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ABSTRACT

Motivation: Attribute selection is a critical step in development of

document classification systems. As a standard practice, words are

stemmed and the most informative ones are used as attributes in

classification. Owing to high complexity of biomedical terminology,

general-purpose stemming algorithms are often conservative and

could also remove informative stems. This can lead to accuracy reduc-

tion, especially when the number of labeled documents is small. To

address this issue, we propose an algorithm that omits stemming

and, instead, uses the most discriminative substrings as attributes.

Results: The approach was tested on five annotated sets of abstracts

from iProLINK that report on theexperimental evidenceabout five types

of protein post-translational modifications. The experiments showed

that Naive Bayes and support vector machine classifiers perform con-

sistentlybetter [withareaunder theROCcurve (AUC)accuracy in range

0.92–0.97]whenusing theproposedattributeselection thanwhenusing

attributes obtained by the Porter stemmer algorithm (AUC in 0.86–0.93

range). The proposed approach is particularly useful when labeled

datasets are small.

Contact: vucetic@ist.temple.edu

Supplementary Information: The supplementary data are available

from www.ist.temple.edu/PIRsupplement

1 INTRODUCTION

Information retrieval from biomedical documents is a challenging

problem owing to the richness and complexity of biomedical ter-

minology and the large volume of published work in the discipline.

The specific application that motivated this study is related to the

functional annotation of biological molecules. PIR-PSD (Protein

Sequence Database created by Protein Information Resource) is

a comprehensive and expertly curated database of classified and

functionally annotated protein sequences (Wu et al., 2003), which is
now being merged into the UniProt (Wu et al., 2006). For each PSD
protein entry, functional annotations including the active sites, bind-

ing sites and modification sites are provided together with annota-

tion confidence tags such as ‘experimental’ or ‘predicted’. Recently,

evidence attributions to the literature confirming those ‘experi-

mental’ annotations have been conducted by manually surveying

literature citations in the entry from which the annotations were

originally derived (Hu et al., 2004). This property of attributing

experimental annotations to literature evidence greatly enhances the

quality and value of the resource. However, manual annotation is a

tedious and time-consuming process as it requires curators to review

large numbers of candidate papers. As the volume of sequence data

and scientific literature continues to grow exponentially, this man-

ual process hampers the ability to keep the annotations up-to-date

(Hu et al., 2004).
A very attractive option for expediting literature surveys is the use

of advanced text mining and information retrieval tools aimed at

rapid and accurate pre-screening of documents. There is active

research in the area of biomedical text mining aimed at facilitating

information retrieval from biological literature. At 2002 KDD Cup,

given 862 journal articles curated by FlyBase, contest teams were

expected to determine whether 213 test papers contained experi-

mental evidence about gene products. The winning and honorable

mention teams all manually or semi-automatically constructed rules

or patterns and used them to evaluate the test documents (Regev

et al., 2003; Shi et al., 2003; Ghanem et al., 2003). Similarly, PIR

recently built a rule-based literature mining system RLIMS-P for

finding phosphorylation information from MEDLINE abstracts (Hu

et al., 2005). This approach required the involvement of domain

experts in identifying informative templates for identification of the

specific textual objects. While successful for the specific applica-

tions for which it is tuned, the rule-based approach cannot easily be

extended to an efficient and scalable working model on other bio-

medical datasets.

Fully automatic and scalable text classification algorithms pro-

vide an alternative to the rule-based approaches. Wilbur (2000) used

3121 positive documents and 117 476 negative documents to build a

classification model to rank MEDLINE abstracts based on their

similarities with the information in the restriction enzyme database

REBASE. More than 10 000 attributes for classification were selec-

ted from individual words, adjacent pairs of words andMeSH terms.

Marcotte et al. (2001) used 260 positives and 65 807 negatives to

build a ranking model that used 500 selected words as attributes.

Dobrokhotov et al. (2003) built a probabilistic classifier based on

2188 abstracts from 3 categories (15% in category ‘relevant’, 70%

in category ‘irrelevant’ and another 15% in category ‘unclear’). The

discriminating attributes were selected from words processed by the

XEROX natural language processing (NLP) tool. Aphinyanaphongs

and Aliferis (2005) developed a support vector machine (SVM)

classifier that used stemmed words as attributes from 396 positive

and 15 407 negative papers. The common property of these text

classification applications is that the number of labeled documents�To whom correspondence should be addressed.
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was moderate to high, and that the extracted attributes were based

on word occurrences. Most often, the documents were preprocessed

by word stemming in order to reduce the number of unique words

without significant loss of information.

When labeled datasets are small (i.e. containing up to a few

hundred labeled documents), general-purpose stemming algorithms

can result in a dictionary that contains many infrequently occurring

but informative words. Subsequent attribute selection would tend to

remove those infrequent informative words and the resulting clas-

sifier would have reduced accuracy. The vast and complex bio-

medical terminology only exacerbates this problem. Specifically,

semantically related biomedical terms that share the same stem or

morpheme are often not reducible to the same stem using popular

stemming algorithms. As an example, ‘phosphorylated’, ‘phos-

phate’, ‘phosphorylatable’, ‘phosphorylase’, ‘phosphopeptides’

all contain the same stem ‘phosph’, which can be highly useful

for identification of documents related to protein phosphorylation.

However, Porter stemmer (Porter, 1980), one of the most popular

stemming algorithms, can only reduce words from the example to

‘phosphoryl’, ‘phosphat’, ‘phosphorylat’, ‘phosphorylas’, ‘phospho-

peptid’, respectively. As a result, five attributes would be construc-

ted to represent occurrences of these words. If the labeled dataset is

small, it is likely that none of these attributes are selected for clas-

sification owing to their infrequent occurrence.

In addition to the difficulties stemming algorithms have in pro-

ducing maximally informative stems, their inherent drawback is the

removal of suffixes based on general grammar rules. Biomedical

terms often contain informative suffixes. For example, ‘ase’ is a

suffix common to proteins that function as enzymes (e.g. kinase)

and its occurrence is necessary in the identification of documents

that are related to such enzymes. This information is not recoverable

if popular stemming algorithms are used. The drawbacks of stem-

ming algorithms have been observed by other researchers. Nenadic

et al. (2003) studied the performance of a text classification

approach by comparing different types of attribute extraction pro-

cedures. Their results show that the use of standard stemming

algorithms as a preprocessing step does not improve accuracy of

biomedical text classification.

It is evident that new and uniquemethods need to be developed for

the extraction of informative attributes from biomedical documents.

Andrade et al. (1998) proposed a new stemming algorithm for bio-

medical documents by applying a set of simple rules, such as two

words with length larger than five have the same stem if they have

the same prefix and their suffixes differ in at most two characters.

Nenadic et al. (2003) and Rice et al. (2005) applied an enhanced

version of the C-value method to extract domain-specific terms. The

method needs rules of conflation to reduce term variants; it yields

good performance only if sufficient training data are available.

In this paper, we propose an effective and simple attribute selec-

tion algorithm that derives attributes from substrings. The algorithm

explores all substrings in labeled documents and selects the ones

that most successfully discriminate between positive and negative

documents. Attributes are derived as counts of the most informative

non-redundant substrings. A classification model (i.e. the Naive

Bayes classifier) is constructed from the labeled dataset using the

selected attributes. The appeal of this procedure is that attribute

selection is driven directly by the labeled dataset. In addition,

substring-based attribute extraction provides increased flexibility

in comparison with the traditional word-based procedures.

iProLINK (Hu et al., 2004) is a new PIR resource that provides

multiple annotated literature corpora to facilitate text mining

research in the areas of literature-based database curation, named

entity recognition, and protein ontology development. We evaluated

the approach on five iProLINK datasets of tagged abstracts corres-

ponding to post-translational protein modifications (PTMs), i.e.

acetylation, glycosylation, methylation, phosphorylation and

hydroxylation. The presented experimental evidence suggests

that classifiers that use the proposed attribute extraction algorithm

perform better than the ones that use attributes obtained by the

standard Porter stemmer algorithm.

2 METHODS

The proposed substring selection algorithm is based on enumerating the

usefulness of each frequently occurring substring and selecting the most

informative subset of substrings as attributes for text classification.

2.1 Attribute extraction

Given a corpus of N documents {di , i ¼ 1, . . . ,N}, each document di is
parsed into a set of words wij, i ¼ 1, . . . ,N , j ¼ 1, . . . ,Ki, that are separated

by spacer symbols.Ki is number of words in document di. We considered two

approaches for attribute extraction: (1) Word-Based, which is the standard

approach based on Porter stemming and (2) Substring-Based, which is the

proposed approach.

Porter stemming is a highly effective, simple algorithm that removes word

suffixes in order to reduce related words (e.g. connected, connection) to the

same stem (e.g. connect). The Word-Based algorithm begins with the con-

struction of a dictionary of unique stemmed words from the corpus. Each

document di is then represented as a vector fi ¼ [fi1, . . . , fiK], where fik is the

count of stem sk in di, and K is the dictionary size. The Porter stemmer is

appropriate for general-subject English documents because it manages to

significantly reduce the dictionary size without the excessive conflation of

unrelated words. Owing to complex terminology and unconventional nam-

ing, standard grammar-based stemmers (e.g. Porter stemming) can be too

conservative and result in a variety of closely related but rarely occurring

terms. In addition, it can result in the removal of potentially useful suffixes.

In order to avoid the pitfalls of grammar-based stemming and to achieve a

highly flexible attribute extraction, the Substring-Based approach is pro-

posed. It constructs a dictionary of unique substrings which occur in the

document corpus. A substring is defined as a consecutive list of symbols

within a word. As in the Word-Based approach, given a dictionary, each

document di is represented as vector fi¼ [fi1, . . . , fiK], where fik is the count of

substring sk in di, and K is the dictionary size.

Efficient procedures for construction of word or substring dictionary are

available. For example, suffix trees can be used where each node represents a

unique substring s, i.e. a suffix of its parent node. The suffix tree construction

takes time linear to a number of words in the corpus. A node representing

substring sk is assigned a frequency vector fk ¼ [f1k, . . . , fNk], where fik is the
count of substring sk in document di and N is number of documents in the

corpus.

Since each word w contributes jw j ( jw j+1)/2 substrings, it is evident

that the Substring-Based dictionary is larger than the Word-Based diction-

ary. For example, for the five datasets (see Section 3.1) used in the experi-

ments the total number of substrings is on average 39 times larger than the

number of words and the Substring-Based dictionary size is on average about

15 times larger than the Word-Based dictionary size. Additionally, to find

word w in a dictionary requires jw j comparisons, while to find all of its

substrings takes jw j ( jw j+1)/2 comparisons. For example, since the aver-

age word length in the five datasets from Section 3.1 is 7.2 and 6.2 before and

after Porter stemming, the Substring-Based approach is �4 times slower

than the Word-Based approach. However, since the Substring-Based

approach is aimed towards problems with small sets of labeled documents,
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the added computational complexity should not be considered as a serious

drawback.

2.2 Attribute selection

By observing that rare substrings could not be used successfully to improve

classification performance, all substrings that occur in less than three docu-

ments are excluded from further consideration. In the following step, the

relevance of each frequent substring is evaluated. In principle, any of the

numerous feature selection algorithms from machine learning could be

suitable for this step.

Information gain (IG) was used as the benchmark because it is considered

very appropriate for text classification (Yang and Pederson, 1997). Given a

multi-valued attribute X 2 {x1, . . . , xK} and class variable Y2 {1, . . . ,C}, the

IG of attribute X is calculated as

IGðXÞ ¼
XK

i¼1

XC

j¼1

pðX ¼ xi‚Y ¼ jÞ · log2
pðX ¼ xi‚Y ¼ jÞ

pðX ¼ xiÞ · pðY ¼ jÞ :

The attributes with high IG value are considered relevant.

The IG criterion is biased towards frequently occurring attributes. To

address this drawback, we used the Wilcoxon rank-sum test (WRST) to

measure substring relevance. The relevance of substring sk is obtained by

sorting the documents by their attribute values, assigning them ranks and

summing up the ranks of the positive and negative documents. If the attribute

is not relevant, the average ranks of positive and negative documents should

be similar. Using the Gaussian approximation, the P-value of the test is

computed using complementary error function (Cody, 1969) erfc( jZ j ),
where Z ¼ (U � E(U))/sqrt(Var(U)), U is sum of ranks of positive samples,

and E(U) and Var(U) are the mean and the variance of U. A small p-value

indicates high attribute relevance.

2.3 Removing redundant attributes

Attributes obtained by the substring-based approach and selected by either

IG or WRST are likely to have high degree of redundancy. The redundancy

should be reduced because it can have an adverse effect on learning. Possible

redundancy-reduction procedures include latent semantic analysis (Berry

et al., 1995) or heuristics that ensure that no two substrings in the selected

set are prefix, suffix or subset of each other. Based on our pilot study, we

decided to apply a rather simple but effective approach that uses a correlation

measure. Given a threshold T, the approach ensures that no two attributes

have a correlation coefficient that exceeds T. The procedure compares each

pair of substring attributes, and if their correlation is above T, an attribute

with smaller relevance is removed.

2.4 Ranking algorithms

For document ranking, we considered SVMs and Naive Bayes classifiers.

These classification algorithms are directly applicable to ranking because

their outputs are correlated with the posterior probability of a positive docu-

ment. SVMs (Vapnik, 1995) are optimized to find the decision hyperplane

with the maximum separation margin between positive and negative data

points. By representing document di with pair (fi,yi), where fi¼ [f1i . . ., fKi] is
attribute vector, fki is count of substring sk in document di, yi ¼ �1 for

negative documents and yi ¼ +1 for positive documents, the output of SVM

for a document with attribute vector f ¼ [f1, . . . , fK] is calculated as

SVMðf Þ ¼ bþ
XNS

i¼1

aiyiKðf i‚ f Þ‚

where NS is number of support vectors selected from training data, ai, i ¼
1, . . . ,NS, and b are model parameters obtained by optimization, and K is an

appropriate kernel function. The reported experimental evidence suggests

that SVMs are very successful in the classification of high-dimensional data,

and that SVMs with linear kernels are often as accurate as SVM with non-

linear kernels in text classification (Joachims, 1998).

Naive Bayes is a simple classifier that operates under the assumption that

attributes are conditionally independent given a class variable. In this study

we considered a multinomial Naive Bayes classifier, known to be appropriate

for text classification (McCallum and Nigam, 1998). For binary classifica-

tion, the output of multinomial Naive Bayes classifier for a document with

the attribute vector f ¼ [f1, . . . , fK] can be expressed as

NBðf Þ ¼ log
Pðy¼ þ 1 j f Þ
Pðy¼ � 1 j f Þ ¼ log

Pþ

P� þ
XK

k¼1

f k · log
P+
k

P�
k

where P+ and P� are fractions of positive and negative training documents,

and Pþ
k and P�

k are frequencies of substring sk in positive and negative

documents obtained as

P+
k ¼

1þ
P

yi¼þ1 f ki

K þ
PK

k¼1

P
yi¼þ1 f ki

‚P�
k ¼

1þ
P

yi¼�1 f ki

K þ
PK

k¼1

P
yi¼�1 f ki

:

The top ranked documents are the ones with highest SVM(f) or NB(f). It is

worth noting that, for the purposes of documents ranking, the priors P+ and

P� can be neglected. This is a highly useful property because the fractions of

positive and negative training documents are unlikely to be related to their

fractions found in unlabeled documents.

2.5 Performance measures

The main objective of document ranking is to achieve high ranking of

positive documents. To evaluate ranking quality we used three measures

that are based on ROC curves. An ROC curve measures the trade-off

between true positive (TP; fraction of positives predicted as positives)

and false positive (FP; fraction of negatives predicted as positives) prediction

rates for different prediction cutoffs. Given the prediction cutoff �, all docu-

ments with prediction [e.g. SVM(f), NB(f)] above � are considered positive

and all below negative. If � is very small, no positives are predicted, and

TP ¼ 0 and FP ¼ 0, while if � is very large TP ¼ 1 and FP ¼ 1.

Area under the ROC curve (AUC). Predictors that achieve high TP over

a range of FP are considered accurate—AUCmeasures exactly this aspect of

prediction quality. Perfect predictors achieve AUC¼ 1, while predictors that

provide random predictions have AUC ¼ 0.5.

TOP10. It is calculated as the number of TP among the 10 highest

ranked documents. This is a very relevant measure of ranking quality

since high TOP10 accuracy is likely to motivate a user to continue using

the system.

FP80. It is calculated as FP rate when the predictor achieves 80% TP

rate. This value is relevant for extensive uses of the ranking systemwhere the

goal is to retrieve majority of positive documents with minimal effort.

3 RESULTS

3.1 Datasets

Five sets of documents summarized in Table 1 were used to evaluate

the proposed procedure. They consisted of MEDLINE abstracts

related to acetylation, glycosylation, methylation, phosphorylation

and hydroxylation PTMs. Each abstract was labeled by PIR curators

either as positive, if it reported experimental evidence about the

PTM, or as negative, if it did not. The sizes of the datasets were

moderate, ranging from 160 to 923, and were characterized by

significant class imbalance, ranging from 5:1 to 17:1. To further

evaluate the classification performance, we have used 1088

untagged abstracts obtained from 347 PIR-PSD entries for proteins

that contained glycosylation sites.

All documents were preprocessed in the following way: upper

case letters were mapped to lower case letters; all digits were

mapped to digit symbol D; and all special symbols excluding

B.Han et al.
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‘�’ were mapped to spacer symbol B. A total of 524 common words

(e.g. ‘and’, ‘of’, etc.) were removed from the documents.

3.2 Experimental setup

For each of the five datasets from Table 1, we performed eight

groups of experiments on each combination from (Word-Based,

Substring-Based attribute extraction) · (SVM, Naive Bayes classi-

fier) · (IG, WRST attribute selection). For each choice, we estim-

ated AUC, TOP10 and FP80 accuracies using cross-validation. The

procedure consisted of splitting the labeled documents randomly

into K ¼ 5 equal subsets. One of the subsets was used for accuracy

testing while the remaining ones were used for training. The process

was repeated K ¼ 5 times, each time using a different subset for

testing. The whole 5-cross-validation procedure was repeated 20

times, each time using different initial split of the labeled abstracts

into K subsets. The average accuracy over the 100 experiments was

reported as the accuracy estimate.

While application of the Naive Bayes classifiers was straight-

forward, use of SVMs required appropriate data preprocessing

and parameter selection. For our experiments, we used Spider

SVM software (http://www.kyb.tuebingen.mpg.de/bs/people/

spider/) that runs SVMLight (Joachims, 1999) in the background.

Before training, each attribute was scaled to range [0,1]. Since our

datasets were highly imbalanced, we explored several values of

the balanced_ridge parameter r, which modifies kernel matrices

by balancing influence of positive and negative examples. It adds

r·N+/(N+ + N�) to positive examples at the diagonal of the kernel

matrix and r·N�/(N+ +N�) to the negative examples, where N+ is the

number of positives, and N� is the number of negatives. We

explored a range of r values between 2�8 and 28, and determined

that r ¼ 10�4 works well on all five subsets. The default SVMLight

value for the slack variable was used in all experiments.

3.3 Accuracy comparison

In Table 2 we show the comparison between eight different ranking

algorithms. The first two (WB-NB-IG and WB-SVM-IG) used

Word-Based (WB) attribute extraction and Information Gain

(IG) attribute selection. SVM denotes SVMs and NB Naive

Bayes ranking algorithm. The second two (WB-NB-WRST and

WB-SVM-WRST) used Word-Based attribute extraction and

Wilcoxon test (WRST) attribute selection. The third two (SB-

NB-IG and SB-SVM-IG) used Substring-Based (SB) attribute

extraction and Information Gain attribute selection. The final two

(SB-NB-WRST and SB-SVM-WRST) used Substring-Based

attribute extraction and Wilcoxon test attribute selection.

For SB algorithms, our experiments revealed that the accuracy

was the highest for the correlation threshold T ¼ 0.99, that it was

stable in the range between 0.8 and 0.99, and that it dropped

slightly beyond this range. Therefore, T ¼ 0.99 threshold was

used in all the experiments of Table 2. Our experiments showed

that the optimal IG threshold was 0.02 and it was fixed at this

value in all experiments of Table 2. The optimal p-value threshold
for WRST attribute selection was 0.15 and it was fixed for all

experiments of Table 2. These threshold values resulted in selec-

tion of �100 word-based and �1000 substring-based attributes in

all of the experiments.

Table 2. Accuracies of Word-based and Substring-based classifiers (WB,

Word-Based; SB, Substring-Based; NB, Naive Bayes; SVM, support vector

machines; IG, information gain; WRST, Wilcoxon test)

Method FP80 AUC TOP10

(a)Acetylation group

WB-NB-IG 0.237 ± 0.018 0.855 ± 0.005 3.00 ± 0.38

WB-SVM-IG 0.200 ± 0.031 0.869 ± 0.035 3.20 ± 0.39

WB-NB-WRST 0.236 ± 0.010 0.854 ± 0.013 3.02 ± 0.40

WB-SVM-WRST 0.239 ± 0.028 0.851 ± 0.030 2.98 ± 0.31

SB-NB-IG 0.229 ± 0.009 0.864 ± 0.007 3.08 ± 0.36

SB-SVM-IG 0.168 ± 0.022 0.882 ± 0.014 4.16 ± 0.17

SB-NB-WRST 0.146 ± 0.010 0.916 ± 0.007 4.64 ± 0.33

SB-SVM-WRST 0.171 ± 0.024 0.893 ± 0.013 4.60 ± 0.30

(b) Glycosylation group

WB-NB-IG 0.152 ± 0.032 0.924 ± 0.006 5.20 ± 0.30

WB-SVM-IG 0.176 ± 0.039 0.883 ± 0.009 4.56 ± 0.37

WB-NB-WRST 0.121 ± 0.026 0.926 ± 0.005 5.36 ± 0.27

WB-SVM-WRST 0.153 ± 0.038 0.890 ± 0.008 4.64 ± 0.29

SB-NB-IG 0.052 ± 0.002 0.953 ± 0.004 5.80 ± 0.24

SB-SVM-IG 0.118 ± 0.055 0.926 ± 0.022 5.40 ± 0.22

SB-NB-WRST 0.035 ± 0.007 0.968 ± 0.004 6.28 ± 0.18

SB-SVM-WRST 0.106 ± 0.076 0.929 ± 0.017 5.40 ± 0.37

(c) Hydroxylation group

WB-NB-IG 0.158 ± 0.041 0.888 ± 0.012 3.96 ± 0.36

WB-SVM-IG 0.286 ± 0.095 0.803 ± 0.034 3.80 ± 0.54

WB-NB-WRST 0.202 ± 0.032 0.858 ± 0.018 3.86 ± 0.32

WB-SVM-WRST 0.325 ± 0.091 0.795 ± 0.039 3.78 ± 0.46

SB-NB-IG 0.165 ± 0.015 0.911 ± 0.003 4.44 ± 0.14

SB-SVM-IG 0.233 ± 0.031 0.870 ± 0.029 4.40 ± 0.20

SB-NB-WRST 0.083 ± 0.010 0.948 ± 0.004 4.76 ± 0.09

SB-SVM-WRST 0.173 ± 0.042 0.872 ± 0.025 4.50 ± 0.22

(d) Methylation group

WB-NB-IG 0.244 ± 0.040 0.866 ± 0.015 3.88 ± 0.23

WB-SVM-IG 0.209 ± 0.026 0.854 ± 0.020 3.60 ± 0.36

WB-NB-WRST 0.225 ± 0.028 0.880 ± 0.014 3.94 ± 0.26

WB-SVM-WRST 0.202 ± 0.022 0.864 ± 0.015 3.78 ± 0.38

SB-NB-IG 0.167 ± 0.038 0.916 ± 0.015 4.40 ± 0.19

SB-SVM-IG 0.208 ± 0.040 0.863 ± 0.027 4.20 ± 0.32

SB-NB-WRST 0.089 ± 0.010 0.940 ± 0.005 4.60 ± 0.25

SB-SVM-WRST 0.196 ± 0.041 0.879 ± 0.029 4.40 ± 0.17

(e) Phosphorylation group

WB-NB-IG 0.220 ± 0.006 0.895 ± 0.008 6.16 ± 0.18

WB-SVM-IG 0.103 ± 0.011 0.896 ± 0.008 6.20 ± 0.20

WB-NB-WRST 0.215 ± 0.009 0.895 ± 0.011 6.20 ± 0.10

WB-SVM-WRST 0.130 ± 0.012 0.898 ± 0.013 6.24 ± 0.22

SB-NB-IG 0.096 ± 0.005 0.917 ± 0.003 6.48 ± 0.26

SB-SVM-IG 0.152 ± 0.040 0.909 ± 0.016 6.56 ± 0.28

SB-NB-WRST 0.088 ± 0.005 0.925 ± 0.002 6.80 ± 0.31

SB-SVM-WRST 0.114 ± 0.025 0.911 ± 0.010 6.65 ± 0.36

Table 1. Summary of the five PTM datasets

PTM types Positives Negatives

Acetylation 55 868

Glycosylation 41 711

Hydroxylation 27 133

Methylation 27 171

Phosphorylation 79 389
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Regardless of the accuracy measure, SB-NB-WRST consistently

outperformed other alternatives. Naive Bayes was more successful

than SVM on all datasets. On methylation and hydroxylation data

the difference was quite substantial. It seems that the main problem

with SVM was high class imbalance—the difference between SVM

and NB was the smallest for the phosphorylation data.

SB-NB-IG was superior to WB-NB-IG which indicates that the

proposed SB attribute selection is useful. The difference between

SB and WB approaches was largest on methylation and hydroxyla-

tion which were the smallest sets. This result confirms that substring

attributes perform better than word stems on small datasets. WRST

resulted in higher accuracy than the IG attribute selection. The

difference was the highest on acetylation and glycosylation datasets

that were the most unbalanced.

While AUC accuracy was relatively stable over all experiments,

FP80 measure showed large variability ranging from 4 to 15%. The

reason for this was unstable behavior of the initial portions (small

FP rates) of ROC curves. TOP10 accuracy of the most accurate SB-

NB-WRST ranged from 4.6 to 6.8. This is a very promising result

considering the high class imbalance in each of the five datasets.

3.4 Comparison of attribute selection

In Table 3 (Words selected by Wilcoxon test), we list the top 15

selected words for each of the five PTMs based on the Wilcoxon

test. We distinguish positive and negative attributes as the ones that

are more frequent in positive and negative documents, respectively.

For comparison, in Table 3 (Substrings selected by the Wilcoxon

test) we list the top 15 substrings with the Substring-Based approach

that uses WRST criterion.

As seen, the top substrings are most often directly related to

corresponding post-translational modification types. For example,

the substrings include stems of PTM names, such as ‘acety’,

‘glycos’, ‘hydroxyl’, ‘methyl’ and ‘phosph’. In addition, all of

the top 15 substrings in every dataset were positive attributes,

which is in contrast with the Word-Based method that often selects

negative attributes. In most cases, the negative words were gene-

related (e.g. ‘gene’, ‘clone’, ‘cdna’, ‘transcript’) and their presence

was indicative of documents that do not address PTMs. While

negative attributes are useful, we think that positive attributes

allow more focused detection of documents focused to PTMs

among a diverse set of documents.

Table 3 (Words selected by Wilcoxon test) also illustrates that

Porter stemmer can be conservative—among the top 15 words in the

Acetylation and Methylation datasets are both ‘termin’ (stemmed

from ‘terminal’) and ‘terminu’ (stemmed from ‘terminus’). From

Table 3 (Substrings selected by theWilcoxon test) it can be seen that

the Substring-Based approach extracted only substring ‘termin’ that

is sufficient to represent both ‘terminal’ and ‘terminus’ words.

An interesting property of the Substring-Based method is the

occasional selection of substrings that are parts of the same word

(e.g. ‘asp’ and ‘ragi’ are both part of ‘asparagine’). While this

might seem inappropriate, our results showed that presence of

such related substrings did not adversely influence the accuracy.

Besides substrings that are directly stemmed from the PTM types,

Table 3. Comparison of top 15 selected words/substrings

Dataset Top 15 selected words

(a) Words selected by Wilcoxon test

Acetylation amino (+), residu (+), termin (+), acid (+), terminu (+), peptid (+), mass (+), gene (�), acetyl (+), primary (+), phase (+),
clone (�), cdna (�), code (�), dna (�)

Glycosylation carbohydr (+), acid (+), residu (+), determine (+), clone (�), attach (+), peptid (+), chain (+), human (�), region (�),

cdna (�), mrna (�), sequence (+), posit (+), biochem (+)
Hydroxylation residu (+), acid (+), type (�), protein (+), gene (�), domain (�), marin (+), encod (�), clone (�), spectrometri (+),

molecul (�), helic (�), dna (�), chemic (+), degrade (+)
Methylation residu (+), amino (+), protein (+) , modify (+), gene (�), biochem (+), termin (+), clone (�), block (+), reaction (+),

genom (�), degrade (+), transcript (�), terminu (+), mrna (�)

Phosphorylation phosphoryl (+), site (+), sequence (�), serin (+), gene (�), clone (�), residu (+), cdna (�), peptid (+), vitro (+),
nucleotide (�), protein (+), code (�), active (+), dna (�)

(b) Substrings selected by the Wilcoxon test (together with the representative words)

Acetylation acety {acetylated}, termin {terminal, determinated}, ked {blocked, linked, flanked}, residue, ac- {ac-val-asp-ser},

pro-D {pro-11}, lock {blocked}, omo {homology, homogeneous, isomorphic}, blo {blocked, blot}, han {tryptophan, enhance},

acy {acyl}, etermined {determined}, acid, nal {terminal, analysis},pep {peptide}

Glycosylation asn {asn-45, asn103}, carboh, asp {asparagines, asp-85}, gos {oligosaccharide}, glycos, omor {myomorph, hystricomorph},

rate {carbohydrate, demonstrate}, ched {attached, enriched}, ache {attached, reaches}, ragi {asparagine}, opep {endopeptidase},

chari {oligosaccharide}, glycope {glycopeptidase}, hydra {carbohydrate}, syl {lysyl}

Hydroxylation hydroxyl, position, xyp {hydroxyproline}, xya {hydroxyasparagine}, rome {spectrometry}, peptide, fas {fasciola},

mica {chemical}, residue, sole {isoleucine}, cyc {cycle}, mollu {mollusc}, geneo {heterogeneous}, hro- {erythro-beta},

trom {spectrometry}

Methylation methyl, residue, parti {partial, aspartic}, modif, geneo {heterogeneous}, lysine {trimethyllysine}, ified {modified, identified},

plee {spleen}, post { posttranslational}, termin {terminus}, sine (lysine, tyrosine}, hem {chemical},

ttr {posttranslational, attracants}, bac {bacterial}, lock {blocked}

Phosphorylation phosph, sit {site, position}, serin, amp- {camp-dependent}, lys {lysine}, kinase, oser {phosphoserine}, residue,

opep {phosphopeptide}, ser- {gln-ser-gly, ser-38}, threo {threonine}, rad {radioactive, degradation},

dig {digestion}, vitro, ivo {vivo}
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other substrings such as ‘residue’ are often related to protein

sequence properties common to all PTMs, which can discriminate

documents characterizing protein sequences from other types of

biomedical documents. Interestingly, some amino acid residues

specific for each PTM are in the list, e.g. ‘ragi’ (for asparagine

in glycosylation), ‘sole’ (isoleucine for hydroxylation), ‘lysine’

(for methylation), ‘serin’ and ‘lys’ (serine and lysine for phos-

phorylation).

We further illustrate the usefulness of the Substring-Based

approach by considering a specific example from iProLINK

(http://pir.georgetown.edu/iprolink/). The curators labeled abstract

PMID 2606104 in the Acetylation group as positive. They also

marked the evidence tag (showed in italics) within the following

passage of the abstract: ‘The primary structure of glucose-6-

phosphate dehydrogenase from rat liver has been determined, show-

ing the mature polypeptide to consist of 513 amino acid residues,

with an acyl-blocked N-terminus’. Interestingly, although the evid-

ence tags were not used in learning, 3 of the top 15 acetylation

substrings in Table 3 (Substrings selected by the Wilcoxon test),

‘acy’ (ranked at 13), ‘lock’ and ‘termin’, occur within the evidence

tag. This is a strong indication that, in addition to document ranking,

the Substring-Based algorithm could also be helpful in evidence

tagging. For example, curators could be aided by highlighting por-

tions of the text with high concentration of highly ranked substrings.

3.5 Ranking of unlabeled abstracts

Using the SB-NB-WRST predictor for ranking of glycolysation

documents the ranking system was applied to the 1088 untagged

abstracts listed in the 347 PIR-PSD protein entries with glycosyla-

tion sites.

The top and bottom 50 ranked abstracts were selected, merged

and shuffled into the list of 100 abstracts (Supplementary Table

unlabeled glycosylation abstracts). PIR curators were then asked to

read and label these 100 abstracts without knowing the actual rank-

ing by our system. The results showed 43 out of the highest ranked

50 abstracts were labeled as positive by the PIR curators, while all of

the lowest ranked 50 abstracts were labeled as negative. Further

analysis showed that abstracts of the seven false positive papers

mostly describe characterization of protein primary sequences and

secondary structures, which were the common themes of the pos-

itive training abstracts. For example, the top-ranked negative

abstract (ranked as 22nd) contain information about protein

sequences and contain informative substrings, such as ‘terminal’

and ‘residue’. These results are very encouraging and indicate that

our ranking system is successful in reducing the cost of curation.

From the 43 positive abstracts, we also observed that evidence

related to protein glycosylation is being described in various ways.

Table 4 shows a list of the glycosylation-related words that were

manually extracted from the 43 abstracts, including the number of

abstracts (out of 43) in which they occurred. For example, 19 of the

43 abstracts used only one of the keywords from the table, 3 of

which used only the less-common words such as ‘glycan moiety’

and ‘disaccharide’ when referring to glycosylation. Such a variety

of words, coupled with their internal similarity (most of them con-

tain substring ‘glyc’), clearly speaks in favor of the Substring-Based

approach.

In comparison, we used Word-Based approach WB-NB-WRST

to rank the same untagged abstracts. The results show that 34 out of

the highest ranked 50 abstracts are true positives, while there was 1

false negative abstract in the lowest ranked 50 abstracts. This is a

further confirmation that Substring-Based approach performs better

than Word-Based approach in our application.

Currently, biomedical researchers and curators most often rely on

keyword search (e.g. MEDLINE, Google) to retrieve relevant

information. As evident from Table 4, it is often difficult to compose

an appropriate keyword-based query, and approaches such as the

proposed one offer a promising alternative for efficient biomedical

literature search.

4 DISCUSSION

Classification and ranking of biomedical documents is challenging

owing to the depth and complexity of biomedical terminology. We

have observed that traditional Word-Based stemming algorithms,

such as the Porter stemmer, have several drawbacks when used as a

preprocessing step in classification of biomedical documents. The

two main issues that arise are that the conflation of biomedical terms

by stemming is too conservative and that stemming might result in

the removal of informative suffixes. The aim of this paper is to show

that stemming can be successfully replaced by a procedure that

automatically selects the most informative substrings from a set

of labeled documents.

The proposed classification/ranking system was evaluated on five

PIR annotated datasets. These datasets are representative of a class

of biomedical text mining problems. They are related to tasks of

information extraction from large text collections (e.g. MEDLINE)

in which it is difficult to express the search goals in terms of

keyword-based queries. In this case, it is probable that a user

would attempt various queries and obtain long lists of retrieved

documents. The user would then start reading the retrieved docu-

ments and, through the process, label a number of them as relevant

or irrelevant. Documents labeled in this way open up an opportunity

to apply text classification systems that rearrange the unread docu-

ments in order of their relevance. Using our ranking system, most

relevant documents would appear near the top of the list and sig-

nificantly reduce human effort in literature survey.

Our experiments show that the proposed substring-based

approach is highly effective even when relatively small labeled

datasets are available for learning. This result is in contrast with

the behavior of traditional Word-Based algorithms that require large

sets of labeled documents in order to approach the accuracy of the

Substring-Based algorithm.

It is worth comparing the current ranking system with the

RLIMS-P text mining tool (Hu et al., 2005) that achieved high

Table 4. Glycosylation-related keywords from the highest-ranked positive

abstracts

Keyword No. of abstracts

Carbohydrate 19

Glycosylate 16

Oligosaccharide 13

Glycopeptide 10

Glycoprotein 7

Glycosylation 5

Glycan Moiety, disaccharide 3

Substring selection for biomedical document classification
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recall (96%) and precision (88%) in classification of phosphorylation

documents.Our systemwas less accurateon the samedata,with recall

of 80 and precision of 92% [SB-NB-WRST row in Table 2 (Phos-

phorylation group)]. However, RLIMS-P is a rule-based system that

relies on manual selection of discriminative rules for information

extraction. This is acceptable for specialized applications such as

the large-scale text mining project at PIR for extracting specific

annotations of protein post-translational modifications such as phos-

phorylation from MEDLINE abstracts. However, the proposed

Substring-Based system is fully automatic, and so is much easier

for application over a wider range of biomedical text mining tasks.
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