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Abstract—We propose a unified approach for imputation of
the links and attributes in longitudinal social surveys which
accounts for changing network topology and interdependence
between the actor’s links and attributes. The previous studies
on the treatment of non-respondents in longitudinal social
networks were mostly concerned with imputation of the missing
links only or imputation effects on the networks statistics. For
this study we conduct a set of experiments on synthetic and
real life datasets with 20%-60% of nodes missing under four
mechanisms. The obtained results were better than when using
alternative methods which suggest that our method can be used
as a viable imputation tool.
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I. INTRODUCTION

Social network surveys have proven to be invaluable tools
for social scientists. In such surveys often a group of people
from an enclosed social setting (e.g. classroom, village etc.)
is asked to identify the people of the same group they think
of as a friend. The social network observations which are
done over time on the same set of people are called panel
surveys and each survey conducted at any given time t is
called a wave panel. In practice, not all respondents always
choose to provide answers to such surveys, therefore the
social scientists are forced to deal with missing data.

The adverse effects of non-responsive actors in social
network surveys were studied extensively in the past. The
general consensus is that missing network information or
complete absence of an actor from the network surveys
will negatively effect the estimation of network properties
[1] and underestimation of the network ties strength [2].
The heightened sensitivity of SNA to the missing data
as compared to the less structured, non-network datasets
raises the importance of accurate imputation models. The
purpose of our paper is to introduce such a new and accurate
imputation model.

The vast majority of the published work investigates the
effects of various imputation techniques on SNA [3]. Study
of such effects is a separate research topic which is not
addressed here because we are more interested in comparing
the imputation accuracies. Nevertheless, it is important to
understand the impacts of imputation, which is why later on
in Section IV-C we present an analysis on how our approach
affects statistics of the imputed networks.

Preliminaries on the imputation approaches in social net-
works are introduced in Section II of this article. A brief
review of related models and relevant baselines is presented
at Section III. In Section IV, our approach which facilitates
imputation of missing links and the attribute values in social
network surveys is introduced. A summary of experimental
evaluations on synthetic and real life problems is provided
in Section V. In Section VI the scalability of our approach
is discussed. The paper ends with discussion and some
directions for future work in Section VII.

II. PRELIMINARIES

A popular way to present a temporal sequence of the
social panel surveys is to use a series of binary adja-
cency matrices (also called sociomatrices) [4]. Each k × k
sociomatrix (where k is a number of actors) at a given
observation time t, denoted as N t, represents the surveyed
state of social relationships within the time invariant set of
actors. The social link within such matrix from actor i to
actor j is denoted by N t

ij = 1 and absence of the link is
denoted by N t

ij = 0. For example, if student i at wave
panel at time t considered student j to be her friend, we
denote such a relationship as N t

ij = 1. The links could be
reciprocal: N t

ij = 1 and N t
ji = 1, but are not necessarily

so. It is assumed the actors shall not have self-referenced
relationships, i.e the main diagonal of the sociomatrix will
always contain zeros.

We consider the case of the non-responsiveness by sur-
veyed actors. Due to various reasons certain actors at dif-
ferent observation times might choose to ignore the ques-
tionnaire provided to them by social scientists. The non-
respondent might choose to ignore the questions because of
the personal reasons. The panel mortality, where people drop
out from the longitudinal survey and cannot be located, is
also a possibility. Once the person ignores the questionnaire
or drops from the study, she might reappear in the future
wave panel(s). For example, if survey panel observations
were done at times t = 1 . . . 4 we can have actors who
completely ignored all four wave panels, we can also have
actors fully participating in all of the surveys. We might
encounter the situation when actors have chosen to respond
to any combination of the wave panels. In our study we
assume the real valued attribute of the non-respondent actor



(alcohol usage score, for example) is also not known. Most
importantly, the actor who ignored the wave panel is never
completely unobserved, because the other participants might
indicate a friendship link to her.

More formally, given the sequence of the wave panels
surveyed at times t = 1 . . . T denoted as N1 . . . NT , the
corresponding actors attributes denoted as x1 . . .xT (xt is
1 × k real valued vector, k is the number of actors), and
the unobserved actors sets S1 . . . ST (|St| = mt, 0 ≤ mt <
k ∀t) our goal is to impute the outgoing links and real
valued attributes of the non-respondent actors from the set
St for each time step t.

III. RELATED WORK

The treatment of the unobserved links in social networks
has been an active area of research for many years. Most of
the published work investigated the relationship between the
imputation techniques and the introduction of statistical bias
and loss of statistical power in a single stationary network
[5], or in the context of longitudinal social networks [6]. In
our paper we rely in the set up of our experiments on one of
these works [3] because it provided a nice comprehensive
foundation on how to treat a missing data in longitudinal
networks. The question of quality of the recovered network
statistics is very important. However, in our paper we are
more interested in accuracy of the imputation techniques. In
this section we cover some of the most common and recent
imputation methods of links and actor’s attributes which will
serve as baselines in our experiments. We will also briefly
review the Extended Temporal Exponential Random Graph
Model (etERGM), a recently published method by [7] which
we leverage extensively in our approach.

A. Link Imputation Techniques

1) Reconstruction.: A simple but powerful approach to
reconstruct links in a single stationary network was pro-
posed at [8]. This reconstruction method takes advantage of
the reciprocity effect very often found in social networks.
The imputation procedure works as following: for all ties
between respondent and non-respondent actors impute the
unobserved link as opposite to the one that was observed:
N t

ij(imputed) = N t
ji(observed). For ties between the non-

respondents impute the link with random probability of
the observed network density. Here we define the network
density as d =

∑k
ij Nt

ij

k(k−1)
2) Preferential Attachment.: The Preferential Attachment

technique proposed at [9] is based on the assumption that
actors with many social links are more likely to be connected
to each other. This technique postulates that the probability
of missing actor i having a link to actor j (observed
or unobserved) is proportional to indegree rj of actor j:
P (rj) =

rj∑
i̸=j rj

. i.e. a “popular” actor is more likely to
have an incoming link from a missing actor. In the Pref-
erential Attachment procedure, for each unobserved actor i

we randomly draw the outdegree number qi from outdegree
distribution of the observed network. For the same missing
actor we randomly draw, without replacement, and according
to probability P (rj), the qi number of actors (observed or
unobserved). In this, step actors who are popular are more
likely to be selected than less popular actors (actors with
less incoming links). Finally, we impute the links from actor
i to actors which were selected as N t

ij(imputed) = 1 and
N t

ij(imputed) = 0 to the ones that were not selected.
3) Constrained Random Dot Product Graph.: The Con-

strained Random Dot Product Graph (CRDPG) [10] is an
imputation technique which models actors as residing in s-
dimensional latent space. In this model the dot product of
actors pair latent coordinates yields the probability of the
link between the two.

4) Random.: We added Random imputation to our base-
lines more as a sanity check than as a serious predictor.
This procedure will randomly fill-in the unobserved portion
of the sociomatrix according to the random probability of
the density d of the observed part.

None of the above mentioned link imputation techniques
consider the real-valued attributes of the observed actors.
These methods also do not take advantage of the temporal
nature of the longitudinal social survey as they can only im-
pute one stationary network at a time without consideration
of other networks in the temporal sequence. Our technique,
which we discuss in Section IV, will bridge this gap.

B. Actor’s Attribute Imputation Techniques

In our study we assume the non-respondent actors also
fail to provide any other personal information sought by
researchers. If the missing information is not available “a
priori”, then it also has to be imputed. In our paper we will
only consider the case of a single real valued attribute per
each actor per one time step because our goal was to evaluate
our approach on a simpler model. Also, the multivariate
datasets are somewhat hard to obtain. In this subsection
we will discuss two imputation techniques for missing real
valued actor attributes which will serve as baselines in our
experiments.

1) Average.: The Average method imputes the missing
actor’s attribute value at each time step as the average of the
observed actors in the same survey. This technique is simple
and crude, but sometimes simple methods can provide good
results.

2) DynaMMo.: The DynaMMo algorithm proposed at
[11] is specifically designed to impute the information gaps
in multivariate temporal sequence data. The real valued actor
attributes in our problem, where each temporal observation
is a k-dimensional multivariate variable xt (k is the number
of actors), is in effect such a multivariate temporal sequence
which can be imputed by DynaMMo without any modifica-
tions. The probabilistic model of DynaMMo consists of two
multivariate Gaussian processes. First process models the



transition probabilities between the time steps in the multi-
variate latent space. The second process describes emission
from the latent space to the observed.

C. The Extended Temporal Exponential Random Graph
Model

The Extended Temporal Exponential Random Graph
Model (etERGM) [7] is a decoupled link and attribute
prediction model that considers not only prediction of links
in temporal networks previously suggested at [12], but it
also predicts attributes in such networks. etERGM, however,
cannot be used for imputations in its present form. We
cover it here because in our approach we include etERGM’s
prediction models as parts of our iterative solution for
imputation of actors’ links and attributes. Given the sequence
of wave panels N1 . . . NT surveyed at times t = 1 . . . T
and actor attributes x1 . . .xT , etERGM predicts the network
structure NT+1 and actor attributes xT+1 at the next unob-
served time step T+1. etERGM assumes that all actors have
fully participated in surveys at all times t = 1 . . . T .

The etERGM consists of two decoupled models: the link
prediction model and the attribute prediction model. The link
prediction model is expressed as

P (N t|N t−1,xt,θ) =

1

Z(N t−1,xt,θ)
exp{θ

′
ψ(N t, N t−1,xt)} (1)

The link prediction model (1) defines the transition from
N t−1 to N t and incorporates the dependency of N t over the
attributes xt. In this log-linear model Z is the normalization
constant, ψ is a function of Rk×k × Rk×k × Rk → Rl,
ψ(N t, N t−1,xt) denotes l-size list of sufficient statistics,
which encode interdependence of actors’ links and attributes
and θ is parameter vector. The complete list of statistics used
in link prediction model is detailed in [7], but we present
one of these statistics as an example:

ψL(N
t,xt) = k

∑k
i<j N

t
ijN

t
jiI(|xti − xtj | < σ)∑k

i<j N
t
ijN

t
ji

(2)

Here, ψL (2) reflects the interdependency between the ac-
tors’ links and attributes. It measures the degree to which
actors with fully reciprocated links express homophily. To
capture the similarity of actors’ attributes the indicator
function I is utilized, which simply counts the actor pairs
with similar attributes (defined by the absolute distance and
parameter σ).

The node prediction model of etERGM is expressed as :

P (xt|xt−1, N t,γ) =

1

Z(xt−1, N t,γ)
exp{γ

′
ψ(xt,xt−1, N t)}N(xt|V0,Σ0)

(3)

It describes the transition of attributes from time t − 1 to
time t, dependent on the network structure N t at time t.

In the next section we show how we have incorporated
etERGM’s prediction models into our proposed solution
for imputation of longitudinal social surveys. etERGM is
a natural fit for the problem we are addressing here be-
cause it considers the temporal nature of the surveys and
interdependence of actors’ links and attributes (homophily
selection). While it is a natural fit, the adaptation of etERGM
for the imputation task has never been done before. Most
importantly we will show how etERGM characteristics allow
us to build our own state-of-the-art imputation technique.

IV. THE PROPOSED ITERGM APPROACH

Before we discuss our approach we should explain the
Area Under the Curve (AUC) measure and how it is com-
puted to measure link prediction accuracy. Readers familiar
with the use of AUC for link prediction in social networks
can safely skip next paragraph.

A. AUC Measure of Link Prediction Accuracy

In general, to measure the link prediction accuracy of a
temporal network sequence the AUC was used successfully
in the past ([13],[14]). The AUC is a preferable mea-
surement in the presence of imbalanced datasets such as
social networks where link density is usually low. Every
link imputation algorithm covered in this paper is non-
deterministic. Therefore one possible way to measure the
link imputation accuracy on a single social network is to
compute a score matrix S:

S =
∑
l

Nl (4)

Each run of an imputation algorithm results in the binary
|S| × k subset matrix Nl, which contains only imputed
outgoing links. Here, S is the set of actors who did not
respond to survey (did not indicate their outgoing links)
and k is a total number of actors in the network. Thus the
resulting score matrix S contains the probabilities scores of
all imputed links. Using such a matrix we can construct a Re-
ceiver Optimization Curve (ROC) by moving the threshold
parameter in small increments from the matrix’s S smallest
to its largest value. Each time we move the threshold we
create an intermediate binary matrix and set all its entries to
0 if S(i, j) < threshold ∀i, j and 1 otherwise. Therefore,
a binary prediction matrix at the beginning contains all 1s
and it contains 0s at the end. While moving the threshold
parameter we calculate the true positive and false positive
rates of imputed links against the true target. True positive
rate is number of correctly imputed links divided by the
total count of true links. False positive rate is number of
imputed links which were not in the true target divided by
the total count of non-existing links (structural zeros). We
construct ROC by using the x-axis for the false positive



rate and the y-axis for the true positive. We calculate AUC,
bounded between 0 and 1, based on the constructed curve. A
perfect imputation algorithm will have AUC=1, and random
algorithm will have AUC=0.5. A better predictor always
have larger AUC.

B. Proposed Algorithm-ITERGM

The imputation methods we have reviewed so far
(Sections III-A and III-B) can either be applied for link
or attribute prediction, or completely ignore the temporal
aspect of the surveys. The etERGM model (Section
III-C) provides many properties we are looking for in
our imputation approach: it encodes the interdependence
of actors attributes and links, it also considers the time
axis in its learning and inference process. Despite all its
characteristics, the etERGM cannot be applied directly to
impute attributes or links. Its probability models (1) and
(3) can only predict the social network structure at the
next unobserved time step given all completely observed
previous time steps. Our algorithm, named ITERGM, is
in essence the Expectation Maximization (EM) algorithm
over two Markov Chain Monte Carlo (MCMC) inferences.
During Expectation step we draw multiple particles from
both link and prediction models (Steps 4 and 6) of etERGM
and in interlocking fashion use them to impute/update
the dataset. During Maximization (Steps 3 and 5) we
relearn both models’ parameters on the updated data. We
repeat these steps until the weights of both models have
converged. We choose the iterative solution over a single
pass because we want to avoid the dependency of the
imputation results on the initialized values. It is unlikely
that a single update/imputation pass would reach the
point of maximum likelihood. Therefore, we re-learn the
model parameters via an iterative approach. More formally,
ITERGM method consists of the following steps:

The input of the algorithm is the temporal sequence of
the partially observed sociomatrices and actors’ attributes.
The Steps 1-5 of the algorithm are initializations. In Step
2 we chose “a priori” the DynaMMo algorithm to initialize
the missing values of the multivariate temporal sequence of
actors’ attributes. In Steps 3-5 we apply every imputation
technique outlined in Section III-A to every partially ob-
served sociomatrix and choose the best imputation procedure
for initialization of the network’s unobserved part. We
apply straightforward criteria to select the best initialization
technique for links, we choose the algorithm in which
imputed density is closest to the density of the observed
part. For example, assume that link density of the observed
part of network N t is 0.2. We impute the unobserved part
of network N t by applying every algorithm described in
Section III-A and record the resulting link density of the
unobserved part. To initialize links in N t we pick the
algorithm with computed density of the unobserved part

Algorithm 1 ITERGM
Input: The sequence of surveys:N1:T , x1:T where links
and attributes, corresponding to actor sets S1:T are unob-
served: xt(St) = ∅ and N t(St, j) = ∅ ∀t, j
Output: Imputed links score matrices: S1:T . Imputed
actors’ attributes: x1:T

imputed

1: Initialize iteration counter: iter = 1
2: Apply DynaMMo (Section III-B) to initialize missing

values in x1:T → x1:T
temporary

3: for t in 1 . . . T do
4: Impute N t(St, j), ∀j with best link imputation tech-

nique from Section III-A → N t
temporary

5: end for
6: Train etERGM’s attribute prediction model (Section

III-C) on N1:T
temporary, x1:T

temporary to learn weights γiter

7: for t in 2 . . . T do
8: Sample multiple vectors xt

inferred from distribution
P (x̄t

inferred|x
t−1
temporary, N

t
temporary,γiter)

9: for all missing actor p in St do
10: xt

temporary(p) = mean(xt
inferred(p))

11: end for
12: end for
13: Train etERGM’s link prediction model on N1:T

temporary ,
x1:T
temporary to learn weights θiter.

14: for t in 2 . . . T do
15: Draw multiple networks N t

inferred from posterior
distribution:P (N̄ t

inferred|N
t−1
temporary,x

t
temporary,θiter).

16: Calculate |St| × k score matrix: St =∑
N t

inferred(S
t, j), ∀j

17: Set N t
temporary(S

t, j) = bestcut(St), ∀j
18: end for
19: if iter > maximum number of iterations then
20: x1:T

imputed = x1:T
temporary

21: return
22: else
23: iter = iter + 1
24: go to Step 6
25: end if

closest to 0.2.
At this point, all links and attributes of all networks have

been initialized and we begin our iterative approach. In Steps
6-12 of the algorithm we apply the etERGM node prediction
model to learn its weights and to impute the unobserved
attributes by drawing samples from the model over the set
of the unobserved actors. Then, in Step 13, we learn the
weights of the etERGM link prediction model by training it
on the dataset we have just updated with imputed actors’
attributes in interlocking fashion. Knowing the weights,
we draw multiple samples from the link prediction model
and use them to impute the outgoing missing links (Steps
14-18). In Step 19 we check if we reached number of



maximum iterations. If the number of maximum iterations
is not reached, we continue the learning/inference process
constantly updating the dataset over the set of unobserved
actors in interlocking fashion and re-learn the weights of
etERGM. Otherwise, the score matrices in Step 16 are our
prediction of the imputed links and x1:T

temporary is our im-
puted temporal sequence of actors’ attributes. It is important
to note that at each transition we consequently update the
missing part of the same dataset (links and attributes) based
on the model parameters which were learned at the previous
iteration.

The expectation steps of our algorithm deserve closer
attention. Computing the expected values of the missing
actors’ attributes is fairly straightforward. In Step 8, for
each survey we sample multiple particles (actors’ attributes
vectors) based on the weights γiter learned in the current
iteration. We take the mean of the corresponding values of
the actors’ attribute vector as our prediction of the missing
actor’s attribute and use that to update our dataset (Steps 9-
11). The inference of the links is a little bit more involved.
Similarly to the imputation of actors’ attributes we sample
multiple sociomatrices for every survey based on the present
learned weights θiter of the link prediction model (Steps
14-15). We take the predictions of the imputed values in the
form of the score matrices St by adding drawn samples in
Step 16. In their present form the score matrices St cannot
be used directly to impute the missing links. We have to
convert St, which hold the relative probability scores of
possible links, into binary form and use that to update the
missing part of network (sociomatrices are always binary).
That is why in Step 17 we apply the bestcut procedure
to determine the best threshold or “cut” to make a binary
link imputation matrix suitable to update missing links.
The bestcut procedure chooses the threshold such that the
resulting binary matrix is maximizing the probability of the
link prediction model in Step 15. This is achieved by moving
the threshold from the score matrix’s smallest to its largest
value. Each resulting binary imputation matrix is substituted
into a link prediction model and we pick the best matrix
(“cut”) which maximizes the link prediction probability.

C. Algorithm Convergence

Our algorithm in its essence is a continuous sampling
from link and attribute prediction models with iterative
updates of model weights. Our exit condition is a sufficient
number of iterations, which in practice we limit to 3 or
4. However, we have to ensure that our technique indeed
converges. To evaluate convergence of our algorithm we
adapted a standard convergence evaluation technique for
ERGM models [15]. It works as following: a) take a fully
observed network and calculate its real observed statistics
ψ0, b) randomly remove a given percentage of actors from
the network and apply the imputation technique, c) during
imputation draw multiple samples from the model and

Table I
CONVERGENCE ESTIMATES OF THE IMPUTATION ALGORITHM ON TIME

STEPS t = 2, 3 OF THE REAL LIFE DATASET Delinquency

Statistic Average Difference Standard Deviation t-ratio
ψlinks 0.74 2.12 0.35
ψsim -0.59 2.09 -0.28
ψdyads -0.48 1.20 -0.40
ψD 2.02 1.85 1.09
ψS -1.82 1.98 -0.92
ψR 0.00 1.01 0.00
ψT 0.78 1.15 0.68
ψlinks -0.82 1.55 -0.53

for each drawn sample calculate network statistics ψk, d)
calculate the t-ratio as

tk =
Eθ(ψk)− ψ0

SDθ(ψk)
(5)

In [15] it was suggested that |tk| ≤ 0.1 is indicative of
an excellent convergence, 0.1 < |tk| ≤ 0.2 is good and
0.2 < |tk| ≤ 0.3 is fair.

We evaluated the convergence property of our algorithm
on the real life dataset Delinquency which we describe in the
next section. We picked a single transition step from t = 2
to t = 3 of the dataset and removed 20% of the actors at
random from the network at step t = 3. We then ran our
imputation technique on the selected transition step and after
3 iterations had collected 1,000 samples of sociomatrices
and actors’ attributes. In Table I we present the averages of
the differences between the true statistics ψ0 and statistics
based on the imputed samples, the standard deviation of the
differences and corresponding t-ratios. The etERGM statis-
tics ψlinks, ψsim, ψdyads, ψD, ψS , ψR, ψT shown in Table I
correspond to the measurements of homophily, attributes’
stability, similarity, density, links stability, reciprocity and
transitivity [12],[7].

In Table I we observe that converging properties are
ranging from excellent to poor. However, it should be noted
that none of the t-ratios indicate statistical significance. This
means that network statistics derived from the imputed data
are not significantly different than true values.

V. EXPERIMENTS

To evaluate the accuracy of our approach we conducted
a series of the experiments on synthetic and real life
datasets. Two approaches, Missing At Random (MAR) and
Missing Not At Random (MNAR), are used to model the
non-responses in social network literature [3]. The former
approach assumes there is no underlying hidden structure
explaining the missing information, the latter assumes that
the missing values are dependent on the actors’ attributes
or the network topology. For both synthetic and real life
datasets we set up our experiments as follows: we randomly
remove a predefined percentage of the actors from each



wave panel according to MAR or MNAR. We perform
repeated imputations (u = 5) on the semi-observed dataset
by applying the proposed approach and baseline imputation
techniques for links and attributes. To compare results we
construct the 90% confidence intervals on both link and
attribute imputations according to the “multiple imputation”
technique [16]. We run our experiments by simulating the
removal of the actors according to four missing mechanism:
one MAR and three types of MNAR. For MAR, we removed
actors at each time step completely at random. For MNAR,
we removed the actors according to probabilities of 1

(xt
i)

2 ,
1

(1+indegree)2 and , 1
(1+outdegree.)2 . The first MNAR, that

we call “Score”, models the absence of actors as being
dependent on their real-valued attribute (for example, the
actors with higher alcohol consumption score are less likely
to respond to survey). The second MNAR, called “Indegree”,
assumes the more popular actors are more likely to be survey
participants. The third, called “Outdegree”, assumes that the
socially inactive people are less likely to be willing to answer
survey questions. Then for each missing mechanism we have
removed 20%, 40% and 60% of actors from each survey. To
summarize, we model the actors’ removal at the four types
of missingness and three different percentages, to the total
of 12 sets of experiments per each dataset and we repeat
imputation of each set 5 times.

To assess the imputation accuracy of the actors’ attributes
we used the Mean Squared Error (MSE) measurement. For
the imputation of the links we calculated the Area Under
Curve (AUC) measurement on the score matrix of the
imputed part of the sociomatrix, discussed in the previous
section. A perfect imputation algorithm will have AUC=1
and a random algorithm will have AUC=0.5, the larger AUC
value indicates the better algorithm.

A. Synthetic Dataset

The purpose of the experiments on the synthetic dataset
was to verify the proposed imputation technique under
controlled conditions. We generated one synthetic dataset
adhering to the Markovian process, where each consecutive
social network in the temporal sequence at time t is created
from the network of the previous time step t − 1. The
transformation steps from t − 1 to t consisted of random
link inversions, random link reassignment and completion
of the transitive relations. We repeated these transformation
steps until the desired number of synthetic networks was
generated. To generate the actors’ attributes we used an
approach similar to the network generation procedure. Here,
the transformation steps of actor’s attributes from t − 1
to t consisted of addition of Gaussian random noise and
equalizing attribute values of doubly linked actors.

To characterize our approach, we conducted experiments
on eleven synthetic datasets of increasing numbers of actors
ranging from 20 to 1,000. All generated datasets were
networks observed over four time steps. For each dataset
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Figure 1. Comparison of the accuracy of link imputation techniques
measured in AUC vs. the number of actors on eleven synthetic datasets
of increased size. All datasets consist of 4 time steps and the missing data
is modeled by randomly removing 20% of actors at each time step.

we simulated missing links and attributes by removing 20%
of the actors completely at random (MAR). We applied
each of the five link imputation techniques presented in
this paper on all eleven datasets and calculated the AUC
of link imputation accuracy for each technique. In general,
the imputation accuracy had decreased for all techniques as
the number of actors increased (see Figure 1). However, in
all experiments ITERGM was much more accurate than any
of the alternative techniques.

B. Real Life Datasets

We conducted exhaustive set of experiments on two well
known real life datasets. The first dataset, Delinquency [17],
consists of four temporal observations of 26 students in a
Dutch school class. At each wave panel researchers asked
pupils to identify their 12 best friends. At the same time
researchers recorded the delinquency score, a five point
measurement ranging from 1 to 5 as an average of the
delinquent incidents. The second dataset, Teenagers [18],
is a temporal observation of 50 teenagers done in three
wave panels. Similarly to Delinquency, researchers asked
pupils to identify their friends. Also, at each observation
the teenagers’ alcohol consumption score was compiled.
This measurement was also defined on 5 point scale from
1=none to 5=more than once a week. On the Delinquency
dataset ITERGM had achieved convergence on average in
three iterations, and four iterations on Teenagers. We present
the results of the experiments on both real life datasets in
Tables II and III. In both real life datasets the ITERGM
performed well on the links and attributes’ imputation as
compared to the baselines. We observed many overlaps in
the confidence intervals of the attribute imputation accura-
cies in the Delinquency dataset. However, in many of these
instances the confidence intervals of the baseline techniques
are rather large whereas the ITERGM is more precise (for
example see the experiment of MNAR-score, 60% missing
actors). Results on Teenagers were notably better, with



Table II
LINKS AND ATTRIBUTES IMPUTATION ON THE Delinquency DATASET (SIMULATING FOUR TYPES OF MISSING MECHANISMS FOR 20%-60% OF

MISSING ACTORS): 90% CONFIDENCE INTERVAL OF THE AUC AND MSE. Bold DENOTES THE BEST RESULT, THE UNDERLINE REPRESENTS THE
OVERLAP OF THE CONFIDENCE INTERVAL WITH THE BEST RESULT.

Type % Link Imputation AUC Attributes Imputation MSE
Random PrAttach. Reconstr. CRDPG ITERGM Average DynaMMo ITERGM

random
20 0.52±0.01 0.60±0.02 0.70±0.00 0.72±0.00 0.78±0.01 0.19±0.00 0.15±0.00 0.12±0.00
40 0.52±0.00 0.66±0.01 0.71±0.01 0.70±0.01 0.74±0.01 0.25±0.00 0.46±0.09 0.40±0.15
60 0.53±0.01 0.67±0.00 0.65±0.01 0.69±0.01 0.71±0.01 0.64±0.00 0.60±0.05 0.51±0.06

score
20 0.53±0.00 0.67±0.00 0.72±0.01 0.79±0.02 0.80±0.02 0.49±0.00 0.35±0.25 0.27±0.02
40 0.52±0.01 0.60±0.01 0.67±0.00 0.66±0.01 0.72±0.01 0.95±0.00 0.84±0.45 0.77±0.17
60 0.49±0.00 0.61±0.01 0.68±0.00 0.64±0.02 0.70±0.00 1.16±0.00 1.01±0.54 0.77±0.10

indegree
20 0.51±0.02 0.54±0.01 0.74±0.03 0.74±0.03 0.79±0.01 0.27±0.00 0.15±0.01 0.11±0.00
40 0.54±0.01 0.61±0.00 0.64±0.00 0.74±0.00 0.80±0.01 0.48±0.00 0.38±0.03 0.25±0.03
60 0.52±0.00 0.62±0.00 0.65±0.00 0.72±0.00 0.68±0.00 0.63±0.00 0.62±0.04 0.54±0.06

outdegree
20 0.50±0.04 0.67±0.04 0.86±0.01 0.82±0.06 0.89±0.03 0.56±0.00 0.48±0.15 0.43±0.06
40 0.52±0.01 0.61±0.01 0.72±0.02 0.70±0.00 0.81±0.01 0.58±0.00 0.50±0.08 0.41±0.08
60 0.51±0.00 0.52±0.01 0.61±0.00 0.65±0.01 0.73±0.01 0.72±0.00 0.82±0.14 0.66±0.09

Table III
LINKS AND ATTRIBUTES IMPUTATION ON THE Teenagers DATASET (SIMULATING FOUR TYPES OF MISSING MECHANISMS FOR 20%-60% OF MISSING
ACTORS): 90% CONFIDENCE INTERVAL OF AUC AND MSE. Bold DENOTES THE BEST RESULT, THE UNDERLINE REPRESENTS THE OVERLAP OF THE

CONFIDENCE INTERVAL WITH THE BEST RESULT.

Type % Link Imputation AUC Attributes Imputation MSE
Random PrAttach. Reconstr. CRDPG ITERGM Average DynaMMo ITERGM

random
20 0.50±0.00 0.53±0.00 0.85±0.00 0.78±0.00 0.86±0.00 0.25±0.00 0.11±0.00 0.10±0.00
40 0.48±0.00 0.50±0.00 0.71±0.00 0.61±0.00 0.71±0.00 0.52±0.00 0.52±0.01 0.51±0.00
60 0.51±0.01 0.53±0.00 0.79±0.00 0.74±0.00 0.79±0.00 0.84±0.00 0.77±0.01 0.75±0.01

score
20 0.57±0.00 0.51±0.00 0.79±0.03 0.72±0.00 0.80±0.00 0.41±0.00 0.36±0.00 0.36±0.02
40 0.50±0.00 0.53±0.00 0.75±0.00 0.75±0.02 0.76±0.00 0.62±0.00 0.60±0.01 0.54±0.01
60 0.50±0.00 0.51±0.00 0.67±0.00 0.69±0.00 0.73±0.00 1.38±0.00 1.40±0.03 1.18±0.04

indegree
20 0.48±0.01 0.54±0.00 0.68±0.08 0.69±0.04 0.74±0.00 0.26±0.00 0.15±0.00 0.13±0.00
40 0.53±0.00 0.56±0.00 0.69±0.01 0.73±0.00 0.75±0.00 0.53±0.00 0.36±0.00 0.33±0.01
60 0.49±0.00 0.53±0.00 0.69±0.00 0.67±0.01 0.70±0.00 0.75±0.00 0.65±0.04 0.57±0.02

outdegree
20 0.50±0.00 0.50±0.00 0.85±0.01 0.88±0.01 0.82±0.01 0.16±0.00 0.17±0.00 0.17±0.00
40 0.49±0.00 0.49±0.00 0.85±0.01 0.76±0.00 0.77±0.01 0.43±0.00 0.47±0.00 0.41±0.01
60 0.49±0.00 0.51±0.00 0.75±0.01 0.70±0.00 0.71±0.00 0.70±0.00 0.74±0.00 0.53±0.01

less overlaps of the confidence intervals. The CRDPG and
“Reconstruction” link imputation algorithms also had good
results and in almost all cases were the second best choices.
Just as we expected the “Random” algorithm performed
poorly (AUC values are close to 0.5).

VI. SCALABILITY

We investigated the runtime of ITERGM based on two
sets of experiments. In one experiment we have created a
synthetic dataset with 30 actors and 10 time steps. We ran
ITERGM to impute this dataset on a increasing number of
time steps from 2 to 10 and recorded the time in seconds it
took the algorithm to run. In Figure 2 we present the result
of this experiment. Here, we are clearly observe a linear
trend of algorithm runtime in terms of number of survey
panels. We conducted a similar experiment on 4 survey
panels. This time we held the number of surveys constant
but were increasing the number of actors from 30 to 100
in 5 actors increments. We ran the imputation algorithm on
the resulting dataset and recorded the time in seconds it
took to run. The results of this experiment are shown in
Figure 3. In this experiment we observed the quadratic term
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Figure 2. ITERGM runtime in seconds vs. number of surveys

of algorithm runtime in terms of number participating actors.
The quadratic scalability in terms of number of actors is
not surprising because the algorithm has to consider k2 − k
number of relationships (k is a number of actors in the social
networks).
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Figure 3. ITERGM runtime in seconds vs. number of actors

VII. DISCUSSION AND FUTURE WORK

We demonstrated through the empirical results that our
approach can be used as a viable imputation tool for the
temporal social networks. Our investigation of this tech-
nique is not complete because the experiments’ results had
uncovered new questions which can be addressed in future
research. The relationship between the removal technique
(MAR or MNAR) used to simulate the unobserved actors
and imputation accuracy of ITERGM is not understood. We
are currently also expanding our model to handle multi-
variate and mixed actors’ attributes. The disadvantage of
our approach is that it cannot infer the first time step. We
investigated the possibility of training an ITERGM model on
the reversed time sequence of the surveys, so that inference
of the first time step would be possible. However we have
encountered the degeneracy of the link prediction model (not
uncommon in exponential random graphs [19]), which we
are planning to investigate in our future work.
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