of 416 nodes in a mesh archi-

DECStation | DECStations | Paragon | Paragon
Processors 1 16 1 16
Problem 1 365.65 181.02 | 1324.80 148.52
Problem 2 1334.52 357.72 794.02 70.25
Problem 3 3952.60 726.12 | 2245.42 195.22

Table 1: MONK’s Problems: Total Execution Time (seconds)
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Figure 9: MONK’s Problem 2 Speedup

tecture where each node contains two 1860 processors, one for computation and one
for communications. Of these, 16 nodes were allocated for our experiments. Develop-
ment under p4 allowed identical code to be used for the Paragon and the DECStation
network.

Candidate hyperplane selection and total execution times for the MONK’s prob-
lems (described in section 3.2) are shown in Table 1. Figures 8, 9 and 10 show
the overall speedup for distributed and parallel environments. The overall speedup
is lower in the distributed environment due to higher communication costs and the

additional time required for slave process startup.

Sequential | Distributed | Parallel

Processors 1 16 16
Problem 1 | Candidates 76.8 76.8 66.5
Hidden Units 3.4 3.7 5.7
Problem 2 | Candidates 79.0 79.0 74.2
Hidden Units 5.9 6.4 7.1
Problem 3 | Candidates 69.9 69.9 66.1
Hidden Units 5.8 6.0 6.2

Table 2: MONK’s Problems: Network Construction
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Figure 10: MONK’s Problem 3 Speedup

3.2 Generalization

Experiments were performed on five well-known benchmark problems for learning
systems. Three of these are highly-structured human constructed problems (the
MONK’s tests (Thrun et. al., 1991) and two are real-life problems (the 1984 U.S.
Congressional Voting Records Database (Schlimmer, 1987; Murphy & Aha, 1994;
Congressional Quarterly Inc., 1985) and the Ljubljana breast cancer domain (Zwitter
& Soklic, 1988).

In MONK’s problems robots are classified in one of two groups based on six multi-
valued attributes. MONK 1 problem is in disjunctive normal form (DNF), MONK 2
combines attributes in a way which makes it complicated to describe in DNF or CNF
using the given attributes only, and MONK 3 is in DNF in the presence of five percent
of noise. In MONK problems only the classification of a subset of 124, 169 and 122

robots respectively is used for training. The learning task is to generalize using these

Sequential Distributed Parallel
Processors 1 16 16
Accuracy | Train | Test | Train | Test | Train | Test
Problem 1 | 99.51 | 99.14 | 100.00 | 100.00 | 97.90 | 94.86
Problem 2 | 74.91 | 68.05 | 75.79 | 67.73 | 74.79 | 67.68
Problem 3 | 96.72 | 93.77 | 96.72 | 93.49 | 97.86 | 93.37

Table 3: MONK'’s Problems: Percentage Accuracy



Average | Minimum | Maximum
Boundary Points 100 100 100
Candidate Hyperplanes 55.40 43 62
Hidden Units 1.50 1 5
Training Set Accuracy 94.50 92.33 96.17
Test Set Accuracy 93.55 84.09 100.00

Table 4: Voting Problem: Network Construction and Percentage Accuracy

patterns. Each problem was learned ten times with random initializations by the
sequential, distributed and parallel implementations. Each of the ten experiments
were limited to the determination of 100 points on the decision boundary. Table 2
shows the average number of generated candidate hyperplanes and the constructed
hidden units for sequential, distributed and parallel implementations. Observe that
in all cases the hyperplane selection phase drastically reduced size of the candidate
pool to a small number of selected hyperplanes with their corresponding constructed
hidden units. The classification and generalization abilities of the three implementa-
tions each averaged over ten runs are compared in Table 3. The results on different
platforms vary slightly since the algorithm is stochastic and each system is using a
different random number generator. This result is a significant gain in generalization
ability over the two-phase algorithm where units are constructed directly from the
generated pool of hyperplanes. In such an approach, performance on the training set
is comparable to results shown in Table 3 but generalization is 85.42%, 70.37% and
72.92% for problems 1, 2 and 3 respectively (Fletcher, 1993b).

The 1984 Congressional Voting Records Database contains the records of 16 key
votes for 435 Congressmen as identified by the Congressional Quarterly Almanac.
Each congressman is recorded as voting yes, no or having no definitive vote recorded.
Given this information, the task is to determine whether the congressman is a Re-
publican or Democrat. The results of a ten-fold cross-validation experiment with a
distributed environment of 16 DECStations is shown in Table 4. These generaliza-
tion results are somewhat better and the constructed network is smaller compared
to results obtained by other constructive algorithms. In (Romaniuk & Hall, 1993),
cascade-correlation was reported to have 91.3% generalization while a divide and
conquer neural network achieved 93.4% generalization. Both algorithms generated
an average of three hidden units over the ten experiments.

The breast cancer domain was obtained from the University Medical Centre,

Institute of Oncology, Ljubljana, Slovenia, courtesy of M. Zwitter and M. Soklic.



Average | Minimum | Maximum
Boundary Points 90 90 90
Candidate Hyperplanes 72.12 67.60 78.80
Hidden Units 4.20 3.20 5.00
Training Set Accuracy 78.82 77.27 79.37
Test Set Accuracy 70.48 66.07 73.76

Table 5: Breast Cancer: Network Construction and Percentage Accuracy

This data set contains 286 examples each with nine features, some linear and some
nominally valued. The learning task is to predict whether cancer will recur following
treatment. Previous results (Michalski et. al., 1986; Clark & Niblett, 1987; Tan &
Eshelman, 1988; Cestnik et. al., 1987) have a reported accuracy between 66 and 78%.
Using ten five-fold cross-validation experiments, our constructive approach performs

comparably as shown in Table 5.

4 CONCLUSIONS

The generalization ability of a classification and prediction system depends on its com-
plexity. In traditional neural network systems interconnection strengths are learned
from examples on a prespecified architecture. Consequently, the learning process is
manually iterated by varying the architecture until one of appropriate complexity
is found. In contrast, a constructive algorithm dynamically creates the appropriate
network architecture required for a specific problem.

The algorithm presented here constructs such an architecture by determining a
pool of candidate hyperplanes to approximate the decision boundary between classes
in the example data. Once a candidate pool is determined, a small number of hidden
units are created from selected hyperplanes. While the algorithm requires significant
computational resources, linear speedup in the number of processors in processors is
possible through parallelization. The increasing availability of networked workstation
environments make this algorithm practical.

As the algorithm learns not only the connection weights but also creates the
required architecture the usual manual iterative process is no longer required. The
final constructed architecture is both small and problem-specific resulting in improved

generalization.
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