ORIGINAL PAPER "~ simonmatcsniso

Data and text mining

Substring selection for biomedical document classification

Bo Han', Zoran Obradovic', Zhang-Zhi Hu?, Cathy H. Wu? and Slobodan Vucetic'*

Center for Information Science and Technology, Temple University, Philadelphia, PA 19122, USA and ?Department of
Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington DC 20007, USA

Received on March 2, 2006; revised on June 4, 2006; accepted on June 23, 2006

Advance Access publication July 12, 2006
Associate Editor: Thomas Lengauer

ABSTRACT

Motivation: Attribute selection is a critical step in development of
document classification systems. As a standard practice, words are
stemmed and the most informative ones are used as attributes in
classification. Owing to high complexity of biomedical terminology,
general-purpose stemming algorithms are often conservative and
could also remove informative stems. This can lead to accuracy reduc-
tion, especially when the number of labeled documents is small. To
address this issue, we propose an algorithm that omits stemming
and, instead, uses the most discriminative substrings as attributes.
Results: The approach was tested on five annotated sets of abstracts
fromiProLINK that report on the experimental evidence about five types
of protein post-translational modifications. The experiments showed
that Naive Bayes and support vector machine classifiers perform con-
sistently better [with area underthe ROC curve (AUC) accuracy inrange
0.92-0.97]when using the proposed attribute selection than when using
attributes obtained by the Porter stemmer algorithm (AUC in 0.86—0.93
range). The proposed approach is particularly useful when labeled
datasets are small.

Contact: vucetic@ist.temple.edu

Supplementary Information: The supplementary data are available
from www.ist.temple.edu/PIRsupplement

1 INTRODUCTION

Information retrieval from biomedical documents is a challenging
problem owing to the richness and complexity of biomedical ter-
minology and the large volume of published work in the discipline.
The specific application that motivated this study is related to the
functional annotation of biological molecules. PIR-PSD (Protein
Sequence Database created by Protein Information Resource) is
a comprehensive and expertly curated database of classified and
functionally annotated protein sequences (Wu et al., 2003), which is
now being merged into the UniProt (Wu et al., 2006). For each PSD
protein entry, functional annotations including the active sites, bind-
ing sites and modification sites are provided together with annota-
tion confidence tags such as ‘experimental’ or ‘predicted’. Recently,
evidence attributions to the literature confirming those ‘experi-
mental’ annotations have been conducted by manually surveying
literature citations in the entry from which the annotations were
originally derived (Hu et al., 2004). This property of attributing
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experimental annotations to literature evidence greatly enhances the
quality and value of the resource. However, manual annotation is a
tedious and time-consuming process as it requires curators to review
large numbers of candidate papers. As the volume of sequence data
and scientific literature continues to grow exponentially, this man-
ual process hampers the ability to keep the annotations up-to-date
(Hu et al., 2004).

A very attractive option for expediting literature surveys is the use
of advanced text mining and information retrieval tools aimed at
rapid and accurate pre-screening of documents. There is active
research in the area of biomedical text mining aimed at facilitating
information retrieval from biological literature. At 2002 KDD Cup,
given 862 journal articles curated by FlyBase, contest teams were
expected to determine whether 213 test papers contained experi-
mental evidence about gene products. The winning and honorable
mention teams all manually or semi-automatically constructed rules
or patterns and used them to evaluate the test documents (Regev
et al., 2003; Shi et al., 2003; Ghanem et al., 2003). Similarly, PIR
recently built a rule-based literature mining system RLIMS-P for
finding phosphorylation information from MEDLINE abstracts (Hu
et al., 2005). This approach required the involvement of domain
experts in identifying informative templates for identification of the
specific textual objects. While successful for the specific applica-
tions for which it is tuned, the rule-based approach cannot easily be
extended to an efficient and scalable working model on other bio-
medical datasets.

Fully automatic and scalable text classification algorithms pro-
vide an alternative to the rule-based approaches. Wilbur (2000) used
3121 positive documents and 117 476 negative documents to build a
classification model to rank MEDLINE abstracts based on their
similarities with the information in the restriction enzyme database
REBASE. More than 10 000 attributes for classification were selec-
ted from individual words, adjacent pairs of words and MeSH terms.
Marcotte et al. (2001) used 260 positives and 65 807 negatives to
build a ranking model that used 500 selected words as attributes.
Dobrokhotov et al. (2003) built a probabilistic classifier based on
2188 abstracts from 3 categories (15% in category ‘relevant’, 70%
in category ‘irrelevant’ and another 15% in category ‘unclear’). The
discriminating attributes were selected from words processed by the
XEROX natural language processing (NLP) tool. Aphinyanaphongs
and Aliferis (2005) developed a support vector machine (SVM)
classifier that used stemmed words as attributes from 396 positive
and 15407 negative papers. The common property of these text
classification applications is that the number of labeled documents

© 2006 The Author(s)

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

1T0Z ‘6T Ao U0 Ausianiun ajdwa | 1e B10°S[euINolpIoyX0°SONeLLIoJUIOI] WOy papeojumod


http://creativecommons.org/licenses/
http://bioinformatics.oxfordjournals.org/

Substring selection for biomedical document classification

was moderate to high, and that the extracted attributes were based
on word occurrences. Most often, the documents were preprocessed
by word stemming in order to reduce the number of unique words
without significant loss of information.

When labeled datasets are small (i.e. containing up to a few
hundred labeled documents), general-purpose stemming algorithms
can result in a dictionary that contains many infrequently occurring
but informative words. Subsequent attribute selection would tend to
remove those infrequent informative words and the resulting clas-
sifier would have reduced accuracy. The vast and complex bio-
medical terminology only exacerbates this problem. Specifically,
semantically related biomedical terms that share the same stem or
morpheme are often not reducible to the same stem using popular
stemming algorithms. As an example, ‘phosphorylated’, ‘phos-
phate’, ‘phosphorylatable’, ‘phosphorylase’, ‘phosphopeptides’
all contain the same stem ‘phosph’, which can be highly useful
for identification of documents related to protein phosphorylation.
However, Porter stemmer (Porter, 1980), one of the most popular
stemming algorithms, can only reduce words from the example to
‘phosphoryl’, ‘phosphat’, ‘phosphorylat’, ‘phosphorylas’, ‘phospho-
peptid’, respectively. As a result, five attributes would be construc-
ted to represent occurrences of these words. If the labeled dataset is
small, it is likely that none of these attributes are selected for clas-
sification owing to their infrequent occurrence.

In addition to the difficulties stemming algorithms have in pro-
ducing maximally informative stems, their inherent drawback is the
removal of suffixes based on general grammar rules. Biomedical
terms often contain informative suffixes. For example, ‘ase’ is a
suffix common to proteins that function as enzymes (e.g. kinase)
and its occurrence is necessary in the identification of documents
that are related to such enzymes. This information is not recoverable
if popular stemming algorithms are used. The drawbacks of stem-
ming algorithms have been observed by other researchers. Nenadic
et al. (2003) studied the performance of a text classification
approach by comparing different types of attribute extraction pro-
cedures. Their results show that the use of standard stemming
algorithms as a preprocessing step does not improve accuracy of
biomedical text classification.

Itis evident that new and unique methods need to be developed for
the extraction of informative attributes from biomedical documents.
Andrade et al. (1998) proposed a new stemming algorithm for bio-
medical documents by applying a set of simple rules, such as two
words with length larger than five have the same stem if they have
the same prefix and their suffixes differ in at most two characters.
Nenadic et al. (2003) and Rice et al. (2005) applied an enhanced
version of the C-value method to extract domain-specific terms. The
method needs rules of conflation to reduce term variants; it yields
good performance only if sufficient training data are available.

In this paper, we propose an effective and simple attribute selec-
tion algorithm that derives attributes from substrings. The algorithm
explores all substrings in labeled documents and selects the ones
that most successfully discriminate between positive and negative
documents. Attributes are derived as counts of the most informative
non-redundant substrings. A classification model (i.e. the Naive
Bayes classifier) is constructed from the labeled dataset using the
selected attributes. The appeal of this procedure is that attribute
selection is driven directly by the labeled dataset. In addition,
substring-based attribute extraction provides increased flexibility
in comparison with the traditional word-based procedures.

iProLINK (Hu et al., 2004) is a new PIR resource that provides
multiple annotated literature corpora to facilitate text mining
research in the areas of literature-based database curation, named
entity recognition, and protein ontology development. We evaluated
the approach on five iProLINK datasets of tagged abstracts corres-
ponding to post-translational protein modifications (PTMs), i.e.
acetylation, glycosylation, methylation, phosphorylation and
hydroxylation. The presented experimental evidence suggests
that classifiers that use the proposed attribute extraction algorithm
perform better than the ones that use attributes obtained by the
standard Porter stemmer algorithm.

2 METHODS

The proposed substring selection algorithm is based on enumerating the
usefulness of each frequently occurring substring and selecting the most
informative subset of substrings as attributes for text classification.

2.1 Attribute extraction

Given a corpus of N documents {d; , i = 1,...,N}, each document d; is
parsed into a set of words wy;, i = 1,...,N,j=1,...,K; that are separated
by spacer symbols. K; is number of words in document d;. We considered two
approaches for attribute extraction: (1) Word-Based, which is the standard
approach based on Porter stemming and (2) Substring-Based, which is the
proposed approach.

Porter stemming is a highly effective, simple algorithm that removes word
suffixes in order to reduce related words (e.g. connected, connection) to the
same stem (e.g. connect). The Word-Based algorithm begins with the con-
struction of a dictionary of unique stemmed words from the corpus. Each
document d; is then represented as a vector f; = [f;1, . . ., fik], where f; is the
count of stem s; in d;, and K is the dictionary size. The Porter stemmer is
appropriate for general-subject English documents because it manages to
significantly reduce the dictionary size without the excessive conflation of
unrelated words. Owing to complex terminology and unconventional nam-
ing, standard grammar-based stemmers (e.g. Porter stemming) can be too
conservative and result in a variety of closely related but rarely occurring
terms. In addition, it can result in the removal of potentially useful suffixes.

In order to avoid the pitfalls of grammar-based stemming and to achieve a
highly flexible attribute extraction, the Substring-Based approach is pro-
posed. It constructs a dictionary of unique substrings which occur in the
document corpus. A substring is defined as a consecutive list of symbols
within a word. As in the Word-Based approach, given a dictionary, each
document d; is represented as vector f; = [fi1, . . . , fix], Where f;; is the count of
substring s; in d;, and K is the dictionary size.

Efficient procedures for construction of word or substring dictionary are
available. For example, suffix trees can be used where each node represents a
unique substring s, i.e. a suffix of its parent node. The suffix tree construction
takes time linear to a number of words in the corpus. A node representing
substring sy is assigned a frequency vector f; = [fis, - - ., fnixl, where f is the
count of substring s in document d; and N is number of documents in the
corpus.

Since each word w contributes |w |(|w]|+1)/2 substrings, it is evident
that the Substring-Based dictionary is larger than the Word-Based diction-
ary. For example, for the five datasets (see Section 3.1) used in the experi-
ments the total number of substrings is on average 39 times larger than the
number of words and the Substring-Based dictionary size is on average about
15 times larger than the Word-Based dictionary size. Additionally, to find
word w in a dictionary requires |w| comparisons, while to find all of its
substrings takes |w | (|w|+1)/2 comparisons. For example, since the aver-
age word length in the five datasets from Section 3.1 is 7.2 and 6.2 before and
after Porter stemming, the Substring-Based approach is ~4 times slower
than the Word-Based approach. However, since the Substring-Based
approach is aimed towards problems with small sets of labeled documents,
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the added computational complexity should not be considered as a serious
drawback.

2.2 Attribute selection

By observing that rare substrings could not be used successfully to improve
classification performance, all substrings that occur in less than three docu-
ments are excluded from further consideration. In the following step, the
relevance of each frequent substring is evaluated. In principle, any of the
numerous feature selection algorithms from machine learning could be
suitable for this step.

Information gain (IG) was used as the benchmark because it is considered
very appropriate for text classification (Yang and Pederson, 1997). Given a
multi-valued attribute X € {xy, ..., xx} and class variable Y € {1,...,C}, the
IG of attribute X is calculated as

IG(X) — [Zl: 2 p(X :Xi,Y:j)' Ing%‘

The attributes with high IG value are considered relevant.

The IG criterion is biased towards frequently occurring attributes. To
address this drawback, we used the Wilcoxon rank-sum test (WRST) to
measure substring relevance. The relevance of substring s, is obtained by
sorting the documents by their attribute values, assigning them ranks and
summing up the ranks of the positive and negative documents. If the attribute
is not relevant, the average ranks of positive and negative documents should
be similar. Using the Gaussian approximation, the P-value of the test is
computed using complementary error function (Cody, 1969) erfc(|Z]),
where Z = (U — E(U))/sqrt(Var(U)), U is sum of ranks of positive samples,
and E(U) and Var(U) are the mean and the variance of U. A small p-value
indicates high attribute relevance.

2.3 Removing redundant attributes

Attributes obtained by the substring-based approach and selected by either
IG or WRST are likely to have high degree of redundancy. The redundancy
should be reduced because it can have an adverse effect on learning. Possible
redundancy-reduction procedures include latent semantic analysis (Berry
et al., 1995) or heuristics that ensure that no two substrings in the selected
set are prefix, suffix or subset of each other. Based on our pilot study, we
decided to apply a rather simple but effective approach that uses a correlation
measure. Given a threshold 7, the approach ensures that no two attributes
have a correlation coefficient that exceeds 7. The procedure compares each
pair of substring attributes, and if their correlation is above T, an attribute
with smaller relevance is removed.

2.4 Ranking algorithms

For document ranking, we considered SVMs and Naive Bayes classifiers.
These classification algorithms are directly applicable to ranking because
their outputs are correlated with the posterior probability of a positive docu-
ment. SVMs (Vapnik, 1995) are optimized to find the decision hyperplane
with the maximum separation margin between positive and negative data
points. By representing document d; with pair (f;,y;), where f; = [f1; . . ., fki] is
attribute vector, fi; is count of substring s; in document d;, y; = —1 for
negative documents and y; = +1 for positive documents, the output of SVM
for a document with attribute vector f = [fi, ...,fx] is calculated as

Ny
SVM(f) = b+ Y ayK(fif),
i=1

where Ny is number of support vectors selected from training data, «;, i =
1,...,Ng, and b are model parameters obtained by optimization, and K is an
appropriate kernel function. The reported experimental evidence suggests
that SVMs are very successful in the classification of high-dimensional data,
and that SVMs with linear kernels are often as accurate as SVM with non-
linear kernels in text classification (Joachims, 1998).

Naive Bayes is a simple classifier that operates under the assumption that
attributes are conditionally independent given a class variable. In this study
we considered a multinomial Naive Bayes classifier, known to be appropriate
for text classification (McCallum and Nigam, 1998). For binary classifica-
tion, the output of multinomial Naive Bayes classifier for a document with

the attribute vector f = [f, .. .,fx] can be expressed as
: Ply=+1[f) Pt & P!
NB(f) = log5=————= = logo= + » f;-log=~
Piy=—11f) p ,; f Py

where P* and P~ are fractions of positive and negative training documents,
and P; and P} are frequencies of substring s; in positive and negative
documents obtained as

L+ > ifu I D DAY /¥
K P T S
K+ 30 2yt fu K+ 30 2yt fui

The top ranked documents are the ones with highest SVM(f) or NB(f). It is
worth noting that, for the purposes of documents ranking, the priors P* and
P~ can be neglected. This is a highly useful property because the fractions of
positive and negative training documents are unlikely to be related to their
fractions found in unlabeled documents.

+
L=

2.5 Performance measures

The main objective of document ranking is to achieve high ranking of
positive documents. To evaluate ranking quality we used three measures
that are based on ROC curves. An ROC curve measures the trade-off
between true positive (TP; fraction of positives predicted as positives)
and false positive (FP; fraction of negatives predicted as positives) prediction
rates for different prediction cutoffs. Given the prediction cutoff 6, all docu-
ments with prediction [e.g. SVM(f), NB(f)] above 6 are considered positive
and all below negative. If 6 is very small, no positives are predicted, and
TP = 0 and FP = 0, while if 6 is very large TP = 1 and FP = 1.

Area under the ROC curve (AUC). Predictors that achieve high TP over
arange of FP are considered accurate—AUC measures exactly this aspect of
prediction quality. Perfect predictors achieve AUC = 1, while predictors that
provide random predictions have AUC = 0.5.

TOP10. 1t is calculated as the number of TP among the 10 highest
ranked documents. This is a very relevant measure of ranking quality
since high TOP10 accuracy is likely to motivate a user to continue using
the system.

FP80. It is calculated as FP rate when the predictor achieves 80% TP
rate. This value is relevant for extensive uses of the ranking system where the
goal is to retrieve majority of positive documents with minimal effort.

3 RESULTS
3.1 Datasets

Five sets of documents summarized in Table 1 were used to evaluate
the proposed procedure. They consisted of MEDLINE abstracts
related to acetylation, glycosylation, methylation, phosphorylation
and hydroxylation PTMs. Each abstract was labeled by PIR curators
either as positive, if it reported experimental evidence about the
PTM, or as negative, if it did not. The sizes of the datasets were
moderate, ranging from 160 to 923, and were characterized by
significant class imbalance, ranging from 5:1 to 17:1. To further
evaluate the classification performance, we have used 1088
untagged abstracts obtained from 347 PIR-PSD entries for proteins
that contained glycosylation sites.

All documents were preprocessed in the following way: upper
case letters were mapped to lower case letters; all digits were
mapped to digit symbol D; and all special symbols excluding
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Table 1. Summary of the five PTM datasets

PTM types Positives Negatives
Acetylation 55 868
Glycosylation 41 711
Hydroxylation 27 133
Methylation 27 171
Phosphorylation 79 389

‘—’ were mapped to spacer symbol B. A total of 524 common words
(e.g. ‘and’, ‘of’, etc.) were removed from the documents.

3.2 Experimental setup

For each of the five datasets from Table 1, we performed eight
groups of experiments on each combination from (Word-Based,
Substring-Based attribute extraction) X (SVM, Naive Bayes classi-
fier) X (IG, WRST attribute selection). For each choice, we estim-
ated AUC, TOP10 and FP80 accuracies using cross-validation. The
procedure consisted of splitting the labeled documents randomly
into K = 5 equal subsets. One of the subsets was used for accuracy
testing while the remaining ones were used for training. The process
was repeated K = 5 times, each time using a different subset for
testing. The whole 5-cross-validation procedure was repeated 20
times, each time using different initial split of the labeled abstracts
into K subsets. The average accuracy over the 100 experiments was
reported as the accuracy estimate.

While application of the Naive Bayes classifiers was straight-
forward, use of SVMs required appropriate data preprocessing
and parameter selection. For our experiments, we used Spider
SVM  software  (http://www.kyb.tuebingen.mpg.de/bs/people/
spider/) that runs SVMLight (Joachims, 1999) in the background.
Before training, each attribute was scaled to range [0,1]. Since our
datasets were highly imbalanced, we explored several values of
the balanced_ridge parameter r, which modifies kernel matrices
by balancing influence of positive and negative examples. It adds
N/(N* + N7) to positive examples at the diagonal of the kernel
matrix and 7-N~/(N* + N") to the negative examples, where N* is the
number of positives, and N~ is the number of negatives. We
explored a range of r values between 2~ ° and 2%, and determined
that » = 10~* works well on all five subsets. The default SVMLight
value for the slack variable was used in all experiments.

3.3 Accuracy comparison

In Table 2 we show the comparison between eight different ranking
algorithms. The first two (WB-NB-IG and WB-SVM-IG) used
Word-Based (WB) attribute extraction and Information Gain
(IG) attribute selection. SVM denotes SVMs and NB Naive
Bayes ranking algorithm. The second two (WB-NB-WRST and
WB-SVM-WRST) used Word-Based attribute extraction and
Wilcoxon test (WRST) attribute selection. The third two (SB-
NB-IG and SB-SVM-IG) used Substring-Based (SB) attribute
extraction and Information Gain attribute selection. The final two
(SB-NB-WRST and SB-SVM-WRST) used Substring-Based
attribute extraction and Wilcoxon test attribute selection.

For SB algorithms, our experiments revealed that the accuracy
was the highest for the correlation threshold 7' = 0.99, that it was

Table 2. Accuracies of Word-based and Substring-based classifiers (WB,
Word-Based; SB, Substring-Based; NB, Naive Bayes; SVM, support vector
machines; IG, information gain; WRST, Wilcoxon test)

Method FP80 AUC TOP10

(a)Acetylation group

WB-NB-IG 0.237 £ 0.018 0.855 + 0.005 3.00 £ 0.38
WB-SVM-IG 0.200 = 0.031 0.869 + 0.035 3.20 £ 0.39
WB-NB-WRST 0.236 = 0.010 0.854 £ 0.013 3.02 £ 0.40
WB-SVM-WRST 0.239 + 0.028 0.851 = 0.030 2.98 +0.31
SB-NB-IG 0.229 + 0.009 0.864 + 0.007 3.08 £ 0.36
SB-SVM-IG 0.168 + 0.022 0.882 + 0.014 4.16 £ 0.17
SB-NB-WRST 0.146 = 0.010 0.916 + 0.007 4.64 = 0.33
SB-SVM-WRST 0.171 £ 0.024 0.893 + 0.013 4.60 = 0.30
(b) Glycosylation group
WB-NB-IG 0.152 + 0.032 0.924 + 0.006 5.20 £ 0.30
WB-SVM-IG 0.176 = 0.039 0.883 + 0.009 4.56 = 0.37
WB-NB-WRST 0.121 + 0.026 0.926 + 0.005 5.36 £ 0.27
WB-SVM-WRST 0.153 £ 0.038 0.890 + 0.008 4.64 £ 0.29
SB-NB-IG 0.052 + 0.002 0.953 + 0.004 5.80 £ 0.24
SB-SVM-IG 0.118 + 0.055 0.926 + 0.022 540 £ 022
SB-NB-WRST 0.035 + 0.007 0.968 + 0.004 6.28 + (.18
SB-SVM-WRST 0.106 + 0.076 0.929 + 0.017 5.40 = 0.37
(c) Hydroxylation group
WB-NB-IG 0.158 £ 0.041 0.888 + 0.012 3.96 + 0.36
WB-SVM-IG 0.286 + 0.095 0.803 + 0.034 3.80 £ 0.54
WB-NB-WRST 0.202 + 0.032 0.858 £ 0.018 3.86 £ 0.32
WB-SVM-WRST 0.325 + 0.091 0.795 + 0.039 3.78 £ 0.46
SB-NB-1G 0.165 + 0.015 0.911 + 0.003 444 £ 0.14
SB-SVM-IG 0.233 £ 0.031 0.870 + 0.029 4.40 £ 0.20
SB-NB-WRST 0.083 + 0.010 0.948 + 0.004 4.76 + 0.09
SB-SVM-WRST 0.173 + 0.042 0.872 + 0.025 4.50 £ 0.22
(d) Methylation group
WB-NB-IG 0.244 = 0.040 0.866 + 0.015 3.88 £ 0.23
WB-SVM-IG 0.209 = 0.026 0.854 + 0.020 3.60 + 0.36
WB-NB-WRST 0.225 = 0.028 0.880 + 0.014 3.94 +0.26
WB-SVM-WRST 0.202 + 0.022 0.864 + 0.015 3.78 £ 0.38
SB-NB-IG 0.167 = 0.038 0.916 £ 0.015 4.40 £ 0.19
SB-SVM-IG 0.208 + 0.040 0.863 + 0.027 420 £0.32
SB-NB-WRST 0.089 = 0.010 0.940 + 0.005 4.60 = 0.25
SB-SVM-WRST 0.196 + 0.041 0.879 = 0.029 4.40 £ 0.17
(e) Phosphorylation group
WB-NB-1G 0.220 = 0.006 0.895 + 0.008 6.16 + 0.18
WB-SVM-IG 0.103 £ 0.011 0.896 + 0.008 6.20 + 0.20
WB-NB-WRST 0.215 = 0.009 0.895 + 0.011 6.20 £ 0.10
WB-SVM-WRST 0.130 = 0.012 0.898 + 0.013 6.24 £ 0.22
SB-NB-1G 0.096 + 0.005 0.917 + 0.003 6.48 + 0.26
SB-SVM-IG 0.152 + 0.040 0.909 + 0.016 6.56 + 0.28
SB-NB-WRST 0.088 + 0.005 0.925 + 0.002 6.80 = 0.31
SB-SVM-WRST 0.114 £ 0.025 0.911 £ 0.010 6.65 + 0.36

stable in the range between 0.8 and 0.99, and that it dropped
slightly beyond this range. Therefore, T = 0.99 threshold was
used in all the experiments of Table 2. Our experiments showed
that the optimal IG threshold was 0.02 and it was fixed at this
value in all experiments of Table 2. The optimal p-value threshold
for WRST attribute selection was 0.15 and it was fixed for all
experiments of Table 2. These threshold values resulted in selec-
tion of ~100 word-based and ~1000 substring-based attributes in
all of the experiments.
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Table 3. Comparison of top 15 selected words/substrings

Dataset

Top 15 selected words

(a) Words selected by Wilcoxon test

Acetylation amino (+), residu (+), termin (+), acid (+), terminu (+), peptid (+), mass (+), gene (—), acetyl (+), primary (+), phase (+),
clone (—), cdna (—), code (—), dna (—)

Glycosylation carbohydr (+), acid (+), residu (+), determine (+), clone (—), attach (+), peptid (+), chain (+), human (—), region (—),
cdna (—), mrna (—), sequence (+), posit (+), biochem (+)

Hydroxylation residu (+), acid (+), type (—), protein (+), gene (—), domain (—), marin (+), encod (—), clone (—), spectrometri (+),
molecul (—), helic (—), dna (—), chemic (+), degrade (+)

Methylation residu (+), amino (+), protein (+) , modify (+), gene (—), biochem (+), termin (+), clone (—), block (+), reaction (+),
genom (—), degrade (+), transcript (—), terminu (+), mrna (—)

Phosphorylation  phosphoryl (+), site (+), sequence (—), serin (+), gene (—), clone (—), residu (+), cdna (—), peptid (+), vitro (+),

nucleotide (—), protein (+), code (—), active (+), dna (—)

(b) Substrings selected by the Wilcoxon test (together with the representative words)

Acetylation

Glycosylation

acety {acetylated}, termin {terminal, determinated}, ked {blocked, linked, flanked}, residue, ac- {ac-val-asp-ser},
pro-D {pro-11}, lock {blocked}, omo {homology, homogeneous, isomorphic}, blo {blocked, blot}, han {tryptophan, enhance},
acy {acyl}, etermined {determined}, acid, nal {terminal, analysis},pep {peptide}

asn {asn-45, asn103}, carboh, asp {asparagines, asp-85}, gos {oligosaccharide}, glycos, omor {myomorph, hystricomorph},
rate {carbohydrate, demonstrate}, ched {attached, enriched}, ache {attached, reaches}, ragi {asparagine}, opep {endopeptidase},

chari {oligosaccharide}, glycope {glycopeptidase}, hydra {carbohydrate}, syl {lysyl}

Hydroxylation

hydroxyl, position, xyp {hydroxyproline}, xya {hydroxyasparagine}, rome {spectrometry}, peptide, fas {fasciola},

mica {chemical}, residue, sole {isoleucine}, cyc {cycle}, mollu {mollusc}, geneo {heterogeneous}, hro- {erythro-beta},

trom {spectrometry}
Methylation

methyl, residue, parti {partial, aspartic}, modif, geneo {heterogeneous}, lysine {trimethyllysine}, ified {modified, identified},

plee {spleen}, post { posttranslational}, termin {terminus}, sine (lysine, tyrosine}, hem {chemical},
ttr {posttranslational, attracants}, bac {bacterial}, lock {blocked}

Phosphorylation  phosph, sit {site, position}, serin, amp- {camp-dependent}, lys {lysine}, kinase, oser {phosphoserine}, residue,
opep {phosphopeptide}, ser- {gln-ser-gly, ser-38}, threo {threonine}, rad {radioactive, degradation},

dig {digestion}, vitro, ivo {vivo}

Regardless of the accuracy measure, SB-NB-WRST consistently
outperformed other alternatives. Naive Bayes was more successful
than SVM on all datasets. On methylation and hydroxylation data
the difference was quite substantial. It seems that the main problem
with SVM was high class imbalance—the difference between SVM
and NB was the smallest for the phosphorylation data.

SB-NB-IG was superior to WB-NB-IG which indicates that the
proposed SB attribute selection is useful. The difference between
SB and WB approaches was largest on methylation and hydroxyla-
tion which were the smallest sets. This result confirms that substring
attributes perform better than word stems on small datasets. WRST
resulted in higher accuracy than the IG attribute selection. The
difference was the highest on acetylation and glycosylation datasets
that were the most unbalanced.

While AUC accuracy was relatively stable over all experiments,
FP80 measure showed large variability ranging from 4 to 15%. The
reason for this was unstable behavior of the initial portions (small
FP rates) of ROC curves. TOP10 accuracy of the most accurate SB-
NB-WRST ranged from 4.6 to 6.8. This is a very promising result
considering the high class imbalance in each of the five datasets.

3.4 Comparison of attribute selection

In Table 3 (Words selected by Wilcoxon test), we list the top 15
selected words for each of the five PTMs based on the Wilcoxon
test. We distinguish positive and negative attributes as the ones that
are more frequent in positive and negative documents, respectively.
For comparison, in Table 3 (Substrings selected by the Wilcoxon

test) we list the top 15 substrings with the Substring-Based approach
that uses WRST criterion.

As seen, the top substrings are most often directly related to
corresponding post-translational modification types. For example,
the substrings include stems of PTM names, such as ‘acety’,
‘glycos’, ‘hydroxyl’, ‘methyl’ and ‘phosph’. In addition, all of
the top 15 substrings in every dataset were positive attributes,
which is in contrast with the Word-Based method that often selects
negative attributes. In most cases, the negative words were gene-
related (e.g. ‘gene’, ‘clone’, ‘cdna’, ‘transcript’) and their presence
was indicative of documents that do not address PTMs. While
negative attributes are useful, we think that positive attributes
allow more focused detection of documents focused to PTMs
among a diverse set of documents.

Table 3 (Words selected by Wilcoxon test) also illustrates that
Porter stemmer can be conservative—among the top 15 words in the
Acetylation and Methylation datasets are both ‘termin’ (stemmed
from ‘terminal’) and ‘terminu’ (stemmed from ‘terminus’). From
Table 3 (Substrings selected by the Wilcoxon test) it can be seen that
the Substring-Based approach extracted only substring ‘termin’ that
is sufficient to represent both ‘terminal’ and ‘terminus’ words.

An interesting property of the Substring-Based method is the
occasional selection of substrings that are parts of the same word
(e.g. ‘asp’ and ‘ragi’ are both part of ‘asparagine’). While this
might seem inappropriate, our results showed that presence of
such related substrings did not adversely influence the accuracy.
Besides substrings that are directly stemmed from the PTM types,
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other substrings such as ‘residue’ are often related to protein
sequence properties common to all PTMs, which can discriminate
documents characterizing protein sequences from other types of
biomedical documents. Interestingly, some amino acid residues
specific for each PTM are in the list, e.g. ‘ragi’ (for asparagine
in glycosylation), ‘sole’ (isoleucine for hydroxylation), ‘lysine’
(for methylation), ‘serin’ and ‘lys’ (serine and lysine for phos-
phorylation).

We further illustrate the usefulness of the Substring-Based
approach by considering a specific example from iProLINK
(http://pir.georgetown.edu/iprolink/). The curators labeled abstract
PMID 2606104 in the Acetylation group as positive. They also
marked the evidence tag (showed in italics) within the following
passage of the abstract: “The primary structure of glucose-6-
phosphate dehydrogenase from rat liver has been determined, show-
ing the mature polypeptide to consist of 513 amino acid residues,
with an acyl-blocked N-terminus’. Interestingly, although the evid-
ence tags were not used in learning, 3 of the top 15 acetylation
substrings in Table 3 (Substrings selected by the Wilcoxon test),
‘acy’ (ranked at 13), ‘lock’ and ‘termin’, occur within the evidence
tag. This is a strong indication that, in addition to document ranking,
the Substring-Based algorithm could also be helpful in evidence
tagging. For example, curators could be aided by highlighting por-
tions of the text with high concentration of highly ranked substrings.

3.5 Ranking of unlabeled abstracts

Using the SB-NB-WRST predictor for ranking of glycolysation
documents the ranking system was applied to the 1088 untagged
abstracts listed in the 347 PIR-PSD protein entries with glycosyla-
tion sites.

The top and bottom 50 ranked abstracts were selected, merged
and shuffled into the list of 100 abstracts (Supplementary Table
unlabeled glycosylation abstracts). PIR curators were then asked to
read and label these 100 abstracts without knowing the actual rank-
ing by our system. The results showed 43 out of the highest ranked
50 abstracts were labeled as positive by the PIR curators, while all of
the lowest ranked 50 abstracts were labeled as negative. Further
analysis showed that abstracts of the seven false positive papers
mostly describe characterization of protein primary sequences and
secondary structures, which were the common themes of the pos-
itive training abstracts. For example, the top-ranked negative
abstract (ranked as 22nd) contain information about protein
sequences and contain informative substrings, such as ‘terminal’
and ‘residue’. These results are very encouraging and indicate that
our ranking system is successful in reducing the cost of curation.

From the 43 positive abstracts, we also observed that evidence
related to protein glycosylation is being described in various ways.
Table 4 shows a list of the glycosylation-related words that were
manually extracted from the 43 abstracts, including the number of
abstracts (out of 43) in which they occurred. For example, 19 of the
43 abstracts used only one of the keywords from the table, 3 of
which used only the less-common words such as ‘glycan moiety’
and ‘disaccharide’ when referring to glycosylation. Such a variety
of words, coupled with their internal similarity (most of them con-
tain substring ‘glyc’), clearly speaks in favor of the Substring-Based
approach.

In comparison, we used Word-Based approach WB-NB-WRST
to rank the same untagged abstracts. The results show that 34 out of
the highest ranked 50 abstracts are true positives, while there was 1

Table 4. Glycosylation-related keywords from the highest-ranked positive
abstracts

Keyword No. of abstracts
Carbohydrate 19
Glycosylate 16
Oligosaccharide 13
Glycopeptide 10
Glycoprotein 7
Glycosylation 5
Glycan Moiety, disaccharide 3

false negative abstract in the lowest ranked 50 abstracts. This is a
further confirmation that Substring-Based approach performs better
than Word-Based approach in our application.

Currently, biomedical researchers and curators most often rely on
keyword search (e.g. MEDLINE, Google) to retrieve relevant
information. As evident from Table 4, it is often difficult to compose
an appropriate keyword-based query, and approaches such as the
proposed one offer a promising alternative for efficient biomedical
literature search.

4 DISCUSSION

Classification and ranking of biomedical documents is challenging
owing to the depth and complexity of biomedical terminology. We
have observed that traditional Word-Based stemming algorithms,
such as the Porter stemmer, have several drawbacks when used as a
preprocessing step in classification of biomedical documents. The
two main issues that arise are that the conflation of biomedical terms
by stemming is too conservative and that stemming might result in
the removal of informative suffixes. The aim of this paper is to show
that stemming can be successfully replaced by a procedure that
automatically selects the most informative substrings from a set
of labeled documents.

The proposed classification/ranking system was evaluated on five
PIR annotated datasets. These datasets are representative of a class
of biomedical text mining problems. They are related to tasks of
information extraction from large text collections (e.g. MEDLINE)
in which it is difficult to express the search goals in terms of
keyword-based queries. In this case, it is probable that a user
would attempt various queries and obtain long lists of retrieved
documents. The user would then start reading the retrieved docu-
ments and, through the process, label a number of them as relevant
or irrelevant. Documents labeled in this way open up an opportunity
to apply text classification systems that rearrange the unread docu-
ments in order of their relevance. Using our ranking system, most
relevant documents would appear near the top of the list and sig-
nificantly reduce human effort in literature survey.

Our experiments show that the proposed substring-based
approach is highly effective even when relatively small labeled
datasets are available for learning. This result is in contrast with
the behavior of traditional Word-Based algorithms that require large
sets of labeled documents in order to approach the accuracy of the
Substring-Based algorithm.

It is worth comparing the current ranking system with the
RLIMS-P text mining tool (Hu ez al., 2005) that achieved high
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recall (96%) and precision (88%) in classification of phosphorylation
documents. Our system was less accurate on the same data, withrecall
of 80 and precision of 92% [SB-NB-WRST row in Table 2 (Phos-
phorylation group)]. However, RLIMS-P is a rule-based system that
relies on manual selection of discriminative rules for information
extraction. This is acceptable for specialized applications such as
the large-scale text mining project at PIR for extracting specific
annotations of protein post-translational modifications such as phos-
phorylation from MEDLINE abstracts. However, the proposed
Substring-Based system is fully automatic, and so is much easier
for application over a wider range of biomedical text mining tasks.

ACKNOWLEDGEMENTS

This project is funded, in part, under a grant with the Pennsylvania
Department of Health. The Department specifically disclaims
responsibility for any analyses, interpretations or conclusions. The
curated literature mining resource for this study was supported in
part by grant U0O1-HGO02712 from the National Institutes of Health.
Funding to pay the Open Access publication charges was provided by
a grant with the Pennsylvania Department of Health.

Conflict of Interest: none declared.

REFERENCES

Andrade,M.A. et al. (1998) Automatic extraction of keywords from scientific text:
application to the knowledge domain of protein families. Bioinformatics, 14,
600-607.

Aphinyanaphongs,Y. and Aliferis,C.F. (2005) Text categorization models for retrieval
of high quality articles in internal medicine. J. Am. Med. Inform. Assoc., 12,
207-216.

Berry, M.W. et al. (1995) Using linear algebra for intelligent information retrieval.
SIAM Rev., 37, 573-595.

Cody,W.J. (1969) Rational Chebyshev approximations for the error function. Math.
Comp., 22, 631-638.

Dobrokhotov,P.B. er al. (2003) Combining NLP and probabilistic categorization for
document and term selection for Swiss-Prot medical annotation. Bioinformatics, 19
(Suppl. 1), 191-194.

Ghanem,M.M. et al. (2003) Automatic scientific text classification using local patterns:
KDD Cup 2002 (task 1). SIGKDD Explor. Newslett., 4, 95-96.

Hu,Z.Z. et al. (2004) iProLINK: an integrated protein resource for literature mining.
Comput. Biol. Chem., 28, 409-416.

Hu,Z.Z. et al. (2005) Literature mining and database annotation of protein phosphoryla-
tion using a rule-based system. Bioinformatics, 21, 2759-2765.

Joachims,T. (1998) Text categorization with support vector machines: learning with
many relevant features. In Proceedings of the 10th European Conference on
Machine Learning, Chemnitz, Germany, pp. 137-142.

Joachims,T. (1999) Making large-scale SVM learning practical. In Advances in Kernel
Methods—Support Vector Learning. In Scholkopf,B., Burges,C. and Smola,A.
(eds), MIT Press, Cambridge, MA, pp. 41-54.

Marcotte,EM. et al. (2001) Mining literature for protein-protein interactions.
Bioinformatics, 17, 359-363.

McCallum,A. and Nigam,K. (1998) A comparison of event models for Naive Bayes
text classification. In Proceedings of the AAAI-98 Workshop on Learning for Text
Categorization, Madison, WI, pp. 41-48.

Nenadic,G. et al. (2003) Selecting text features for gene name classification: from
documents to terms. In Proceedings of ACL 2003 Workshop on Natural Language
Processing in Biomedicine, Sapporo, Japan, pp. 121-128.

Porter,M. (1980) An algorithm for sux stripping. Program, 14, 130-137.

Regev,Y. et al. (2003) Rulebased extraction of experimental evidence in the biomedical
domain—the KDD Cup 2002 (task 1). SIGKDD Explor. Newslett., 4, 90-92.
Rice,S.B. et al. (2005) Mining protein function from text using term-based support

vector machines. BMC Bioinformatics, 6 (Suppl. 1), S22.

Shi,M. et al. (2003) A machine learning approach for the curation of biomedical
literature-KDD Cup 2002 (task 1). SIGKDD Explor. Newslett., 4, 93-94.

Vapnik,V.N. (1995) The Nature of Statistical Learning Theory. Springer, New York.

Wilbur,J.W. (2000) Boosting Naive Bayesian learning on a large subset of MEDLINE.
In Proceedings of AMIA Symposium, Los Angeles, CA, pp. 918-922.

Wu,C.H. et al. (2003) The Protein information resource. Nucleic Acids Res., 31,
345-347.

Wu,C.H. et al. (2006) The Universal Protein Resource (UniProt): an expanding uni-
verse of protein information. Nucleic Acids Res., 34, D187-D191.

Yang,Y. and Pederson,J.O. (1997) A comparative study on feature selection in text
categorization. In Proceedings of the 14th International Conference on Machine
Learning, Nashville, TN, pp. 412-420.

2142

1T0Z ‘6T Ao U0 Ausianiun ajdwa | 1e B10°S[euINolpIoyX0°SONeLLIoJUIOI] WOy papeojumod


http://bioinformatics.oxfordjournals.org/

