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Abstract. Scoring functions are an important tool for quantifying properties of
interest in many domains; for example, in healthcare, a disease severity scores
are used to diagnose the patient’s condition and to decide its further treatment.
Scoring functions might be obtained based on the domain knowledge or learned
from data by using classification, regression or ranking techniques - depending
on the type of supervised information. Although learning scoring functions from
collected data is beneficial, it can be challenging when limited data are available.
Therefore, learning multiple distinct, but related, scoring functions together can
increase their quality as shared regularities may be easier to identify. We propose
a multitask formulation for ranking-based learning of scoring functions, where
the model is trained from pairwise comparisons. The approach uses mixed-norm
regularization to impose structural regularities among the tasks. The proposed
regularized objective function is convex; therefore, we developed an optimization
approach based on alternating minimization and proximal gradient algorithms to
solve the problem. The increased predictive accuracy of the presented approach,
in comparison to several baselines, is demonstrated on synthetic data and two
different real-world applications; predicting exam scores and predicting tolerance
to infections score.
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1 Introduction

Quantifying the properties of interest is an integral part in many domains, e.g., assessing
the condition of a patient [27], estimating the risk of an investment [1], or predicting bind-
ing affinity of a ligand [4] when developing new drugs. Various measuring technologies
and sensors are devised to quantify such properties of interest, which would in turn be
utilized for informing decisions and making appropriate actions. However, the properties
of interest are often not easy to obtain, whether they are difficult to measure directly or
completely unobservable. This is usually the case when the properties are conceptual, i.e.
they are latent constructs, such as health, satisfaction, and even intelligence. Under these
circumstances, other measurable characteristics, considered related and informative of
the true target, are observed and used as surrogate variables. In clinical settings, variables
like temperature, blood pressure and various biomarkers measured from tissues are
commonly tracked and considered when determining the health of the patient.
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Typically, some heuristic rules are decided to map these surrogate variables into
the desired score. The process of deciding these heuristic rules (or scoring functions)
is usually long and tedious. For example, disease severity scores that are needed in
clinical practices for patient diagnostics require years of effort and consensus of the
medical community before the scoring functions can become part of the protocols.
Fortunately, developments in machine learning and increasing amounts of collected data
allows an alternative and complementary way for engineering the scoring functions
by extracting rules automatically from the data, which facilitates and complements
traditional approaches.

Algorithms for learning scoring functions from data were previously proposed,
mainly in the medical domain, with the objective to learn disease severity scores [11, 12,
21, 28, 31]. Initial approaches posed the problem as traditional supervised learning tasks
of classification [21, 28] and regression [31]. However, classification and regression ap-
proaches require scores to be already accessible up front, which limits their applicability
to problems with a good surrogate. The approach in [11, 12] suggests the very appealing
idea that there is a more convenient alternative form of supervised information to learn
the scoring function from. Namely, ranked pairs are much easier to obtain than direct
score estimates, and moreover, learning from pairs of ranked examples may result in
more reliable and robust scoring functions.

In this work, we extend the suggested ranking-based approach [11] for score learning
in multitask settings. The efforts are motivated by the applications in which there
are multiple related tasks, with a limited amount of data for each task. Related tasks
commonly share underlying regularities which could be learned more accurately by
modeling all tasks together. For example, in education, scores on different subjects (e.g.
Math and English) are dependent on the same characteristics of a particular student and a
particular school. In the medical domain, disease severity scores for related illnesses (e.g.
various respiratory viral infections) are expected to share common underlying biological
mechanisms.

Consequently, we propose a novel multitask formulation for learning scoring func-
tions from pairwise comparisons, by enforcing structural regularities on joint parameter
space, using a matrix norm regularizations. In addition, we provide another contribution
by developing an optimization algorithm in the form of an alternate minimization scheme
based on a proximal gradient method. We evaluated the proposed approach on a synthetic
data and two real-world applications. The objective of the first application is learning
exam scores of elementary school pupils, while the objective of the second application
is learning the tolerance to respiratory viral infections in humans. The results showed
increased prediction accuracy of the proposed approach over individual tasks.

2 Related Work

Early efforts to learn scoring functions were dependent on complete supervised infor-
mation (e.g. classification and regression tasks). In the classification settings, where the
discrete class labels are provided, the classification methods were used to estimate the
probability of a sample belonging to a certain class; these probabilities were used as a
scoring function. For example, the method in [28] uses sparsity inducing 𝐿1 norm in
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combination with a classical logistic loss function to learn the disease severity scoring
function for assessing the abnormality of the skull in craniosynostosis cases.

Another similar approach is to learn the scoring function in a regression manner from
the continuous outcome. In [31], Alzheimer’s disease severity, as measured by cognitive
scores, is modeled as a (temporal) multi-task regression problem using the fused sparse
group lasso approach. The approach was more concerned with the progression of the
disease; hence, the multi-task problem was formulated considering each time-step as
a separate task. In contrast, we are interested in multiple score mapping from a single
time-point set of measurements. There is also work on multitask learning to rank in the
context of web search results ranking [6], where the ranking function is learned using
the gradient boosted trees from the ranking scores provided by the human experts.

The problem with such completely-supervised methods is the necessity of providing
direct values of scores for training purposes, which render the approaches as less powerful
in settings where characteristics of interest are latent and not directly accessible. However,
rather than giving direct estimates of the score, the easier task seems to be comparing
two samples and asserting whether one has a higher score than the other. Ranking
SVM [18] was the first approach that recognized the benefits of learning from ordered
pairs of samples. This method was applied to learn an improved relevance function for
documents retrieval from click-through data. Main insight was that clicked links are
definitely more relevant for the search, as compared to non-clicked ones. And such kind
of data is much more abundant than the user provided rankings. Recently, the ranking
SVM-based method was adopted for Sepsis severity score learning [11] and extended
for temporal applications by introducing a term that ensures gradual score change over
consecutive time points.

Multitask learning is based on the idea that generalization (predictive performance)
can be increased by accounting for the intrinsic relationships among multiple tasks.
Multitask approach is found particularly effective when the number of samples per task
is small. To the best of our knowledge, there are no published multitask formulations for
ranking-based scoring functions, that is, for methods that learn from pairwise compar-
isons. The closest approaches are the previously mentioned multitask regression-based
models for Alzheimer’s disease progression [31] and search results ranking [6]. Other
multitask regression methods exist that learn the structure among the tasks using norm
regularization [30], or methods that utilize fixed relatedness structure [23] obtained from
domain knowledge [25] or learned from a statistical correlation [24]. However, since
they are not directly proposed for ranking-based learning of the scoring functions, we
will not consider them, nor will compare with them in this work.

The main problem in multi-task learning is finding the most appropriate assumption
on how the tasks are related and incorporating such assumption into the model. Typically,
in linear models, such structural assumptions are imposed on the joint parameter matrix,
where rows correspond to features and columns to different tasks. Kernel methods
assume that all tasks are related and similar [13], but some methods enforce tasks to
be grouped into clusters [16]. For example, “Dirty method” [17] encourages block-
structured row-sparsity in the joint parameter matrix by ‖.‖1,1 norm, and element-wise
sparsity with ‖.‖1,∞. The robust approach [14] selects sparse rows of features for related
tasks with ‖.‖2,1 and dense columns for outlier tasks with ‖.‖1,2, in order to discern
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between related and unrelated tasks. Other approaches assume some shared common set
of features [3] or shared common subspace [2,9]. The approach proposed in [10] attempts
to learn such relatedness subspace with trace (nuclear) norm ‖.‖* by encouraging the
parameter matrix to have low rank, and finding outlier tasks with additional sparse group
norm ‖.‖1,2.

In this work we use regularization composed of trace norm [10], and grouped Lasso
penalty [3] to jointly learn multiple ranking based scoring tasks, from temporal data.

3 Model

Let us assume that we have 𝑁 samples (examples), where each sample 𝑖 is represented
as 𝑋𝑖 ∈ R𝑑, and where 𝑋𝑖𝑗 is the value (measurement) of the feature 𝑗 = {1, 2, . . . , 𝑑}
for the sample 𝑖 = {1, 2, . . . , 𝑁}. Let us assume that 𝑦𝑖 ∈ R represents the property of
interest (outcome variable) for the sample 𝑖. Scoring function 𝑠𝑐𝑜𝑟𝑒 : R𝑑 → R is then a
mapping 𝑋𝑖 ↦→ 𝑦′𝑖 that provides a close estimate 𝑦′𝑖 of the true score 𝑦𝑖.

However, in many cases the values of the true scoring function are difficult to obtain.
In such situations, it is easier to assess the ranking between the scores of two samples
𝑝 and 𝑞, i.e. to assert that one has perceived higher score than the other: 𝑠𝑐𝑜𝑟𝑒(𝑋𝑝) >
𝑠𝑐𝑜𝑟𝑒(𝑋𝑞). Therefore, a set of multiple such ordered pairs can be used to find a projection
in the space of measured features, that will preserve the orders in the best possible way,
and that might be used as a scoring function.

Moreover, measurements collected on multiple occasions over time might belong to
the same subject; In this case, the measurements at each time step will be considered as
a sample. We assume that the outcome variable changes gradually (smoothly) over time
for the same subject, e.g. the disease severity score changes smoothly over consecutive
time points for the same patient. This assumption will lead to improving the quality of
the scoring function. We assume that 𝑋𝑝 represents the feature vector for the sample 𝑝
(which could be one particular subject at one particular time point).

In this work, we constrain such functional mapping 𝑠𝑐𝑜𝑟𝑒 to the linear case, where
the score estimate is computed as a weighted sum of the measured characteristics:
𝑠𝑐𝑜𝑟𝑒(𝑋) = 𝑤𝑇𝑋 . Therefore, the problem of learning the scoring function becomes
finding the appropriate weight (or parameter) vector 𝑤 ∈ R𝑑.

3.1 Single task model formulation

Maximizing the number of correctly ordered training pairs can be performed using the
soft max-margin framework expressed in a Hinge loss form (1), as suggested in [18].

𝑚𝑎𝑥(0, 1− (𝑋𝑝 −𝑋𝑞)𝑤) (1)

If sample 𝑝 should have higher score compared to sample 𝑞, the formulation (1) will
favor the weighted difference (𝑋𝑝 −𝑋𝑞)𝑤 that is positive and greater than 1, thus even
achieving some margin in the score difference.

The 𝐿2 norm on the weight vector ||𝑤||2, is introduced to regularize the magnitude of
the weights, and to turn the problem into simultaneous maximization of correct ordering
and maximization of normalized margin.
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Gradual (smooth) change of the scoring function over time can be obtained by
penalizing high changes of the score (e.g. for two samples 𝑋𝑠

𝑖+1, 𝑋
𝑠
𝑖 of the same subject

𝑠), over short time intervals. In [12] such effect is achieved by using the temporal
smoothness term: (︃

(𝑋𝑠
𝑖+1 −𝑋𝑠

𝑖 )𝑤

(𝑡𝑠𝑖+1 − 𝑡𝑠𝑖 )

)︃2

(2)

, which essentially ensures that squared magnitude in difference, normalized with the
time interval length, is kept low.

Therefore, for single task formulation of ranking-based scoring function learning, we
adopted the Linear Disease Severity Score Learning formulation [11] which combines
attractive properties of ranking SVM [18], with temporal smoothness term (2) that
enforces the gradual change of the scoring function over time:

𝑤̂ = argmin
𝑤

1

2
‖𝑤‖22 + 𝑐

∑︁
{𝑝,𝑞}∈𝑂

𝑚𝑎𝑥(0, 1− (𝑋𝑝 −𝑋𝑞)𝑤)

+𝑏
∑︁

{𝑖,𝑖+1}𝑠∈𝑆

(︃
(𝑋𝑠

𝑖+1 −𝑋𝑠
𝑖 )𝑤

(𝑡𝑠𝑖+1 − 𝑡𝑠𝑖 )

)︃2 (3)

Every measurement (row) vector 𝑋𝑖, 𝑖 = {1, 2, . . . , 𝑁} has associated time-stamp 𝑡,
while 𝑤̂ ∈ R𝑑 denotes the solution of the objective 3.

Set 𝑂 is composed of ordered pairs {𝑝, 𝑞}, where 𝑝 has a higher rank than 𝑞 (𝑝 is
perceived to have a higher score than 𝑞), and which corresponds to the measurement
vectors 𝑋𝑝 and 𝑋𝑞 , respectively. Sum of the Hinge loss terms over all pairs from the 𝑂
set, serves to reduce the extent of incorrectly ordered pairs.

Set of all consecutive pairs in all subjects is denoted 𝑆 and the sum of the Temporal
smoothness terms in eq. (3) penalizes high rates of change in score values in consecutive
time steps 𝑡𝑖 and 𝑡𝑖+1 for all subjects 𝑠 ∈ 𝑆. Scalar constants 𝑐 and 𝑏 are hyperparameters
that determine the cost of the respective loss terms, the Hinge loss and the Temporal
loss.

We aggregate the differences of measurements in the Hinge loss term into a single
data matrix 𝐷𝑘×𝑑, where 𝑘 is the number of pairs in the comparison set 𝑂. Similarly,
measurement and temporal difference ratios in the Temporal loss term we write as matrix
𝑅𝑙×𝑑, where 𝑙 is a number of pairs in the consecutive measurements set 𝑆. We aggregate
the 𝐿2 norm and temporal smoothness terms (they are essentially weighting the square
of optimization parameters) into a single weighted quadratic term 1

2𝑤
𝑇𝑄𝑤, where 𝑄 is

constant square matrix defined in eq. (4):

𝑄 = 𝐼 + 2𝑏𝑅𝑇𝑅 (4)

, 𝐼 being the 𝑑-dimensional identity matrix.
The formulation (3) can now be rewritten more concisely as (5):
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𝑤̂ = argmin
𝑤

1

2
𝑤𝑇𝑄𝑤 + 𝑐

∑︁
𝑖

𝑚𝑎𝑥(0, 1−𝐷𝑖𝑤) (5)

3.2 Multitask formulation

As mentioned before, in case of a limited amount of data for training the scoring function
for a single task (5), it is beneficial to exploit the relatedness among the multiple similar
tasks, by learning them together, as illustrated in Figure 1.

Fig. 1: Illustration of joint training of multiple ranking based score learning tasks. Three
distinct task are depicted, where measured data in combination with supervision in
form of ordered pairs, are jointly optimized to obtain the scoring function parameters,
represented as parameter matrix. Parameter matrix is typically regularized to encode the
structural assumptions regarding the task relatedness.

For 𝑚 different tasks, individual parameter vectors 𝑤𝑖 are aligned into a matrix
𝑊𝑑×𝑚, and a joint objective is obtained as a superposition of individual losses (eq. (5))
over the multiple tasks 𝑖 ∈ {1, 2, ...,𝑚}:

argmin
𝑊

𝑚∑︁
𝑖=1

⎛⎝1

2
𝑊𝑇

𝑖 𝑄𝑖𝑊𝑖 + 𝑐
∑︁
𝑗

𝑚𝑎𝑥(0, 1−𝐷𝑗
𝑖𝑊𝑖)

⎞⎠ (6)

Instead of the non-smooth Hinge loss 𝐿(𝑎) = 𝑚𝑎𝑥(0, 𝑎) in eq. (6), we work with
the twice differentiable approximation in the form of Huber loss [11]:

𝐿ℎ(𝑎) =

⎧⎪⎨⎪⎩
0 , if 𝑎 < −ℎ
(𝑎+ℎ)2

4ℎ , if |𝑎| ≤ ℎ

𝑎 , if 𝑎 > ℎ.

(7)

, where the approximation threshold ℎ can be chosen arbitrarily small.
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Further, we regularize the objective in eq. (6) with a joint norm on parameter matrix
‖𝑊‖𝑝,𝑞 = (

∑︀
𝑖((
∑︀

𝑗(𝑊
𝑞
𝑖𝑗)

1
𝑞 )𝑝)

1
𝑝 . For 𝑝 = 2 and 𝑞 = 1, this approach is known as a

group Lasso penalty on the row groups (of 𝑊 ), which forces sparsity in the parameter
weights corresponding to certain features [3]. Additionally, we introduce the trace norm
𝐿* in order to get the low rank component, or in other words, the parameter weight
pattern common among all the tasks. To accommodate such a setup, which will be further
clarified in the Optimization section, the parameter matrix 𝑊 was split into two distinct
matrices 𝐴 and 𝐵, where 𝑊 = 𝐴+𝐵.

Multitask Ranking Based Scoring Function Learning (MultiRBSFL) objective is
now given in eq. (8), and it takes as an input two matrices (per task 𝑖) obtained from
the data: 𝑄𝑖

𝑑×𝑑 and 𝐷𝑖
𝑘×𝑑; hyperparameters 𝑏, 𝑐, 𝜆1 and 𝜆2 weighting the influence of

Temporal loss, Huber loss, trace norm and sparse group norm, respectively.

argmin
𝑊=𝐴+𝐵

ℒ1 + 𝜆1‖𝐴‖* + 𝜆2‖𝐵‖2,1 (8)

where

ℒ1 =
1

𝑚

𝑚∑︁
𝑖=1

⎛⎝1

2
(𝐴𝑖 +𝐵𝑖)𝑇𝑄𝑖(𝐴𝑖 +𝐵𝑖) + 𝑐

𝑘∑︁
𝑗=1

𝐿ℎ(1−𝐷𝑖
𝑗(𝐴

𝑖 +𝐵𝑖))

⎞⎠ (9)

𝐴𝑖 and 𝐵𝑖 are column vectors R𝑑×1, and 𝐷𝑖
𝑗 is R1×𝑘 row-vector.

4 Optimization

The optimization (8) is composed of smooth and non-smooth terms. However, although
the regularaization terms are separable in 𝐴 and 𝐵, the loss term ℒ1 is not separable.
Therefore, we solve the problem by using the alternative minimization scheme, where,
in each iteration, we fix 𝐴 and minimize (8) with respect to 𝐵, and then fix 𝐵 and
minimize (8) w.r.t 𝐴. In this case, each subproblem can be decomposed into two different
optimizations. This will be explained in the next section.

Fix 𝐴

argmin
𝐵

ℒ1 + 𝜆2 ‖𝐵‖2,1 (10)

Fix 𝐵

argmin
𝐴

ℒ1 + 𝜆1 ‖𝐴‖* (11)

In general, problem (10) and (11) can be written as:

argmin
𝛩

ℒ1 + 𝛾 ‖𝛩‖𝑝 (12)

, where 𝛩 = {𝐴,𝐵} and 𝑝 = {*, {2, 1}}.
The optimization (12) is convex. The expression ℒ1 is smooth and the regulariation

term (either group lasso or trace norm) is non-smooth. Therefore, we solve (12) using
the proximal methods.
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4.1 Proximal Algorithm

We solve (12) using the proximal gradient method [20].

𝛩𝑘+1 := prox𝜆‖𝛩‖𝑝
(𝛩𝑘 − 𝜆∇ℒ1(𝛩

𝑘))

= argmin
𝛩

(︂
‖𝛩‖𝑝 +

1

2𝜆

⃦⃦
𝛩 − (𝛩𝑘 − 𝜆∇ℒ1(𝛩

𝑘))
⃦⃦2
2

)︂
(13)

, where prox𝜆‖𝛩‖𝑝
is the proximal operator of the scaled function ‖𝛩‖𝑝, and 𝜆 ∈

(0, 1/𝐿] is a constant step size, and 𝐿 is a Lipschitz constant of ∇ℒ1. Problem (12) can
be solved analytically, where the proximal operator associated with the norm can be
obtained as in [5].

Trace norm. Let us assume that 𝑀 = 𝑈𝛴𝑉 is the singular value decompoistion of
𝑀 , where 𝛴 is a diagonal matrix and its entries 𝜎𝑖 are the singluar values of the matrix
𝑀 . The proximal operator of the trace norm is defined as [8]:

prox𝜆‖.‖*
(𝑀) = 𝑈diag(prox𝜆‖.‖1

(𝜎(𝑀)))𝑉

i.e., the proximal operator of ‖.‖* can be calculated by carrying out a singular value
decomposition of 𝑍 and evaluating the proximal operator of the corresponding absolutely
symmetric function at the singular values 𝜎(𝑀). Therefore,

prox𝜆‖.‖*
(𝑀) = 𝑈diag(𝜎1, 𝜎2, . . . , 𝜎𝑛)𝑉 (14)

, where:

𝜎𝑖 =

⎧⎪⎨⎪⎩
𝜎𝑖 − 𝜆 𝜎𝑖 ≥ 𝜆

0 −𝜆 ≤ 𝜎𝑖 ≤ 𝜆

𝜎𝑖 + 𝜆 𝜎𝑖 ≤ −𝜆

Equation (14) is sometimes called the singular value thresholding operator.
Group lasso norm. The proximal operator associated with the group lasso norm is

defined as: [︁
prox𝜆‖.‖1,2

(𝑢)
]︁
𝑔
=

{︃
(1− 𝜆

‖𝑢𝑔‖2
)𝑢𝑔 ‖𝑢𝑔‖2 > 𝜆

0 otherwise

4.2 Step size

In order to find an adaptive step size 𝜆𝑘 in each iteration 𝑘, we employ the backtracking
line search algorithm [7], which requires computing an upper bound for ℒ1. Since ℒ1 is
convex and smooth, and ∇ℒ1 is 𝐿-Lipschitz continuous, it follows that:

ℒ1(𝛩) ≤ ℒ1(𝛩
𝑘) +∇ℒ1(𝛩

𝑘)𝑇 (𝛩 −𝛩𝑘) +
𝐿

2

⃦⃦
𝛩 −𝛩𝑘

⃦⃦2
2⏟  ⏞  ̂︁ℒ1 1

𝐿
(𝛩,𝛩𝑘)

(15)
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Algorithm 1 Fast Gradient Proximal Method with Backtracking Step Size

1: Input: 𝛩0 (random), 𝜂 (usually 1/2), 𝐿 > 0
2: 𝜆 = 1

𝐿
, z1 = 𝛩0, 𝑡1 = 1, 𝑘 = 0

3: repeat
4: 𝑘 ←− 𝑘 + 1
5: while true do
6: z←−Solve (12) ◁ use 𝜆 and z𝑘

7: if ℒ1(z) ≤ ̂︁ℒ1(z, z
𝑘) then

8: break
9: end if

10: 𝜆←− 𝜂𝜆
11: end while
12: 𝛩𝑘 ←− z

13: 𝑡𝑘+1 =
1+
√

1+4𝑡2
𝑘

2

14: z𝑘+1 = 𝛩𝑘 + ( 𝑡𝑘−1
𝑡𝑘+1

)(𝛩𝑘 −𝛩𝑘−1)

15: until Convergence

Algorithm 2 Alternative Minimization

1: Input: 𝐴0, 𝐵0 (random)
2: repeat
3: Fix 𝐴, solve (10) using Algorithm (1).
4: Fix 𝐵, solve (11) using Algorithm (1).
5: until Convergence

By utilizing (15), it can be shown that the optimization (13) is equivalent to [20]:

𝛩𝑘+1 := argmin
𝛩

̂︁ℒ1𝜆𝑘(𝛩,𝛩𝑘) + ‖𝛩‖𝑝 (16)

where 𝜆𝑘 = 1
𝐿 . So at each iteration, the function ℒ1 is linearized around the current

point and the problem (16) is solved. The final fast proximal gradient method with
backtracking is shown in Algorithm 1. The final alternative minimization algorithm is
shown in Algorithm (2).

5 Empirical evaluation

The proposed approach for multitask learning of ranking-based scoring functions is
tested on one synthetic and two real-world datasets. We compared our MultiRBSFL
approach against the following baseline approaches:

1. 𝐿2 - independently learning scoring functions for each task (objective (3));
2. 𝐿1 - independently learning sparse (𝐿1 regularized) scoring functions for each task;
3. 𝐿* - learning multiple scoring functions by imposing low rank regularization on

their joint parameter matrix (𝐿* regularized objective (6));
4. 𝐿2,1 - joint objective (6), regularized by mixed ‖.‖2,1 norm.
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Our MultiRBSFL approach, which uses composite low rank and mixed norm regu-
larized joint objective (8), we will denote as 𝐿* + 𝐿2,1 for consistency in naming the
alternative approaches.

We measured the predictive performance in terms of accuracy, which is the number
of correctly ordered test pairs. As the pairwise ranking relation is antisymmetric, it is
sufficient to use only the positive training instances (i.e. where the first sample in a pair
has the larger score). Test pairs are exclusively generated from examples not contained
in the training set. Accuracy values that we report in this study are obtained by doing
5-fold cross-validation experiments.

5.1 Experiments on Synthetic Data

In this settings, a Gaussian processes model with an exponential kernel was used to
generate the temporal data. We compiled 250 processes to mimic 𝑑 = 250 measured
variables (features) per subject. Each single process was used to generate a time series
with 10 time points (10 samples). We followed the same principle to generate 10 different
multivariate time series (subjects) for training and 10 subjects for test, resulting in 100
samples 𝑋𝑡𝑟𝑎𝑖𝑛

100×250 for training, and 100 samples 𝑋𝑡𝑒𝑠𝑡
100×250 for test.

Four different tasks were created by randomly generating the weight matrix 𝑊250×4,
with only 5 nonzero rows, which corresponds to the 𝐿2,1 assumption (row-sparsity). This
row-wise sparse matrix was then superimposed with a dense rank-1 matrix, generated by
multiplication of two random vectors, which suits the 𝐿* trace norm part of the objective.
True underlying scores on four tasks, for each of the 250-dimensional samples (one time
point of one patient), are calculated as the weighted sum of the feature values 𝑋 *𝑊 .
Zero mean random vector was subsequently superimposed to input 𝑋 data to model the
measurement noise.

A training set is then obtained by making pairs out of samples whose scores are
sufficiently different (in our case we set the threshold to 1). Pairs of examples were
generated independently for each task based on their scores, totaling 14,187 pairs for all
four tasks jointly. Test set pairs were generated in the same fashion, but with a smaller
threshold and consisted out of 19,390 pairs. Training pairs were used to learn the weight
matrix 𝑊̂ , which was used to estimate the testing scores from the test samples. The
obtained estimates were used to infer the relative order of the testing pairs. The accuracy
(percentage of correct guesses) is reported in the Table 1. It is no surprise that the
proposed 𝐿* + 𝐿1,2 approach achieves the highest accuracy on all four tasks, as the
underlying assumptions were explicitly built into the synthetic example.

5.2 School Exam Score

Intelligence as well as the capacity for understanding and using mathematics or lan-
guages are all examples of properties that are latent - yet important and often evaluated
(estimated). We have tested the multitask score learning framework on data from an
elementary school study [19], which contains longitudinal data on performance in Math
and English language for pupils in 50 inner London schools 5. In total there are scores

5 http://www.bristol.ac.uk/cmm/media/migrated/jsp.zip
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Table 1: Comparison of accuracy indicators (fraction of correctly ordered pairs) for
alternative score learning methods on the synthetic data of four related tasks.

Task 𝐿2 𝐿1 𝐿* 𝐿1,2 𝐿* + 𝐿1,2

TASK1 0.538 0.745 0.680 0.744 0.757
TASK2 0.556 0.707 0.763 0.782 0.795
TASK3 0.592 0.765 0.744 0.821 0.837
TASK4 0.466 0.864 0.700 0.874 0.885

AVG 0.538 0.770 0.722 0.805 0.818

for 3,236 exams (Math and English each), taken by 1,402 students over three consecutive
school years. The goal is to rank the students’ performances on Math and English test
based on known score from Ravens ability test and additional information like demo-
graphics, social status, gender, class and school type. Distributions of scores for two
tasks are given in the Figure 2.
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Fig. 2: Distributions of test scores for Math and English tasks, respectively.

According to results depicted in Table 2, our 𝐿* + 𝐿1,2 approach achieved the best
predictive performance in both tasks.

5.3 Tolerance to Infections Score

Tolerance is the host’s behavior that arises from interactions with a pathogen, which
describes the ability of the host to preserve fitness despite the presence of a large amount
of pathogen. Therefore, it is defined as changes in host fitness (health) with respect to
changes in pathogen load [22]. However, tolerance is a very understudied topic, where
there is no established scoring function, despite the necessity.
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Table 2: Comparison of accuracy indicators (fraction of correctly ordered pairs) for
alternative score learning methods on the task of learning the performance on Math and
English tests.

task 𝐿2 𝐿1 𝐿* 𝐿1,2 𝐿* + 𝐿1,2

MATH 0.780 0.794 0.725 0.789 0.812
ENGLISH 0.820 0.863 0.717 0.857 0.870

AVG 0.800 0.828 0.721 0.823 0.841

We analyzed three publicly available datasets 6 that allows characterization of the
tolerance behavior in humans. The data comes from the human viral challenge stud-
ies [29] where human volunteers were infected with H3N2 influenza, rhinovirus (HRV)
and respiratory syncytial virus (RSV), respectively. For all subjects in each dataset,
symptoms were recorded twice a day and quantified by the modified Jackson Score [15].
Thereafter, subjects were classified based on the modified Jackson Score values into
“symptomatic” and “asymptomatic” groups. In addition, viral load temporal measure-
ments are available for 28 “symptomatic” subjects, given in Table 3. Gene expression
measurements (for 12,023 genes) were collected temporally, starting at a baseline (24
hours prior to inoculation with virus) and measured at certain time points following
the experimental procedure described in detail in [29], making a total of 16, 14 and 21
time-point measurements for H3N2, HRV and RSV datasets, respectively. Table 3 shows
the viral shedding and symptom scores for subjects who developed clinically relevant
symptoms from H3N2, HRV and RSV datasets.

Temporal measurements about symptoms (proxy for fitness) and viral (pathogen)
load for each subject were used to derive tolerance scores according to the definition
given in [22]. In particular, the tolerance score for each subject was calculated by dividing
the maximum viral load with the maximum severity of symptoms observed for that
subject (Table 3). Gene expression measurements were used as an explanatory variables
in our ranking task.

Biological rationale behind the task relatedness is that the three infections are viruses
that cause similar respiratory symptoms (runny nose, fever, cough) and are quantified
by the same Jackson score, suggesting that some shared genetic mechanisms might
be responsible for the disease manifestations. Consequently, we sought to learn the
tolerance scoring functions jointly.

The tolerance scores were used to compile a set of ranked pairs, and the objective
was to learn the scoring functions for tolerance to H3N2, HRV and RSV viruses (3
tasks), from high-dimensional gene expression data. Since 12,023 dimensions is very
computationally expensive to optimize, we reduced the dimensionality of the data to the
100 most informative genes according to the correlation with the target. The results of
learning the scoring functions with different approaches are summarized in the Table 4.

The results from the Table 4 show that the HRV task is the most difficult one in the
described formulation. Although some alternative approaches achieved better accuracy

6 http://people.ee.duke.edu/ lcarin/reproduce.html
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Table 3: Tolerance scores (Ratio) derived by dividing maximum viral load (Max V) with
maximum severity score (Max S).

H3N2 HRV RSV
Sub ID Max S Max V Ratio Sub ID Max S Max V Ratio Sub ID Max S Max V Ratio
FLU05 12.00 5.45 0.45 HRV06 8.00 2.72 0.34 RSV01 11.00 0.00 0.00
FLU08 10.00 4.70 0.47 HRV19 2.00 0.95 0.47 RSV20 6.00 0.00 0.00
FLU01 9.00 4.25 0.47 HRV04 8.00 3.94 0.49 RSV07 20.00 4.46 0.22
FLU07 12.00 6.25 0.52 HRV15 7.00 3.45 0.49 RSV02 20.00 5.10 0.26
FLU06 7.00 5.00 0.71 HRV07 7.00 4.44 0.63 RSV12 4.00 2.50 0.62
FLU10 5.00 3.75 0.75 HRV20 6.00 4.44 0.74 RSV06 9.00 5.65 0.63
FLU12 4.00 5.00 1.25 HRV16 6.00 4.69 0.78 RSV14 6.00 4.54 0.76
FLU15 2.00 4.50 2.27 HRV09 3.00 2.46 0.82 RSV11 5.00 3.85 0.77
FLU13 2.00 5.45 2.70 HRV11 3.00 2.47 0.83 RSV03 6.00 4.70 0.78

HRV03 4.00 3.45 0.86

Table 4: Comparison of accuracy indicators (fraction of correctly ordered pairs) for
alternative score learning methods on the tolerance to three viruses learning task.

task 𝐿2 𝐿1 𝐿* 𝐿1,2 𝐿* + 𝐿1,2

FLU 0.766 0.980 0.809 0.988 0.996
HRV 0.344 0.122 0.389 0.500 0.400
RSV 0.806 0.972 0.861 0.306 0.861

AVG 0.638 0.692 0.686 0.598 0.752

in two of the tasks, the proposed approach achieved the best generalization trade-off as
can be concluded from the highest average (overall) accuracy.

6 Discussion and Conclusions

We proposed the method that jointly learns multiple scoring functions from a set of
ranked examples. The approach utilizes composite regularization consisting of the trace
norm and row-wise grouped Lasso penalty, to impose the structural regularity among the
model parameters of different tasks. We also provide optimization algorithm, based on
the alternate minimization and proximal gradient techniques, for solving the proposed
convex MultiRBSFL objective.

Presented empirical evaluations in one synthetic and two real world datasets suggest
the benefits of utilizing the multitask approach for learning related ranking based scoring
functions. According to the results, the model with only 𝐿* performs worse than 𝐿1,2,
probably because sparsity in features seems to be the more dominant pattern in the data
than the low-rank component. However, utilizing both 𝐿* and 𝐿1,2 in the same model
turned out to be most beneficial for studied applications.

The proposed proximal gradient algorithm with alternating minimization for opti-
mization of the multitask objective proved valuable for applications with low to moderate
dimensionality of the feature space. However, as the contemporary applications have ever
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increasing number of measured variables, more efficient optimization approaches and
with better scalability would be required. One potential way to accelerate the proximal
gradient algorithm is to adopt the approach proposed in [26].
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