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Abstract — Geospatial data collected by remote sensing
instruments are characterized by substantial variations in
attribute values and relationships over space and time, posing
great challenges to develop models with maximum predictive
power. In this paper, we propose an approach in which global
and local models are constructed, and predictions made by
properly weighting their outputs. The algorithm is evaluated on
aerosol optical thickness prediction using four consecutive
MISR data sets collected in 2002 over the continental US.
Results show that while the R? accuracy of the ANN global and
local models are at most 0.25 and 0.4 respectively, the fusion
model is significantly more successful, achieving R® accuracy
above 0.50. In addition, accuracy improvements differ by spatial
location, the largest being in the western US, and the smallest
being in the east. This could be exploited to further improve the
fusion algorithm.
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heterogeneous data, model fusion.

1 Introduction

Geophysical data collected through remote sensing are
increasingly used in Earth sciences applications [10]. The
size, quality, complexity and variability of atmospheric
data collected by satellite instruments create many
challenges in data analysis and modeling. The challenge
addressed in this article is related to supervised learning
from heterogeneous data characterized by large variations
of observed attribute statistics, and by target functions that
depend on unobserved attributes. We consider the
problem of using remotely sensed attributes to predict
geospatial parameters of interest. The specific objective of
this study is prediction of atmospheric aerosol information
from radiances observed by satellite instruments.

Prior related research has focused on construction of
global prediction models from available labeled data. For
example, a linear regression model was developed to
measure correlation between dust concentrations and
mean monthly values of aerosol optical thickness (AOT)
on a global scale [11]. While such global approaches are
convenient and use data collected over the entire Earth to
learn complex models, the global predictors might fail to
fully explain properties of specific spatial regions. Such
problems were observed in various studies including
exploration of the relationship between remote sensing
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visible bands and surface reflectance. For instance, it was
found that surface reflectance, which is a critical
parameter in the accurate derivation of optical thickness
over land, varied substantially from one type of vegetation
to another [12].

For heterogeneous data with varying characteristics
over different local regions, an alternative solution is to
construct a number of local predictors, each specific to a
given spatial area. Such an approach is employed in the
operational algorithms of MISR (the Multi-angle Imaging
SpectroRadiometer) [8], a satellite instrument collecting
aerosol data for NASA since early 2000. MISR is unique
because it views Earth from nine different viewing angles
and in four spectral bands simultaneously. Most sensors
of this type use only one view angle. MISR measures
reflected solar radiation in (9 x 4 =) 36 channels, and
complex, computationally intensive algorithms, called
retrieval algorithms, are used to convert the radiances into
aerosol optical thickness (AOT) measurements. AOT is a
measure of the attenuation of solar energy as photons
travel through a column of atmosphere. It is an important
quantity in the study of climate and climate change. MISR
uses different algorithms for retrievals over different
surface types [2, 9]. Region-specific approaches to
retrieval of aerosol properties were also considered in [4].
While development of local models addresses the data
heterogeneity problem, the scarcity of locally-specific
annotated data could raise issues related to the choice of
model complexity and overfitting control in supervised
learning.

In this paper, we propose a fusion modeling approach
where both global and local models are constructed, and a
prediction obtained by weighting their outputs. We also
develop a procedure for determining optimal weighting
factors that minimize the mean squared prediction error
over a specific region.

Our method is evaluated by performing six AOT
prediction experiments using MISR data over the
continental US during four time periods of 16-day
duration in 2002. We obtained MISR radiance and AOT
data from NASA’s Langley Research Center [5] for the
periods from 07/01/2002 - 09/02/2002. In each
experiment, data collected in the previous period(s) are
used to train global, local, and fusion models. These
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models are applied to predict AOT values in the following
16-day period. We used artificial neural networks to
construct both global and local models. Results indicate
that the fusion model is more accurate than either local or
global models alone. In addition, spatial analysis of
prediction errors reveals that AOT over the western US
are more difficult to predict than those in the east.
Nevertheless, in both areas it is evident that prediction
accuracy improves with the increase of the training data
set size.

2 Methodology

2.1 Problem Definition

Given a spatial data set D with N training examples, each
example d; € D is represented by a pair (x;,y;), where y; is
the target attribute and x; = [X;;...Xjm] is an M-dimensional
vector of attributes derived from the observed radiance
information. The objective is to construct an accurate
predictor f(x;B) of target attribute y by optimizing
parameters 3 from a training set D, such that the mean
squared error is minimized:

MSE =l§(yi—f(xi,[3))2. )
N =1

2.2 Global, Local, and Fusion Models

For data D partitioned into L spatial regions, the objective
of local modeling is to construct L region specific
predictors. Given a training data subset T of size N;
representing the local region j, j = 1...L, the
corresponding local model is learned by optimizing
parameters of function fj that minimize the mean squared
error over the local training data T;.

Local modeling allows us to exploit specific
dependencies existing in  spatially constrained regions.
However, to avoid local model overfitting due to scarcity
of training data in local regions, one is forced to rely on
insufficiently expressive models that might overlook
important nonlinear local relationships. This issue is
addressed by a global modeling approach that learns a
single global model f; from the whole data set D.
However, global models can fail to exploit the intricacies
of the heterogeneous spatial data.

In view of this trade-off between local and global
model benefits, we propose a fusion predictor g; for each
local region j,j=1...L:

gi(x) = afg(x,Be) +A-apf;(x,B)), @

where the fusion parameters o, j = 1...L, are constrained
to lie in the interval [0, 1].

In (2), the global model f; aims at discovering
spatially-independent properties of the whole data set by
adjusting parameters Bg. Local model f; aims to discover
locally specific properties of the data by adjusting
parameters ;. We used feedforward artificial neural
networks (ANN’s) with a single layer of hidden neurons

to construct both global and local models. In the fusion
predictor g;, the fusion parameters o, j = 1...L, are used
to find the optimal trade-off between the global and local
models that maximizes the prediction accuracy over a
particular local region.

2.3 Optimization of the Fusion Parameters

The fusion parameter o in equation (2) is optimized to
minimize mean squared prediction error of fusion model
g; defined as

N;
MSE; = E(Yi = (o (x;,Be) +(1 _aj)fj(xi’Bj)))z E)
It is easy to show that the optimal choice of a; is

NA
,_il(yi ~£;0%,B) - (Fg (%1,B6 )~ £ (x;,B;)

aj=

; @)
E(fc(xi,ﬁa)—f,-(xi,ﬁj))z

If o <0, its value is set to zero, and if o; > 1, its value
is set to one.

It is worth noting that the value of the fusion parameter
is a very informative piece of information about the
nature of a local region. If g is near 1, the properties of
the local area do not differ from the global properties,
while if o is near 0, the local area is very different from
the overall data distribution.

3 Experimental Results

3.1 Data Set

The MISR instrument aboard NASA’s Terra satellite
consists of nine cameras [1, 3, 6]. Terra is in polar orbit,
and so MISR sees 36 (nine angles and four wavelengths)
pieces of information for each north-to-south swaths of
the Earth on each Terra daytime half-orbit. The central
camera points directly downward, four cameras point
forward and down along the flight path, and four point
afterward and down. The pointing angles are 0°, +26.1°,
+45.6°, £60.0°, and +£70.5° relative to nadir. Each camera
measures radiances in four spectral bands: blue, green,
red and near-infrared. The band spectral shapes are
approximately Gaussian and centered at 446, 558, 672,
and 866nm, respectively. Thus, each 1.1 km pixel is
described by 36 radiance measurements. Terra has a
repeat cycle of 16 days, meaning that every 16 days the
ground track repeats. In total, there are 233 distinct MISR
orbit paths in the cycle, each covering about 360 km wide
scanning swath.

In our experiments, we used four consecutive 16-day
cycles of MISR Level 1B2 radiance data and MISR Level
2 aerosol data [5] over the continental US. There are 47
paths covering the continental US, but data from only 33
paths were used in this study as only these paths were
available for all 4 cycles (see Table 1). The radiance
product includes 36 radiance measurements per data point
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with 1.1km X 1.lkm resolution. The MISR Level 2
aerosol product provides AOT information at
17.6k X 17.6km resolution.

To merge the radiance and AOT data, each radiance
attribute is averaged over each 17.6k X 17.6km block
represented by a single AOT value. Before averaging, the
MISR quality flag is used to identify and remove pixels
with non-valid radiance information. Since AOT is not
provided for regions covered with clouds, such regions
are not used.

Table 1. Data set summary

Time Period Number of points
(over 33/47)
Cycle1 2002-7-1 —2002-7-16 30530/45448
Cycle2  2002-7-17 - 2002-8-1 32374/49224
Cycle3  2002-8-2 —2002-8-17 22395/35903
Cycle4 2002-8-18 — 2002-9-2 20079/32394

3.2 Experimental Design

Given spatial coordinates, 36 radiance attributes, and

AOT values obtained in previous cycles, our task is to

predict AOT on the subsequent cycles. We designed the

following six groups of experiments to compare

prediction accuracy of our fusion approach against those

of global and local models alone.

El. Cycle 1 training data are used to predict optical
thickness in cycle 2;

E2. Cycle 1 training data are used to predict optical
thickness in cycle 3;

E3. Cycle 1 training data are used to predict optical
thickness in cycle 4;

E4. Cycle 1 and 2 training data are used to predict optical
thickness in cycle 3;

ES5. Cycle 1 and 2 training data are used to predict optical
thickness in cycle 4;

E6. Cycle 1, 2 and 3 training data are used to predict
optical thickness in cycle 4.

The experimental procedure consists of the following
steps:
STEP 1. Merge all data points from training cycles into a
global data set T.
Randomly select 10,000 examples from T to
construct a global model fg.
For each path j, j = 1...33, merge the
corresponding data points into a local data set

STEP 2.

STEP 3.

T;. Divide Tj evenly into two subsets Tj; and Tj,.

STEP 4.
STEP 5.

By using data in Tj;, construct a local model f;.
Use Tj; to validate and compute the fusion
parameter a;.
Use global, local, and fusion models to predict
AOT values for each path of the test cycle(s).
Return to STEP 3 by proceeding with the data
from the next path.

In the experiments, we used feedforward neural
networks trained by the backpropagation algorithm to
construct global and local models. Each neural network

STEP 6.

STEP 7.

had an input layer with 36 radiance attributes, a single
hidden layer with 10 hidden units, and a single output unit.

3.3 Accuracy Results

The results of comparing the overall accuracy achieved
by global, local and fusion model are reported in Table 2.
The accuracy is measured by the mean squared error
(MSE) and by the coefficient of determination R-squared
(R R*=1-MSE/Var(AOT), where Var(AOT) is the
variance of AOT values on test data.
Table 2. Prediction accuracy on the test cycles
E1: Predict cycle 2 by training on cycle 1

Predictor Global Local Fusion
MSE 0.0189 0.0187 0.0147
R? 0.1391 0.1491 0.3286

E2: Predict cycle 3 by training on cycle 1

Predictor Global Local Fusion
MSE 0.0251 0.0180 0.0153
R? 0.0800 0.3404 0.4550

E3: Predict cycle 4 by training on cycle 1

Predictor Global Local Fusion
MSE 0.0156 0.0111 0.0100
R? 0.0240 0.2916 0.3227

E4: Predict cycle 3 by training on cycles 1+2

Predictor Global Local Fusion
MSE 0.0198 0.0164 0.0139
R? 0.2910 0.4117 0.5016

ES5: Predict cycle 4 by training on cycles 1+2

Predictor Global Local Fusion
MSE 0.0137 0.0113 0.0089
R? 0.1373 0.2856 0.4411

E6: Predict cycle 4 by training on cycles 1+2+3

Predictor Global Local Fusion
MSE 0.0119 0.0095 0.0084
R? 0.2521 0.3998 0.4686

The fusion models outperformed local and global
models in all of the six experiments. In addition, by
comparing the accuracies on Cycle 4 in experiments E3,
E5, and E6, as well as accuracies on Cycle 3 in
experiments E2 and E4, it is evident that increase of the
training data set size results in more accurate global, local,
and fusion models.

Accuracies of global, local, and fusion models on
individual paths for all of the six experiments E1-E6 are
shown at Fig. 1. Prediction accuracies of all models are
higher in the eastern paths than in the western paths of the
study area . This is consistent with previously published
observations [7] comparing the AOT retrieved by MISR
with AOT retrieved from ground-based instruments:
western regions had lower correlation coefficients than
eastern ones.

To compare the accuracy of two models M1 and M2,
we present the logarithms of their MSE ratios: log
(MSE(M1)/MSE(M2)). Fig. 2-7, show this ratio for each
orbit path, Scores below 0 indicates that the model M1 is
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more accurate than M2, while scores above 0 indicates
that the model M2 is more accurate than M1.

Top, middle and bottom panels in Fig. 2-7 correspond
to pairwise comparisons of log MSE accuracies for fusion
vs. local, fusion vs. global and local vs. global models in
experiments E1-E6. It is interesting to note that the
performances of global and local models were not stable
from experiment to experiment. However, the fusion
model outperforms both global and local models over
most paths indicating that the approach may be successful
regardless of the complexity of local aerosol properties.

4 Conclusions

In this study, we proposed a fusion approach that
improves accuracy of geospatial predictors by
appropriately weighting global and local models. The
approach takes advantage of large global data sets, but
also exploits more specific spatial properties at local sites.
The approach is evaluated on AOT prediction using four
MISR datasets representing four consecutive 16-day
cycles during 2002 over the continental US. The results
of six predictive experiments provide evidence that the
fusion approach achieved higher overall accuracy than
either local or global models alone. In addition, our
analysis reveals that the fusion model outperforms both
global and local models over most paths, and that
prediciton of AOT for paths in the western US is more
difficult than prediction of AOT in the east. The fusion
model outperformed both global model and local models
in most paths individually. This suggests that the fusion
approach can improve the prediction accuracy at multiple
scales by taking optimal advantage of both global and
local information.
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