2013 IEEE International Conference on Healthcare Informatics

Improving Computational Efficiency for Personalized Medical Applications in
Mobile Cloud Computing Environment

George Mathew, Zoran Obradovic

Center for Data Analytics and Biomedical Informatics
Temple University
Philadelphia, PA, USA
{George.Mathew, Zoran.Obradovic} @temple.edu

Abstract— Mobile computing and cloud services are two
technologies that have gained momentum in recent times. The
proliferation of mobile computing devices and network
connectivity has made it an attractive platform for delivering
personalized services in many business domains including
healthcare. Personalized health and wellness mobile
applications have computational and data requirements that
are necessitated by the localized processing needs of the
application. The on-demand provisioning capability and
elasticity of cloud services combined with the local processing
capability of mobile devices can provide an ecosystem for
pervasive access to health information. In this study we explore
some of the specifics of these health and wellness applications.
We introduce promotion algorithm as a mechanism to
efficiently process data points locally by mobile devices. This
algorithm can take advantage of the local processing power of
smartphones and help reduce communication costs between
mobile endpoint and cloud-based long-term data services.
Experiments were performed using an Android smartphone
for real time data acquisition of more than 10 million data
points and a Linux server in a private cloud over 4G network
simulating a health service. Results showed that the proposed
algorithm could help preserve battery life by a factor of 10 and
reduce data communication time by a factor of 20 as a result of
utilizing local computation on a mobile device.

Keywords - medical informatics; mobile cloud computing;
personlized wellness.

L INTRODUCTION

The architecture and design of personalized applications
are influenced by social computing platform experiences of
the masses. This is necessitated by the familiarity of
common user interfaces in the social context. There are two
service areas where these influences are well pronounced.
First one is mobile computing and the second one is cloud
services. Both these technologies have been commercially
successful and have been widely researched. Needless to
say, both technologies are past their emerging stages and are
mature. Users at large are used to mobile phone based
computing environment as well as social cloud services.

The proliferation of mobile computing devices has
introduced some popular features and capabilities that can
be taken advantage of, in the personal health and wellness
applications space. The affordances offered by mobile
computing devices are commonplace and so applications
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can make use of these. For example, a mobile application
can be set with different alert tones for different events.
Texting apps have the capability to set different delivery
tones for different friends. In a similar vein, a medical app
can use distinct alert tones to signal different severity levels
of a medical condition to the patient. Timer capabilities,
alarm capabilities, time zone change etc. are all features that
can be taken advantage of. Hardware-dependent operations
like swiping, zooming and pinching are operations natural to
the mobile computing platform. The accessible from
anywhere mantra of mobile devices are attractive for
personal apps.

Mobile applications can be deployed in two ways. One is
as a web-based application using html5. The other is as a
native application. The correspondence of mobile
application deployment scenarios with traditional desktop
application deployment formats is shown in Figure 1.
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Figure 1. Deployment Formats of Traditional and Mobile apps

Mobile web applications run on the server-side, but the
device needs continuous Internet connection. The desktop
web applications and mobile web applications runs using a
web browser within the graphical user interface. However,
the desktop applications are installed from a media and the
native mobile apps are usually downloaded from the app
store. The native apps run locally and needs Internet
connection only when data needs to be pushed to a cloud
service. Native applications can take advantage of many
hardware affordances. But these are device-dependent. Our
focus is on the native applications for personal health and
wellness.

Mobile phone users are used to downloading
applications from the app store. Practically, these
applications do not require any training for the end user. In
general, users are comfortable figuring it out. Downloads
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from Apple’s app store and Google play store average more
than a billion per month. This trend clearly shows the
potential for a personal health application to be embraced by
mobile phone users. The app distribution has two models.
One is through a single source (as in the case of iPhone
apps). The other is through any store (as in the case of
Android apps). The two store scenarios present two different
models that a personal healthcare app provider should
choose between. In 2012, iPhones and Android phones
accounted for more than 85% of the mobile market place.
Even though mobile tablet devices have functionalities very
similar to mobile smartphones, in this paper, our focus is
strictly on smartphones — due to the pocket size small
physical form factor. This small form factor is a
convenience for patients who need to be interacting with a
mobile application continuously.

In spite of these advantages, there are some recent
incidents that are disheartening. The possibility of viruses
on mobile computing devices was known for almost a
decade now [1]. Though Apple has a tough gatekeeper
policy for the App Store, a hacker was able to get a rogue
application into the App Store [2]. In a recent publication by
IDG, it was mentioned that the number of malicious and
high-risk apps for Android is expected to triple from about
350,000 in 2012 to more than a million in 2013 [3]. This is
an alarming trend for smartphones as an infected device can
disturb the working of a medical wellness application that is
critically important for a patient.

Another challenge related to smartphones is the co-
mingling of functionalities. A smartphone can be used as a
cell phone, video recorder/player, camera/photo gallery,
music player, texting device, etc. They are also used to
running multiple applications concurrently. Consequently,
multiple processes vie for computing resources of the
device. This has to be taken into consideration when a
personal health app is designed.

On a different technology spectrum, enabling
consumerization of IT services, cloud computing [4] have
been gaining momentum. Elasticity of resources is one big
advantage of cloud environment. However, co-tenancy of
customers has raised questions about data security and data
pilfering. Ironically, co-tenancy helps the provider to bring
down service costs. One of the major issues with cloud
service is the non-standard proprietary entry points. This
makes it difficult to switch cloud provider in a seamless
fashion. One of the attractive cloud services is data storage.
However, the API’s provided by one vendor is non-portable
to another vendor and so customers gets locked to a cloud
service provider. Data protection while hosting data with a
provider should be seriously considered. This involves
channel protection as well safeguarding data at rest. Channel
protection can be accomplished via different symmetric and
asymmetric encryption mechanisms [5]. Information
Lifecycle Management calls for mechanisms similar to
timed data shredding [6] so as not to leave data trails. For
production data at rest, on the fly encryption techniques
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exist. Appliances that serve as encryption gateways
(example Voltage [7]) are available. Ideally,
homomorphic encryption [8] is able to handle encryption of
data in the cloud.

The general layout of a multi-user computing services
environment is shown in Figure 2.
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Figure 2. Reference layout of a multi-user computing environment

In the 1960’s, when multi-user computing environments
were introduced, users connected to the services from dumb
terminals using serial protocol. In today’s mobile cloud
computing environment, users connect to services or
resources via mobile computing devices using TCP/IP
protocol. Thus the architectural representation in Figure 2 is
valid from both current and historical perspectives.
Consequently it may be argued that “many cloud computing
security problems are not in fact new, but often will still
require new solutions in terms of specific mechanisms” [9].
For example, the data path from the mobile device to the
service is through a provider of user’s choice. In a corporate
environment, the data path from a computing device to a
server is within the confines of the corporate network and so
less susceptible to eves dropping by an outsider. In the
mobile scenario, the data path need not be within the
corporate boundary. This is illustrated in Figure 3.
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Figure 3. Mobile device connections to cloud services

As shown in the top inside box of Figure 3, the data path
for a user connecting to a local service is within the
corporate network. But, the access through a cell provider is
outside the corporate network boundary (as shown in
bottom half of Figure 3). Thus it is necessary to protect the
data channel when public network is used. Since our focus
is on personal health for the general public, the data path is
almost always through a public network.



Mobile computing has the following advantages in
personal healthcare domain: access to test results,
emergency response and personalized monitoring (both off-
band and online) [10,11] using an app. The mobile devices
have multi-tasking operating systems. This makes it
attractive for component-based applications. In spite of all
these advantages, the mobile platform has its limitations.
Smartphones have two channels — one for phone and one for
data. Data bandwidth subscription dictates how much can be
transferred without overcharge. When designing a data
intensive health application that needs to communicate to a
cloud service, the limit on the subscribed data bandwidth
should be taken into consideration.

Table I. Hardware profiles of some common smartphones

Make Model | Memory | Processor Storage
Dual core 16-64
Apple iPhone5 1 Gb 1.3 GHz Gb
Galaxy Quad core
Samsung S 111 1 Gb 1.4 GHz 32 Gb
Dual core
htc 8X 1 Gb 1.5 GHz 16 Gb

Table 1 shows the hardware capabilities of some popular
phones on the market. Most mobile devices have a graphics
co-processor so as to support the very consumer-focused
nature of the device for photos and videos. This hardware
feature is advantageous for image-dependent patient care
applications. The storage is wused for applications,
application-specific logs, data files, music files and
photo/video files. Due to this multi-purpose use of the local
storage and the personal preferences for applications, there
is a wide variation in the memory and disk usage patterns.
We collected the memory and disk usage from a random
sampling of 20 users (10 iPhones and 10 Androids). Results
are summarized in Figures 4 and 5.
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Figure 4. Memory usage of 20 random smartphones
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Figure 5. Disk usage of 20 random smartphones
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As can be seen from Figures 4 and 5, the usage pattern
for memory and disk is quite arbitrary between random
users. Also, note that in desktop operating systems similar
to unix/linux variants, if need be, a file system partition can
be reserved with a predetermined amount of space for an
application. Since on mobile devices it is only single multi-
purpose storage, in the current systems, such reservation is
not possible. It is also advantageous to process locally and
send representative data to a central station — which is in the
cloud. The cloud infrastructure could be public or private
depending on the nature of the application. In this study, we
are targeting native mobile apps that need local
computational cycles and cloud data services.

II.

There are many health and wellness mobile applications
geared towards educating the public on specific topics. For
example, mobile apps related to prevention and care of HIV
exists in the app stores [12]. @HealthCloud [13] is an
example of a mobile app that requires data transfer between
smartphone and cloud. This application was developed to
present DICOM images on an Android phone using cloud
data services from Amazon S3. In general, more data
transfer between mobile phone and cloud service consumes
more battery. Since battery life is a key resource that needs
to be preserved, many studies have been done to prolong
battery life. A model for battery life estimation [14] itself
has been proposed. Cyber foraging [15], selective data
reception [16] and Mobile proxy [17] are techniques
suggested for efficient battery consumption. A stand-by
method [18] for dual-mode mobile phones has been
proposed to save power. Our focus is on applications that
need to process data. Survey study has shown that [19]
many users are not aware of the battery limitations on
mobile phones and use applications or settings in non-
efficient ways. Another study [20] has shown that each
user’s behavior and device features affect the resource
utilization on the mobile phone.

RELATED WORK

I1I.

As mentioned previously, we target native mobile apps
on smartphones. The small form factor of smartphones is a
convenience for patients to carry around when they have
sensors attached to their body that has to interact with a
mobile application continuously through wireless feed. The
NFC (Near Field Communications) [21] capability of a
smartphone makes it possible to realize patient interactions
with the sensors. In the following sections, we refer to
native applications for smartphones simply as mobile apps.

There are many applications for personalized medicine
that needs local processing and data communication to a
cloud server. These are in vitro diagnostics (IVD) patient
care applications. IVD helps real-time testing of patient,
providing quality data and avoiding unnecessary trips to the
clinic. This laboratory automation also helps document
measurements that need to be taken at times even when the
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clinic is closed. For example, Continuous Glucose
Monitoring System (CGMS) is an FDA-approved device
that can record blood sugar levels read from a sensor
inserted under the skin of the patient’s abdomen [22].
Currently, the data in the CGMS has to be downloaded to
the lab computer manually after 3 days when the patient
visits the lab. If the CGMS is a smartphone application that
can interact with the lab computer, transactions will be real-
time and medical decisions can be made earlier.

These IVD applications have the general format of
needing local computation and sending results to a cloud
service (either private or public). Such personal applications
have sensors/devices attached to the patient’s body or feed
results to a mobile device from an implanted device. In
these scenarios, the mobile phone is acting as a real-time
data acquisition agent on behalf of the sensor or device. The
general structure of this configuration is shown in Figure 6.

S
il Health Service

(Attached to body/
Implanted)

Figure 6. General Structure of a mobile-cloud wellness app

For example, in a published telemonitoring study of
heart patients, single-lead ECG recordings (Selfcheck ECG
PMP4, CardGuard, Israel) were sent wirelessly to a
Blackberry smartphone via Bluetooth and then transmitted
to the data repository at the hospital (private cloud) [23].
This example illustrates the above structure.

Based on the architecture for mobile cloud application
shown in Figure 4, once the local computing on the mobile
phone takes place, results can be pushed to the cloud service
in one of two ways:

1. using a specialized protocol

2. using general Web Services
We do not delve into details here, as these are decisions to
be made based on software design.

Due to the real-time nature of the IVD applications, a
large amount of data will be generated. Instead of sending
all data points to the cloud clearinghouse, it may be possible
to do local decisions based on data within predefined time
intervals. Sending large amounts of data over the carrier
network can negatively impact battery power. In situations
where a patient’s medical condition is normal, there is
probably no need to send data. Since smartphones have
reasonably good computing power, a signature for the
current interval can be computed and compared to the prior
signatures. This is the idea behind the Promotion algorithm
that is more formally outlined in the next section.
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IV. PROMOTION ALGORITHM

This algorithm combines finer resolution time snapshots
into a coarser resolution for an attribute measured over
various times. Let there be k hierarchies of resolutions,
starting with 7, as the finest resolution and r, as the coarsest.
The algorithm should be able to handle arbitrary starting
resolution and ending resolution within a window. A
window corresponds to a set of data points whose time
resolutions are completely within 7, time frame. The
adjusted attribute value (aav) for a window will be a single
calculated value representative for r, time frame. The
number of data points in the window for resolution r,is
represented as count,;.

For example, if k = 4, r, could be 10 minutes, r, could be
60 minutes (1 hr), r, could be 24 hours (1 day) and r, could
be 1-week in resolution. Data points could be collected at
each minute interval. This means count,;is 10, count,is 6,
countsis 24 and count,is 7.

The algorithm starts with an attribute of resolution r,
(from 1" data point) and keep on moving the data cursor,
adding attributes to a bin (or basket) for the window, until
an attribute beyond the current window is encountered.
During this pass, when count points accumulate in the bin,
an adjusted attribute value (aav) is calculated as a
representative value for the attributes in the current bin (as a
collapsed value). Then this aav is promoted to the next bin
corresponding to r_,. Once count, ,values accumulate in bin
for r ., the aav for this bin is calculated and promoted to the
bin corresponding to r_,and so on until the promotion ends
with r, The aav for the bin w.r.t. r is a representative value
for the window corresponding to r. After the aav for a bin is
calculated and promoted to the next bin, the entries in the
bin are cleared. The formal version of the algorithm is given
below:

Let r, r,, ..., 1, be monotonically increasing units of
resolution for time factors of interest for a temporal attribute
u. Bach r, is a multiple of r,. Assume that the time
resolution t, associated with each data point d, is always
known. The resolution of this value t,can be any one of r,, 1,
..., I,. This means the value t.can be in one of these units.
Another assumption is that the data points are sorted
sequentially in time.

Promotion algorithm

variables: cursor, bin_resolution,
binr,, binr,, ...., binr,
begin algorithm
initialize binr,, binr,, .... , binr, to be empty
while more data points are available

keep a cursor on the next available data point
bin_resolution = resolution of current point
add current d, attribute to bin
do

bin_resolution

Whlle binbin,reso]micu is full
compute adjusted attribute value
(aav) for bin

bin_resolution



add aav to bin,
empty bing,
binbin resoluti(:n = bln
end while
end do
end while

end algorithm

bin_resolution->next

bin_resolution->next

Illustration:

Assume 3*r, =r, and 3*r, =r,. Here, 1, is the finest and r,
is the coarsest of resolutions. (r, is data captures at 20
minutes interval and the representatives are to be calculated
for 3 hour intervals.) Consider the following 9 data points
(in sequence) captured at resolution r,.

0.50, 0.55, 0.57, 0.55, 0.54, 0.52, 0.60, 0.59, 0.52

Initially the three bins corresponding to r,, r, and r, are
[1, [, [1. i.e, they are all empty. Once [0.5, 0.55, 0.57] bin is
generated, the aav (in this case, we use mean for illustration)
is 0.54. This aav will be promoted to the next bin for r,
Now, the bins are [], [0.54], []. And so on. Here are the
sequences:

bin for r, bin forr, bin for r,
[0.5,0.55, 0.57] [ (1

[l [0.54] l
[0.55, 0.54, 0.52] [0.54] []

(1 [0.54, 0.54] [l
[0.6,0.59, 0.52] [0.54, 0.54] [l

(1 [0.54, 0.54, 0.57] []

1 (1 [0.55]

Hence the final aav is 0.55.

The aav can be calculated based on an algorithm suitable
for generating a representative value for the bin. In the
above example, aav for bin, could bemean, while aav for
bin, could be mode and the aav for bin,can be harmonic
mean.

V.

We implemented the promotion algorithm using a
Raspberrypi as the sensor, an Android smartphone for real
time data acquisition and a Linux server in a private cloud
simulating the Health service. All client and server software
were written in Java. Raspberrypi was run using “Soft-float
Debian wheezy” linux kernel so that we could install
Embedded Java Virtual Machine on it. The server software
for Android phone was written using Android SDK on
Eclipse IDE. The Raspberrypi sent data points to the
Android phone in realtime. From the Android phone,
representative data points were sent to a virtual Linux server
in the private cloud. A service was deployed on the Linux
server to receive the data points. These components are
shown in Figure 7.

EXPERIMENTS
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Figure 7. Components in the Implementation of Promotion Algorithm
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The details of the Operating systems and Java Virtual
Machines (JVM) are given in Table 2.

Table II. Versions of OS’s and JVM’s

Device Operating System JVM
Debian wheezy Embedded
Rapsberrypi Linux 3.1.9 JRE ver. 7
HTC Android v 4.2.2 Dalvik 1.7
vmware Linux OpenJDK SE
virtual server CentOS 6 ver. 6
The Raspberrypi client generated random values

(between 0 and 1) continuously and sent to the Android
server. The promotion algorithm was implemented using
three resolutions: rl was set at 10 data points (finest
resolution), 12 was set at 6 and r3 was set at 5 (coarsest
resolution). At rl resolution, the aav used was mean. At 12
level, the aav was maximum value from the 6 rl aav’s. For
r3, aav was defined as range; i.e., max — min. We ran four
experiments. In the first experiment, all points were sent to
the Linux server from Android. In the second experiment, r1
was computed locally and sent to server. In the third
experiment, rl and r2 were computed locally and 2 was
sent to the server. In the fourth experiment, all values rl, r2
and r3 were computed locally on Android and r3 was sent to
the server. We tested the data transfer from the Android
device to the private cloud over a 4G network. The battery
discharge in different scenarios is given in Table 3.

Table III. Battery discharge over 4G

Smartphone Cloud Battery | Time
computation computation use
<All points send aavl, aav2 & 18
to cloud> aav3 9% mins
aavl aavl & aav2 2% 9 mins
aavl & aav2 aav3 <1% 63 secs
aavl, aav2 &
aav3 <none> <<1% | 54 secs




In each experiment, 10.8 million data points were
generated at resolution rl. As seen from Table 3, the local
computations on the smartphone resulted in faster results
and substantially small battery power usage. The algorithm
can be used to send an initial burst of data points within a
window. If sufficient number of data points is sent in the
highest resolution, a match for known medical conditions
can be tested at the cloud service. Once the match is known,
then an action can be taken on the remaining data points. It
is also possible to use the highest resolution data points to
establish a baseline profile. Once normal stage is reached, it
is only necessary to send the periodic signatures at a lower
resolution. The decision to process locally or in the cloud
any one of the aav’s at any resolution can be made based on
the resource availability on the smartphone.
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We outlined the role of mobile computing devices and
cloud services in the context of personalized healthcare and
wellness applications. Various security issues relevant to the
environment were elaborated. The focus was on smartphone
apps that served as real time data acquisition systems from
sensors/devices attached to patient’s body. We introduced
promotion algorithm as a mechanism to utilize the local
computing power of smartphones and to efficiently use data
channel. Experimental results show that the algorithm can
help preserve battery life by utilizing local computation.
This is useful for personal health and wellness mobile
applications as battery life is an important factor.

CONCLUSION
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