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Abstract

Simultaneously estimating multi-output regres-
sion model, while recovering dependency struc-
ture among variables, from high-dimensional ob-
servations is an interesting and useful exercise in
contemporary statistical learning applications. A
prominent approach is to fit a Sparse Gaussian
Conditional Random Field by optimizing regu-
larized maximum likelihood objective, where the
sparsity is induced by imposing L; norm on the
entries of a precision and transformation matrix.
We studied how reparametrization of the original
problem may lead to more efficient estimation
procedures. Particularly, instead of representing
problem through precision matrix, we used its
Cholesky factor, which attractive properties al-
lowed inexpensive coordinate descent based opti-
mization algorithm, that is highly parallelizable.

1. Introduction

Conditional Random Fields (CRF) are a class of probabilis-
tic graphical models, that model the probability distribu-
tion of a number of random variables conditioned on a set
of observations (Sutton & McCallum, 2012). CRFs are
commonly used for approaching multi-output/structured-
prediction tasks like named entity recognition in Natural
Language Processing (Tran et al., 2017), gene finding in
Bioinformatics (Chang et al., 2015), or image segmentation
in Computer Vision (Orlando et al., 2017), to name a few.

Although very flexible and descriptive framework, CRFs are
also computationally expensive and generally intractable,
due to fact that normalization (a.k.a. partition) function
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needs to be integrated over the input space, for which there
is no closed form solution, except in few special cases.
Therefore, additional modeling assumptions are typically
introduced to make estimation and inference tractable.

A popular and useful one is to assume a particular distri-
bution, like Multivariate Normal Distribution, which leads
to convenient mathematical properties and efficient estima-
tion and inference algorithms for the model (Krihenbiihl &
Koltun, 2011). Gaussian assumption makes estimation of
CRF models from data tractable, and is often sound for com-
mon regression tasks. However, contemporary applications
are comprised of increasingly higher number of variables
(tens of thousands of biomarkers measured, millions of
pixels in the images, etc.) and when cardinality of target
variables set is large, model parameters’ space grows polino-
mially, thus increasing storage requirements, computational
time, and tendency of model to overfit. Additional assump-
tions make sense to lead to more parsimonious models and
more efficient computation, for example that some (or ma-
jority) of variable pairs are conditionally independent given
all others. That leads to sparsity in problem parametrization,
and hence the name Sparse Gaussian Conditional Random
Fields (SGCRF) (Wytock & Kolter, 2013).

State of the art SGCRF methods are fitting the inverse co-
variance (i.e. precision) matrix and transformation matrix
against the data, in a L; regularized maximum likelihood
objective. Such formulation contains logarithm of determi-
nant of the precision matrix which is expensive to compute.
We propose reparametrization of the objective, in terms of
Cholesky factor of the precision matrix. Such parametrized
problem greatly relieves the burden of calculating the logdet
term, while learning the sparse Cholesky factor still pro-
duces sparse precision (in most circumstances). Moreover,
columns of Cholesky factor can be calculated independently
of each other, which allows trivially parallel computation.

2. Background

2.1. Problem formulation

The target vector y € IRP* ! (a p-dimensional column vec-

tor), that is conditioned (dependent) on vector of observed
values z € IR?*! (a ¢-dimensional column vector of ran-
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dom variables), is modeled as a particular type of log-linear
model, i.e. Gaussian CRF. Conditional probability density
function of y in Gaussian CRF has a canonical form of a
multivariate normal distribution:

d(y|z) = (27)7P/2 det(x)~1/?

1
e (50— w@) = - pen)

where 4 is the mean function mapping: IR?*? — IRP*!
and X is nondegenerate covariance matrix ¥ € IRP*P. We
adopt u as a parameterized function (Radosavljevic et al.,
2010), linear in input space x, of a form of u(z) = X607 z.

Equation 1 models both mapping between the input and
output spaces © (© € IRY*P), as well as dependen-
cies among the random variables in the output space
3. Task is to estimate parameter matrices X and ©,
by fitting the conditional probability function using the
observed data D, which is in form of n IID pairs of
input-output (or explanatory-dependent) variables D =
1,11} {z2, 92}, .., {@n, yn}}- Joint probability is ob-
tained as the product of individual conditional density func-
tions (1) for each of the observations:

p(ylz; D) = (2m)""P/? det(x7")"/?
. 1
H exp (2(yiTZlyi — Zx?@yi —+ xZT@EG)Txi)>
i=1
2

Transformation with -log (negative log likelihood) is per-
formed, as well as vectorization of the expression (stack n
observations in matrix Y € IRP*", and matrix X € R?*™).
Logdet is written as a trace of a scalar, and logarithm of the
constant term is dropped, as it doesn’t affect the extremum:

plyla; D) = (27)7"P/* det(£71)"/?
1
exp (—Qtr(YTE_lY —2xTey + XT@zeTX)>
3)

Subsequently, we seek parameters’ values that minimize
the negative log-likelihood (known result that the trace is
invariant to cyclic permutations is used):

I(%,0) = 7210g(det(2*1)) + %tr (=vyT) “
—tr(OY X7T) + %tr(@E@TXXT)

To make the equations more concise, following substitutions
are introduced: %YYT=S?”” e IRP*P, %YXT=SW €
IRP*? and %XXTzSm € R?*? . Finally, the SGCRF
model objective is obtained by imposing an L; norm on ma-
trices ¥ ! and © (\y and \g are the respective weights):

1 1
I(,0) = —§log|2_1| + 5t (2715w — tr(08Y")

1
+§tr(®E@TS“) + A=Y + XellO1
(5)

2.2. Related work

Objective in eq. (5) is originally formulated in (Sohn & Kim,
2012), dubbed Conditional Gaussian Graphical Model, and
solved using Orthant-Wise Quasi-Newton algorithm (An-
drew & Gao, 2007). Later work by (Wytock & Kolter, 2013)
referred to the same problem formulation more specifically
as Gaussian Conditional Random Field, recognizing it as
a discriminative extension of well studied sparse inverse
covariance problem, and accordingly adopted second order
active set approach from (Hsieh et al., 2011) to solve it. Sim-
ilarly, block-wise coordinate descent algorithm for inverse
covariance learning (Hsieh et al., 2013) was subsequently
utilized for scaling the approach to large SGCRF problems
in (McCarter & Kim, 2016).

Beside improving learning efficiency and scalabillity of al-
gorithms, there are efforts to improve modeling capabilities
of SGCRF models. Neural Conditional Random Fields
were proposed to allow nonlinear mappings from obser-
vations (Radosavljevic et al., 2014), and marginalization
based approach was used for working on partially observed
data (Stojanovic et al., 2015). Copula approach was used to
enable distributions other than Gaussian (Kim, 2016), and
a method robust to outliers was proposed in (Hirose et al.,
2017). In addition, there are efforts to merge SGCRF with
recurrent neural networks for use on time series data (Wang
et al., 2018), as well as with variational autoencoders for
modeling noise in images (Dorta et al., 2018).

In the reminder of paper, our focus is on improving the com-
putational efficiency and scalability of SGCRF estimation
algorithm, through convenient objective reparametrization.

3. Method

First, we reparametrize eq. (4) in terms of Cholesky factors
L, where =1 = LL7 (scaled to lose the positive factor n):

UL,©)= f%log(det(LLT)) + %tr (LLTSv) o
—tr(05Y7) + %t?"((%L*lTL*l@Ts”)
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Cholesky reparametrization was previously proposed for
estimating sparse inverse covariance matrix in (Stojkovic
et al., 2017), however applying this trick for the SGCRF
model is not trivial. It is computationally very inconvenient
to have both L and its inversion L~! in the expression of
objective (6), as cost of matrix inversion is roughly cubic
in size of the problem. To further alleviate such inconve-
nience, we are resorting to introduction of an additional
reparametrization L~='07 = W7, where W € IR?*P
is new resulting parameter matrix which we aim to esti-
mate. The new-reparametrized objective, with substitute
© = WLT, boils down to:

(L,W) = —llog|LLT| + 1tr(LLTSyy)
2 2 7
—tr(WLTS”) + %tr(WWTSm)
The first half of equation (7), the “logdet” and the “empirical
covariance” terms, are identical as in Gaussian Markov
Random Field (GMREF) introduced in (Stojkovic et al., 2017;
Jelisavcic et al., 2018). However, since this is a conditional
extension of GMREF, aimed for the discriminative supervised
task of regression, there are additional terms. The fourth
term is the “conditional” part, i.e. it is the quadratic form
of the features, and the third term accounts for interactions

between conditional and target variables.

Objective in equation (7) is our original contribution and
starting point for further study. In the reminder we present
favorable properties of formulated objective, and how to
exploit them for achieving better computational efficiency.

3.1. Properties

Lemma 1. Log-det term in equation (7) is separable by
columns of Cholesky factor L.

Proof. We refer to the known result that determinant of
LLT is just sum of diagonal elements of L. O

Log-det term is the most expensive part of equation for
computation (O(p?)), but according to Lemma 1 in the new
reparametrization of the objective function, the log-det term
can be efficiently computed in linear (O(p)) time.

Lemma 2. Trace terms in equation (7) are separable by
columns of L and W matrices.

Proof. L can be observed as a sum of p “rank 1” p X p

matrices L., where each matrix contains the j;, column of
the L matrix and the rest of entries are zero (L = }_; L;):

p
(LLTSY) = Z (L. ;LT;5%) (8)

Similarly for the columns of W and feature covariance term:
P
tr(WwTsv) Z (W WLS™) )

Mixed term ¢r(W
of L and W since:

LT S¥%) is also separable over columns

p
(SIwTy) = Z

tr(WLTSY®) = tr (S™L.,; W)

(10)

O

Theorem 1. Objective [(L, W) defined in eq. (7) is com-
pletely separable by columns of Cholesky factor L, in other

words, contribution of column L; (i € {1,...,p}) to the
objective l is independent of other columns Lj (j # ).

Proof. We use the claims from Lemma 1 and Lemma 2 to
write column-wise separable objective:

p
1
= (~log(Ly;) + gtr(LaiLe; SY)

j=1 (11)
1
—tr(Wi;La; T S9%) + 5tr(mjW*jTS”))

WL, W)

O

Corollary 1. Arguments that minimize objective | in eq.
(11) can be obtained by finding partial arguments for each of
the columns separately, which makes this problem trivially
parallelizible for up to p tasks.

Now we can derive the expressions for the derivatives of the
differentiable function [(L, W). In case of L parameters,
we differentiate between two separate types of variables:
off-diagonal elements (when 7 = j), and diagonal elements
(when i # j), so we will have two sets of update equations.
We continue by using the standard matrix calculus:

otr(Ly;L;"S) 0L

tr((==2L,;7 + L -aL*jT)S)
OL;; VoL Y 0L,
L T
—Qt(aL L.;"8)=2LTs;

12)

Here, S; denotes the ¢-th row of matrix S, and L; is the j-th
column vector of the matrix L. To get the expression (12)
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we used the fact that matrix % is actually a zero matrix
ij

with a single 1 on the ¢-th row and j-th column, and the

cyclic property of the trace operator for symmetric matrices.

We use sparsity inducing absolute norm to penalize L and
W. Differentials over L and W are respectivelly:

ag(L7 W) T _ T Quy
vec(iaLij ) vec(Ar) =tr(LAL" SYY) 13)
—tr(WALTSY)
89(Lﬂ W) T . T Qzzx
ec(iavvlj ) vec(Aw) = tr(Aw W §%%) a4

—tr(Aw LT SY7)

Ay is matrix where all elements are zeros, except particular
column j which has values of j-th column in matrix X,
and vec is an operator which reorders matrix into vector
(“vectorization” operator). For the diagonal elements (2 = j)
differential is the same as in eq. (13), just with an addition
of —% term, due to a log det contribution.

From there, we get derivatives, as well as the optimality
conditions:

DS Wy (15)

k=1

3gLW

Z SYY . Ly —

dg(L, W) _ & .
M =3 S Wiy — > SiLi;  (16)
k=1 k=1

Separability over the columns is obvious (gradient expres-
sion, for each column, is dependent only on the elements
from that same column), and the presented objective (11)
is equivalent to objective (5). If we penalized X! and
© matrices, or LLT and W L7, the results would be the
same as original problem (Sohn & Kim, 2012; Wytock &
Kolter, 2013; Sojoudi, 2016), but such penal would destroy
attractive separability property of new objective.

We propose penalizing newly introduced parameter matrices
L and W (except for the diagonal elements of L) so that ob-
jective stays separable, which is definitely computationally
convenient. As for the justification from the modeling prior
perspective, further investigation is needed.

As model has a large number of parameters, and may easily
overfit, we add sparsity inducing regularization terms to the
objective (7): Ap|L|1 + Aw |W 1. Now derivative equations
take form:

99(L, W) <~ qu e
(L, W) = SWiLpj— Y SY" Wi+ Apsign(Li;)
OLij k=1 k=1

(17

Zsmszm ZS Vi L+ Aw sign(W;)
k=1 k=1
(18)

3.2. Column Reordering

Even though L; norm is inducing sparsity in newly intro-
duced parameter space L and W, it is not guaranteed that it
will necessarily result in sparsity in original space of ¥ 1
and ©. We can observe an example where product of sparse
Cholesky factors results into a dense matrix:

10 0 0 (1 1 1 1 1 1 1 1
110 0[(0 1 0O _ 1 21 1 (19)
10 1 0|0 0 1 O 11 2 1
10 0 1[0 0 0 1 1 1 1 2

However, another Cholesky factor with same sparsity level
as previous example, results into a sparse precision matrix:

1 0 0 0|1 0 0 1 10 01
01 0 001 01 01 01
001 0[]0 01 1] |0 0 11 (20)
11 1 10 0 0 1 11 1 4

In this situation ordering of columns plays a crucial role,
and columns can be rearranged to control the mapping of
sparsity from Cholesky factor to a precision matrix.

Optimal solution to reordering of the matrix to produce the
sparsest Cholesky is known to be NP-complete problem. We
suggest the use of the existing heuristic algorithm, the ap-
proximate minimum degree ordering (Amestoy et al., 1996),
which produces a fractal-like structure with big blocks of ze-
ros. Another alternative is to use the reverse Cuthill-McKee
ordering, which reduces the bandwidth and concentrates all
the nonzero elements near diagonal. Mentioned approaches
have about linear computational complexity (in the number
of nonzero parameters), and would be performed only once
at the pre-processing stage to conveniently reorder empirical
covariance matrices.
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3.3. Coordinate Descent Optimization Algorithm

Lemma 3. Optimization function (7) is convex for any fea-
sible point L;; > 0,Vi < N.

Proof. We prove convexity by showing that the Schur com-
plement of the objective Hessian matrix must be positive
definite. First, we calculate the second derivatives:

0, n#j
0%g(L, W) .
e angaLmn ZZ 1 " ! ?é ' . .
S +1z, n=m=j=1i
210
9%g(L, W) 0, n#j
H =22 7 — 22
L aLijann =S, n= J 22
9%g(L, W) 0, n#j
H = = 23
W W 0Wom | S, = j 3

Hessian H is positive definite if and only if matri-
ces Hyy and Schur complement H/Hy;, = Hww —
HWLHLLAHLW are positive definite.

It is worth noticing that matrix H ;, can be rearranged as a
block matrix, with blocks corresponding to leading principal
minors of SYY matrix with additional positive diagonal terms
corresponding to L% Therefore, matrix Hy s, is positive
definite (it is a sum of Hermitian matrix and a diagonal
matrix with non-negative entries).

Similar observations can be made for Hyyyw and Hpyy, as
they are also block-diagonal. Positive definiteness of Schur
complement is defined as:

H/Hpp = Hyw — HwiHpp "Hrw >0 (24)

Since each matrix in equation (24) is block diagonal, by uti-
lizing the direct sum property of the block diagonal matrices,
equation (24) can be partitioned and considered separately
for each block; it is sufficient to show that individual blocks
of the H/H,;, matrix are positive definite:

det(HC/HLL) = ‘STTC - Smyc(syyc + DLc)_lsymc‘
> ST, — ST (S¥Y,) 1 Sv* |

-1
= |(xT$)c - (xTy)c(yTy)c (mi)c\

=|(@"2)e = (@"2)| =0
(25)

Algorithm 1 Coordinate Descent for SGCRF
Preprocess: S¥Y, S¥*, S*® column reordering
Initial conditions: 1.0 = I, W% =0
repeat

for i, jin L do
Lij — argmin(fij (Lj, A)) (26), (28)
end for
for ¢, 7 in W do
Wij — argmin(fij(Wj, )\)) (27),
end for
until ||0L]]2 < €

where ¢ in SYY . corresponds to subset of rows and columns,
and Dy is the corresponding positive diagonal term.

O

Equating expressions (17) and (18) with zero, gives us first
order coordinate descent update equations:

1o kg Sk — iy S Wi + Avsign(Liy)

i =
! S”TI?J

(26)

ke ST Wi — o1 ™k Ly + Awsign(Wi;)

Wl = Tx
! St

27
And for the diagonal elements of L, (¢ = j), there is also
a log det term derivative, hence the update is a positive
solution of the quadratic equation (and no L; penal):

— (D hosi LiSik + Nia) + \/(Zk# LiiSir + Xia)? + 48

Ln - 9 S“
(28)
Final procedure for learning SGCRF using the derived up-
date formulas is described by pseudocode in Algorithm (1).
Since objective is convex (Lemma (3)), and regularization is
separable over optimization variables, described coordinate
descent Algorithm (1) converges to optimal solution.

4. Discussion and future work

We studied how Cholesky decomposition can be utilized for
estimating Sparse Gaussian Conditional Random Field in a
more efficient way. Observations are that proposed parame-
ters transformations are leading to very convenient formulas
with attractive properties, like linear time calculation of log
det term, column-wise separable objective, and closed form
solution for coordinate-wise optima. The approach can be
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improved on multiple points, e.g. fewer optimization steps
through block-coordinate descent, or second order New-
ton method, and using thresholding approach (Zhang et al.,
2018) to focus only on smaller set of active coordinates. In
this paper we have analyzed the approach only from the-
oretical perspective. In the future work, we will perform
thorough empirical evaluation on synthetic and real word
data, to verify if the modeling assumptions are justified.
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