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Abstract— Mobile computing and cloud services are two 
technologies that have gained momentum in recent times. The 
proliferation of mobile computing devices and network 
connectivity has made it an attractive platform for delivering 
personalized services in many business domains including 
healthcare. Personalized health and wellness mobile 
applications have computational and data requirements that 
are necessitated by the localized processing needs of the 
application. The on-demand provisioning capability and 
elasticity of cloud services combined with the local processing 
capability of mobile devices can provide an ecosystem for 
pervasive access to health information. In this study we explore 
some of the specifics of these health and wellness applications. 
We introduce promotion algorithm as a mechanism to 
efficiently process data points locally by mobile devices. This 
algorithm can take advantage of the local processing power of 
smartphones and help reduce communication costs between 
mobile endpoint and cloud-based long-term data services. 
Experiments were performed using an Android smartphone 
for real time data acquisition of more than 10 million data 
points and a Linux server in a private cloud over 4G network 
simulating a health service. Results showed that the proposed 
algorithm could help preserve battery life by a factor of 10 and 
reduce data communication time by a factor of 20 as a result of 
utilizing local computation on a mobile device. 

Keywords - medical informatics; mobile cloud computing; 
personlized wellness. 

I.  INTRODUCTION 
The architecture and design of personalized applications 

are influenced by social computing platform experiences of 
the masses. This is necessitated by the familiarity of 
common user interfaces in the social context. There are two 
service areas where these influences are well pronounced. 
First one is mobile computing and the second one is cloud 
services. Both these technologies have been commercially 
successful and have been widely researched. Needless to 
say, both technologies are past their emerging stages and are 
mature. Users at large are used to mobile phone based 
computing environment as well as social cloud services.  

The proliferation of mobile computing devices has 
introduced some popular features and capabilities that can 
be taken advantage of, in the personal health and wellness 
applications space. The affordances offered by mobile 
computing devices are commonplace and so applications 

can make use of these. For example, a mobile application 
can be set with different alert tones for different events. 
Texting apps have the capability to set different delivery 
tones for different friends. In a similar vein, a medical app 
can use distinct alert tones to signal different severity levels 
of a medical condition to the patient. Timer capabilities, 
alarm capabilities, time zone change etc. are all features that 
can be taken advantage of. Hardware-dependent operations 
like swiping, zooming and pinching are operations natural to 
the mobile computing platform. The accessible from 
anywhere mantra of mobile devices are attractive for 
personal apps.  

Mobile applications can be deployed in two ways. One is 
as a web-based application using html5. The other is as a 
native application. The correspondence of mobile 
application deployment scenarios with traditional desktop 
application deployment formats is shown in Figure 1. 
 

 
 

Figure 1. Deployment Formats of Traditional and Mobile apps 
 

Mobile web applications run on the server-side, but the 
device needs continuous Internet connection. The desktop 
web applications and mobile web applications runs using a 
web browser within the graphical user interface. However, 
the desktop applications are installed from a media and the 
native mobile apps are usually downloaded from the app 
store. The native apps run locally and needs Internet 
connection only when data needs to be pushed to a cloud 
service. Native applications can take advantage of many 
hardware affordances. But these are device-dependent. Our 
focus is on the native applications for personal health and 
wellness.  

Mobile phone users are used to downloading 
applications from the app store. Practically, these 
applications do not require any training for the end user. In 
general, users are comfortable figuring it out. Downloads 
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from Apple’s app store and Google play store average more 
than a billion per month. This trend clearly shows the 
potential for a personal health application to be embraced by 
mobile phone users. The app distribution has two models. 
One is through a single source (as in the case of iPhone 
apps). The other is through any store (as in the case of 
Android apps). The two store scenarios present two different 
models that a personal healthcare app provider should 
choose between. In 2012, iPhones and Android phones 
accounted for more than 85% of the mobile market place. 
Even though mobile tablet devices have functionalities very 
similar to mobile smartphones, in this paper, our focus is 
strictly on smartphones – due to the pocket size small 
physical form factor. This small form factor is a 
convenience for patients who need to be interacting with a 
mobile application continuously. 

In spite of these advantages, there are some recent 
incidents that are disheartening. The possibility of viruses 
on mobile computing devices was known for almost a 
decade now [1]. Though Apple has a tough gatekeeper 
policy for the App Store, a hacker was able to get a rogue 
application into the App Store [2]. In a recent publication by 
IDG, it was mentioned that the number of malicious and 
high-risk apps for Android is expected to triple from about 
350,000 in 2012 to more than a million in 2013 [3]. This is 
an alarming trend for smartphones as an infected device can 
disturb the working of a medical wellness application that is 
critically important for a patient.  

Another challenge related to smartphones is the co-
mingling of functionalities. A smartphone can be used as a 
cell phone, video recorder/player, camera/photo gallery, 
music player, texting device, etc. They are also used to 
running multiple applications concurrently. Consequently, 
multiple processes vie for computing resources of the 
device. This has to be taken into consideration when a 
personal health app is designed. 

On a different technology spectrum, enabling 
consumerization of IT services, cloud computing [4] have 
been gaining momentum. Elasticity of resources is one big 
advantage of cloud environment. However, co-tenancy of 
customers has raised questions about data security and data 
pilfering. Ironically, co-tenancy helps the provider to bring 
down service costs. One of the major issues with cloud 
service is the non-standard proprietary entry points. This 
makes it difficult to switch cloud provider in a seamless 
fashion. One of the attractive cloud services is data storage. 
However, the API’s provided by one vendor is non-portable 
to another vendor and so customers gets locked to a cloud 
service provider. Data protection while hosting data with a 
provider should be seriously considered. This involves 
channel protection as well safeguarding data at rest. Channel 
protection can be accomplished via different symmetric and 
asymmetric encryption mechanisms [5]. Information 
Lifecycle Management calls for mechanisms similar to 
timed data shredding [6] so as not to leave data trails. For 
production data at rest, on the fly encryption techniques 

exist. Appliances that serve as encryption gateways 
(example – Voltage [7]) are available. Ideally, 
homomorphic encryption [8] is able to handle encryption of 
data in the cloud. 

The general layout of a multi-user computing services 
environment is shown in Figure 2. 
  

 
 

Figure 2. Reference layout of a multi-user computing environment 
 

In the 1960’s, when multi-user computing environments 
were introduced, users connected to the services from dumb 
terminals using serial protocol. In today’s mobile cloud 
computing environment, users connect to services or 
resources via mobile computing devices using TCP/IP 
protocol. Thus the architectural representation in Figure 2 is 
valid from both current and historical perspectives. 
Consequently it may be argued that “many cloud computing 
security problems are not in fact new, but often will still 
require new solutions in terms of specific mechanisms” [9]. 
For example, the data path from the mobile device to the 
service is through a provider of user’s choice. In a corporate 
environment, the data path from a computing device to a 
server is within the confines of the corporate network and so 
less susceptible to eves dropping by an outsider. In the 
mobile scenario, the data path need not be within the 
corporate boundary. This is illustrated in Figure 3. 

 

 
 

Figure 3. Mobile device connections to cloud services 
 

As shown in the top inside box of Figure 3, the data path 
for a user connecting to a local service is within the 
corporate network. But, the access through a cell provider is 
outside the corporate network boundary  (as shown in 
bottom half of Figure 3). Thus it is necessary to protect the 
data channel when public network is used. Since our focus 
is on personal health for the general public, the data path is 
almost always through a public network. 
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Mobile computing has the following advantages in 
personal healthcare domain: access to test results, 
emergency response and personalized monitoring (both off-
band and online) [10,11] using an app. The mobile devices 
have multi-tasking operating systems. This makes it 
attractive for component-based applications. In spite of all 
these advantages, the mobile platform has its limitations. 
Smartphones have two channels – one for phone and one for 
data. Data bandwidth subscription dictates how much can be 
transferred without overcharge. When designing a data 
intensive health application that needs to communicate to a 
cloud service, the limit on the subscribed data bandwidth 
should be taken into consideration. 
 

Table I. Hardware profiles of some common smartphones 
 

Make Model Memory Processor Storage 

 
Apple 

 
iPhone5 

 
1 Gb 

Dual core 
1.3 GHz 

16-64 
Gb 

 
Samsung 

Galaxy  
S III 

 
1 Gb 

Quad core 
1.4 GHz 

 
32 Gb 

 
htc 

 
8X 

 
1 Gb 

Dual core 
1.5 GHz 

 
16 Gb 

 
Table 1 shows the hardware capabilities of some popular 

phones on the market. Most mobile devices have a graphics 
co-processor so as to support the very consumer-focused 
nature of the device for photos and videos. This hardware 
feature is advantageous for image-dependent patient care 
applications. The storage is used for applications, 
application-specific logs, data files, music files and 
photo/video files. Due to this multi-purpose use of the local 
storage and the personal preferences for applications, there 
is a wide variation in the memory and disk usage patterns. 
We collected the memory and disk usage from a random 
sampling of 20 users (10 iPhones and 10 Androids). Results 
are summarized in Figures 4 and 5.  
 

   
 

Figure 4. Memory usage of 20 random smartphones 
 

   
 

Figure 5. Disk usage of 20 random smartphones 

As can be seen from Figures 4 and 5, the usage pattern 
for memory and disk is quite arbitrary between random 
users. Also, note that in desktop operating systems similar 
to unix/linux variants, if need be, a file system partition can 
be reserved with a predetermined amount of space for an 
application. Since on mobile devices it is only single multi-
purpose storage, in the current systems, such reservation is 
not possible. It is also advantageous to process locally and 
send representative data to a central station – which is in the 
cloud. The cloud infrastructure could be public or private 
depending on the nature of the application. In this study, we 
are targeting native mobile apps that need local 
computational cycles and cloud data services. 

II.  RELATED WORK 
There are many health and wellness mobile applications 

geared towards educating the public on specific topics. For 
example, mobile apps related to prevention and care of HIV 
exists in the app stores [12]. @HealthCloud [13] is an 
example of a mobile app that requires data transfer between 
smartphone and cloud. This application was developed to 
present DICOM images on an Android phone using cloud 
data services from Amazon S3. In general, more data 
transfer between mobile phone and cloud service consumes 
more battery. Since battery life is a key resource that needs 
to be preserved, many studies have been done to prolong 
battery life. A model for battery life estimation [14] itself 
has been proposed. Cyber foraging [15], selective data 
reception [16] and Mobile proxy [17] are techniques 
suggested for efficient battery consumption. A stand-by 
method [18] for dual-mode mobile phones has been 
proposed to save power. Our focus is on applications that 
need to process data. Survey study has shown that [19] 
many users are not aware of the battery limitations on 
mobile phones and use applications or settings in non-
efficient ways. Another study [20] has shown that each 
user’s behavior and device features affect the resource 
utilization on the mobile phone. 

III. PERSONALIZED HEALTH AND WELLNESS APPS 
As mentioned previously, we target native mobile apps 

on smartphones. The small form factor of smartphones is a 
convenience for patients to carry around when they have 
sensors attached to their body that has to interact with a 
mobile application continuously through wireless feed. The 
NFC (Near Field Communications) [21] capability of a 
smartphone makes it possible to realize patient interactions 
with the sensors. In the following sections, we refer to 
native applications for smartphones simply as mobile apps. 

There are many applications for personalized medicine 
that needs local processing and data communication to a 
cloud server. These are in vitro diagnostics (IVD) patient 
care applications. IVD helps real-time testing of patient, 
providing quality data and avoiding unnecessary trips to the 
clinic. This laboratory automation also helps document 
measurements that need to be taken at times even when the 
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clinic is closed. For example, Continuous Glucose 
Monitoring System (CGMS) is an FDA-approved device 
that can record blood sugar levels read from a sensor 
inserted under the skin of the patient’s abdomen [22]. 
Currently, the data in the CGMS has to be downloaded to 
the lab computer manually after 3 days when the patient 
visits the lab. If the CGMS is a smartphone application that 
can interact with the lab computer, transactions will be real-
time and medical decisions can be made earlier.  

These IVD applications have the general format of 
needing local computation and sending results to a cloud 
service (either private or public). Such personal applications 
have sensors/devices attached to the patient’s body or feed 
results to a mobile device from an implanted device. In 
these scenarios, the mobile phone is acting as a real-time 
data acquisition agent on behalf of the sensor or device. The 
general structure of this configuration is shown in Figure 6. 
 

 
 

Figure 6. General Structure of a mobile-cloud wellness app  
 

For example, in a published telemonitoring study of 
heart patients, single-lead ECG recordings (Selfcheck ECG 
PMP4, CardGuard, Israel) were sent wirelessly to a 
Blackberry smartphone via Bluetooth and then transmitted 
to the data repository at the hospital (private cloud) [23]. 
This example illustrates the above structure. 

Based on the architecture for mobile cloud application 
shown in Figure 4, once the local computing on the mobile 
phone takes place, results can be pushed to the cloud service 
in one of two ways: 

1. using a specialized protocol 
2. using general Web Services  

We do not delve into details here, as these are decisions to 
be made based on software design. 

Due to the real-time nature of the IVD applications, a 
large amount of data will be generated. Instead of sending 
all data points to the cloud clearinghouse, it may be possible 
to do local decisions based on data within predefined time 
intervals. Sending large amounts of data over the carrier 
network can negatively impact battery power. In situations 
where a patient’s medical condition is normal, there is 
probably no need to send data. Since smartphones have 
reasonably good computing power, a signature for the 
current interval can be computed and compared to the prior 
signatures. This is the idea behind the Promotion algorithm 
that is more formally outlined in the next section. 

IV. PROMOTION ALGORITHM 
This algorithm combines finer resolution time snapshots 

into a coarser resolution for an attribute measured over 
various times. Let there be k hierarchies of resolutions, 
starting with r1 as the finest resolution and rk as the coarsest. 
The algorithm should be able to handle arbitrary starting 
resolution and ending resolution within a window. A 
window corresponds to a set of data points whose time 
resolutions are completely within ri time frame. The 
adjusted attribute value (aav) for a window will be a single 
calculated value representative for ri time frame. The 
number of data points in the window for resolution ri is 
represented as counti. 

For example, if k = 4, r1 could be 10 minutes, r2 could be 
60 minutes (1 hr), r3 could be 24 hours (1 day) and r4 could 
be 1-week in resolution. Data points could be collected at 
each minute interval. This means count1 is 10, count2 is 6, 
count3 is 24 and count4 is 7. 

The algorithm starts with an attribute of resolution rx 

(from 1st data point) and keep on moving the data cursor, 
adding attributes to a bin (or basket) for the window, until 
an attribute beyond the current window is encountered. 
During this pass, when countx points accumulate in the bin, 
an adjusted attribute value (aav) is calculated as a 
representative value for the attributes in the current bin (as a 
collapsed value). Then this aav is promoted to the next bin 
corresponding to rx+1. Once countx+1 values accumulate in bin 
for rx+1, the aav for this bin is calculated and promoted to the 
bin corresponding to rx+2 and so on until the promotion ends 
with rk. The aav for the bin w.r.t. rx is a representative value 
for the window corresponding to rx. After the aav for a bin is 
calculated and promoted to the next bin, the entries in the 
bin are cleared. The formal version of the algorithm is given 
below: 

Let r1, r2, ....., rk be monotonically increasing units of 
resolution for time factors of interest for a temporal attribute 
u. Each rs is a multiple of rs-1. Assume that the time 
resolution ti associated with each data point di is always 
known. The resolution of this value ti can be any one of r1, r2, 
..., rk. This means the value ti can be in one of these units. 
Another assumption is that the data points are sorted 
sequentially in time. 

 
Promotion algorithm 
 
      variables: cursor, bin_resolution, 
                       binr1, binr2, …. , binrk 
    begin algorithm 
            initialize binr1, binr2, …. , binrk to be empty 
        while more data points are available 

     keep a cursor on the next available data point 
  bin_resolution = resolution of current point 

               add current di attribute to binbin_resolution 
               do  
                     while binbin_resolution is full 

          compute adjusted attribute value  
           (aav) for binbin_resolution 
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  add aav to binbin_resolution->next    
                            empty binbin_resolution 

         binbin_resolution  = binbin_resolution->next 
                     end while 
               end do    
        end while 
    end algorithm 
 
Illustration: 

 
Assume 3*r1 = r2 and 3*r2 = r3. Here, r1 is the finest and r3 

is the coarsest of resolutions. (r1 is data captures at 20 
minutes interval and the representatives are to be calculated 
for 3 hour intervals.) Consider the following 9 data points 
(in sequence) captured at resolution r1. 
 

0.50, 0.55, 0.57, 0.55, 0.54, 0.52, 0.60, 0.59, 0.52 
 
          Initially the three bins corresponding to r1, r2 and r3 are 
[] , [], []. i.e, they are all empty. Once [0.5, 0.55, 0.57] bin is 
generated, the aav (in this case, we use mean for illustration) 
is 0.54. This aav will be promoted to the next bin for r2. 

Now, the bins are [], [0.54], []. And so on. Here are the 
sequences: 
 
 bin for r1                       bin for r2                     bin for r3 

 
[0.5, 0.55, 0.57]                 []                                [] 
[]                                       [0.54]                          []  
[0.55, 0.54, 0.52]              [0.54]                          [] 

[]                                   [0.54, 0.54]                     []  
[0.6, 0.59, 0.52]            [0.54, 0.54]                     [] 

[]                                 [0.54, 0.54, 0.57]              []  
[]                                        []                             [0.55] 

  

Hence the final aav is 0.55.  
 

The aav can be calculated based on an algorithm suitable 
for generating a representative value for the bin. In the 
above example, aav for binr1 could be mean, while aav for 
binr2 could be mode and the aav for binr3 can be harmonic 
mean. 

V. EXPERIMENTS 
We implemented the promotion algorithm using a 

Raspberrypi as the sensor, an Android smartphone for real 
time data acquisition and a Linux server in a private cloud 
simulating the Health service. All client and server software 
were written in Java. Raspberrypi was run using “Soft-float 
Debian wheezy” linux kernel so that we could install 
Embedded Java Virtual Machine on it. The server software 
for Android phone was written using Android SDK on 
Eclipse IDE. The Raspberrypi sent data points to the 
Android phone in realtime. From the Android phone, 
representative data points were sent to a virtual Linux server 
in the private cloud. A service was deployed on the Linux 
server to receive the data points. These components are 
shown in Figure 7. 

 

 
 

Figure 7. Components in the Implementation of Promotion Algorithm 
 

The details of the Operating systems and Java Virtual 
Machines (JVM) are given in Table 2. 
 

Table II. Versions of OS’s and JVM’s 
 

Device Operating System JVM 
 

Rapsberrypi 
Debian wheezy 

Linux 3.1.9 
Embedded 
JRE ver. 7 

HTC Android v 4.2.2 Dalvik 1.7 
vmware 

virtual server 
Linux 

CentOS 6 
OpenJDK SE 

ver. 6 
 

The Raspberrypi client generated random values 
(between 0 and 1) continuously and sent to the Android 
server. The promotion algorithm was implemented using 
three resolutions: r1 was set at 10 data points (finest 
resolution), r2 was set at 6 and r3 was set at 5 (coarsest 
resolution). At r1 resolution, the aav used was mean. At r2 
level, the aav was maximum value from the 6 r1 aav’s. For 
r3, aav was defined as range; i.e., max – min. We ran four 
experiments. In the first experiment, all points were sent to 
the Linux server from Android. In the second experiment, r1 
was computed locally and sent to server. In the third 
experiment, r1 and r2 were computed locally and r2 was 
sent to the server. In the fourth experiment, all values r1, r2 
and r3 were computed locally on Android and r3 was sent to 
the server. We tested the data transfer from the Android 
device to the private cloud over a 4G network. The battery 
discharge in different scenarios is given in Table 3. 

 
Table III. Battery discharge over 4G 

 
Smartphone 
computation 

Cloud 
computation 

Battery 
use 

Time 

<All points send 
to cloud> 

aav1, aav2 & 
aav3 

 
9% 

18 
mins 

 
aav1 

 
aav1 & aav2 

 
2% 

 
9 mins 

 
aav1 & aav2  

 
aav3 

 
<1% 

 
63 secs 

aav1, aav2 & 
aav3 

 
<none> 

 
<<1% 

 
54 secs 
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In each experiment, 10.8 million data points were 
generated at resolution r1. As seen from Table 3, the local 
computations on the smartphone resulted in faster results 
and substantially small battery power usage. The algorithm 
can be used to send an initial burst of data points within a 
window. If sufficient number of data points is sent in the 
highest resolution, a match for known medical conditions 
can be tested at the cloud service. Once the match is known, 
then an action can be taken on the remaining data points. It 
is also possible to use the highest resolution data points to 
establish a baseline profile. Once normal stage is reached, it 
is only necessary to send the periodic signatures at a lower 
resolution. The decision to process locally or in the cloud 
any one of the aav’s at any resolution can be made based on 
the resource availability on the smartphone. 

VI. CONCLUSION 
We outlined the role of mobile computing devices and 

cloud services in the context of personalized healthcare and 
wellness applications. Various security issues relevant to the 
environment were elaborated. The focus was on smartphone 
apps that served as real time data acquisition systems from 
sensors/devices attached to patient’s body. We introduced 
promotion algorithm as a mechanism to utilize the local 
computing power of smartphones and to efficiently use data 
channel. Experimental results show that the algorithm can 
help preserve battery life by utilizing local computation. 
This is useful for personal health and wellness mobile 
applications as battery life is an important factor. 
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