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ABSTRACT 
For health and human services, fraud detection and other 

security services, identity resolution is a core requirement for 

understanding big data in the cloud. Due to the lack of a globally 

unique identifier and captured typographic differences for the 

same identity, identity resolution has high spatial and temporal 

complexities. We propose a filter and verify method to 

substantially increase the speed of approximate string matching 

using edit distance.  This method has been found to be almost 80 

times faster (130 times when combined with other 

optimizations) than Damerau-Levenshtein edit distance and 

preserves all approximate matches. Our method creates 

compressed signatures for data fields and uses Boolean 

operations and an enhanced bit counter to quickly compare the 

distance between the fields. This method is intended to be 

applied to data records whose fields contain relatively short-

length strings, such as those found in most demographic data. 

Without loss of accuracy, the proposed Fast Bitwise Filter will 

provide substantial performance gain to approximate string 

comparison in database, record linkage and deduplication data 

processing systems. 

1 INTRODUCTION 

The primary motivation for this research is to develop a faster 
method to compare relatively short strings as are typically found 
in demographic data collected in the cloud.  This paper reports 
the findings in developing a distributed and cloud-based Record 
Linkage (RL) system for an urban health service department.  
Record Linkage is a process that compares pairs of records from 
heterogeneous databases to find similar or identical entities [1].  
Whether the RL system uses a deterministic or probabilistic [2] 
methodology, it is necessary to compare the data within each pair 
of records. 
 

The department needs to match client records across 11 
independent health and social sciences databases without a 
reliable unique identifier.  There are 1.5 million clients and 50 
million records.  Some of the clients have been in the system 
since birth.  The system has to link records that span the clients’ 
lives.  The department currently uses a proprietary deterministic 
point and threshold RL method using a combination of the 
Soundex [3] for names, exact matches for gender, addresses and 
phone numbers, and other proprietary linear complexity 
approximate string matching algorithms for birthdates and Social 
Security Numbers in their record comparator but has experienced 
high false positive and false negative rates. We cannot provide 
the actual algorithm, real data or results based on real data due to 

a confidentiality agreement with the client and HIPPA 
requirements. 
 

Studies have determined that the Soundex is highly prone to both 
low sensitivity (as low as 40%) and low precision (as low as 
33%) [4][5].  We replaced the Soundex with the Damerau-
Levenshtein (DL) edit distance algorithm, which increased true 
positive matches by more than 46% but also increased the 
runtime by 500%.  The data has to be updated daily, which 
currently requires approximately 8 hours per night, when the 
system is not being queried for client matches.  It would take 
approximately 40 hours to run the algorithm with DL.  The 
system would not be able to keep up with updates and would also 
harm performance for client match queries.  
 

Traditional blocking methods pre-compute candidate pairs of 
records and can decrease the accuracy of RL due to sensitivity to 
errors and inconsistencies in the data, thus ignoring potential 
matches and increasing the number of false negatives.  
Traditional blocking methods include standard blocking [7], 
sorted neighborhood [8], bigram indexing [9] and canopy 
clustering with tf-idf [10][11].  In [12] an analysis of each 
method is described.  It has been noted that, in practice, sets of 
records based on blocking keys are usually very large [27].  
Blocking on the last name “Smith” could create a very large 
block because it is the most common name in the U.S. Census. 
 

In the reported study, data fields available for identity resolution 
include: First Name, Last Name, Address, Phone Number, 
Gender, Social Security Number and Birth Date.  Although many 
databases have universal identifiers, like the Social Security 
Number, discrepancies from data entry errors, inconsistent data 
values and missing data fields can substantially depreciate its 
value to link entities.  Data entry errors can include substitution, 
deletion, insertion and transposition of characters.  There is a 
significant amount of missing and inconsistent data.  As many as 
32 % of Social Security Numbers have been reported missing 
from health related databases [13].  More than 40 % of SSNs are 
missing from our data.  If the data fields selected as blocking 
keys contain missing, inconsistent or erroneous data, the records 
will not assigned to the correct blocks.  All of the data fields have 
missing, inconsistent and erroneous data.  This method is not 
offered as a replacement for blocking.  In fact, it may increase 
performance in systems that both block and use our filter as a 
wrapper for the DL edit distance function.  
 

The primary contribution of this paper is the development of an 
improved “filter and verify” method, called the Fast Bitwise 
Filter (FBF), which substantially decreases the computation 
required to compare short alphabetic, numeric and alphanumeric 
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strings for demographic data fields prior to evaluation with an 
edit distance metric.  The FBF compresses the signature of a 
record’s fields into 32-bit integers and allows the use of fast 
Boolean operations to quickly compare the string signatures.  We 
combine FBF with an existing method, called length filtering to 
further increase computational efficiency of approximate string 
matching using the edit distance metric.  This method 
substantially decreases the number of pair-wise comparisons 
using more computationally expensive DL edit distance by 
quickly disqualifying fields that are guaranteed not to match. 
 

This paper is organized as follows. We discuss string distance 
metrics methods in the Background section. We describe FBF in 
the Methodology section.  The Proof of Correctness section 
contains a proof that the FBF optimization has no false negatives 
with respect to DL.  The Experiments section explains how 
experiments were performed and the data.  The Results section 
discusses the computational results for both string and record 
experiments.  

2 BACKGROUND 

We discuss some traditional string comparison metrics below.  In 
[14], the authors determined that token-based methods do not 
perform well for this type of data.  Hence, we do not include 
token-based methods in our background or experiments.  We 
include descriptions of the Damerau-Levenshtein edit distance, 
Prefix Pruning—a performance enhancement for DL, the Jaro [7] 
string similarity metric and the Jaro-Winkler [15] string 
similarity metric—an enhancement to Jaro. 

2.1 Damerau-Levenshtein Edit Distance 
For effective string difference measurement, edit distance has an 
advantage over other metrics because it considers the ordering of 
characters and allows nontrivial alignment [16].  The Levenshtein 
edit distance algorithm is a dynamic programming solution for 
calculating the minimum number of character substitutions, 
insertions and deletions to convert one word into another.  For 
example, the Levenshtein distance between the words “Saturday” 
and “Sunday” is 3 because the ‘a’ and ‘t’ can be deleted and the 
‘r’ can be substituted with an ‘n’ to convert “Saturday” to 
“Sunday”. 
 

Damerau extended Levenshtein distance to also detect 
transposition errors and treat them as one edit operation.  
Approximately 80% of data entry errors can be corrected using a 
one character substitution, one character deletion, one character 
insertion or a transposition of two characters [17]. The main 
problem with the DL algorithm is its complexity: �����, where � and � are the lengths of the compared strings, � and �.  This 
can require significant computation for comparisons of very large 
datasets—even if the compared strings are relatively short.  The 
algorithm below is DL: 
 

Algorithm 1: DL��, �� 
Input: s, t: strings of characters 

Output: ��,
: integer � = |�| + 1 × |�| + 1: array of integer zeros �, �: integers 
Begin 
    Step 1: Check for empty strings 

    � = |�| 
    � = |�| 
    if � = 0: return n end-if 
    if � = 0: return m end-if 
    Step 2:  Create distance matrix d 

    for � = 0	��	�:	��,� = � end-for 

    for � = 1	��	�: ��,� = � end-for 

    Step 3: Calculate distance matrix d 

    for � = 1	��	� 
        for � = 1	��	� 
            if ���� = ���� 

                ��,� = ����,��� 

            else 
                ��,� = ��������,� , ��,���, ����,���� 	+ 1 

                if � > 1	���	� > 1 
                    if ���� = ��� 	���	��� = ���� 

                        ��,� = ������,� , ��� ,�� + 1� 
                    end-if 
                end-if 
            end-if 
        end-for 
    end-for 
    return ��,
 

end 
 

Fig. 1 contains the DL matrix.  The dark grey cells show the 
initial cell numbers for rows and columns and the light grey area 
is where the edit distance is calculated for standard DL.  The 
intersections of character columns and rows in the light grey area 
are the optimal calculated distances for all substrings.  For 
example the distance between “Sat” and “Sun” is 2 because the 
intersection at ‘t’ and ‘n’ is 2, which is the number of edits 
necessary to convert one to the other.  
 

 
Figure 1.  Damerau-Levenshtein (DL) distance matrix 

2.2 Prefix Pruning 
Once a pair of strings has been determined to be sufficiently 
different for an edit distance measurement, the calculation should 
be terminated.  A user-defined threshold can be added to decrease 
the computation required for DL.  For a threshold !, it is only 
necessary to compute the elements in Alg. 1 Step 3 from � = � − !  to � = � + !, which reduces the search to a diagonal 2! + 1 wide strip on the diagonal [18].  The threshold can be 
used to force an early termination if ��,∗ > !  [19].  The 

implementation, called Pruning-Damerau-Levenshtein (PDL), 
below is similar to an edit distance Prefix Pruning method for 
Trie-based string similarity joins [20].  There is a counter 

variable % added to count the ��,� ≤ !.  If % ≤ 0, for row i, the 

function terminates and returns a Boolean value FALSE.  This 
decreases the complexity of DL from ����� to ��!'�, where l is 
the length of the shortest string.  If PDL completes and ���, �� ≤ ! , the function returns TRUE, otherwise it returns 
FALSE.  There are two lines that assign elements in the distance 
matrix � to 1000.  This is to impose a border of arbitrarily large 
integers just outside the 2! + 1 strip, ensuring the selection of a 
correct minimum value in the line ��,� = ��������,� , ��,���, ����,���� 	+ 1  because �  is initially 

zeros.  The algorithm for PDL differs from the algorithm in [20] 
because it has been modified to perform DL instead of the 
standard Levenshtein distance and it returns a Boolean value: 
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Algorithm 2: PDL��, �, !� 
Input: �, �: strings of characters 
            !: integer threshold 
Output: Boolean � = |�| + 1 × |�| + 1: array of integer zeros �, �, %: integers 
Begin 
    Step 1: Check for empty strings and string lengths 

    � = |�| 
    � = |�| 
    if � = 0: return )*+,- end-if 
    if � = 0: return )*+,- end-if 
    if �.��� − �� > !: return )*+,- end-if 
    Step 2:  Create distance matrix d 

    for � = 0	��	�:	��,� = � end-for 

    for � = 1	��	�: ��,� = � end-for 

    Step 3: Calculate distance matrix 

    for � = 1	��	� 
        % = 0 
        if � < ! + 1: ��,��0�� = 1000 

        for � = ��%��– !, 1�	��	����� + !, �� 
            if ���� = ���� 

                ��,� = ����,��� 

            else 
                ��,� = ��������,� , ��,���, ����,���� 	+ 1 

                if � > 1	���	� > 1 
                    if ���� = ��� 	���	��� = ���� 

                        ��,� = ������,� , ��� ,�� + 1� 
                    end-if 
                end-if 
            end-if 
            if ��,� ≤ !: %+= 1 end-if 

        end-for 
        if � < �: ��,� = 1000 

        if % <= 0: return FALSE end-if 
    end-for 
    if ��,
 <= ! : return TRUE 

    else: return FALSE 
    end-if 
end 
 

The matrix for PDL is in Fig. 2.  The 15 ‘K’ and 16 ‘X’ cells are 
the computational savings for PDL with ! = 2, a difference of 2 
or less characters.  PDL only required 17 cell evaluations of the 
48 required by DL.  For ! = 1 , PDL would terminate 
immediately because �.��|�| − |�|� 	> !.  If this restriction was 
removed, only 8 cell evaluations would be required because the 
underlined cells would be skipped.  
 

 
Figure 2.  Prefix Pruning DL (PDL) distance matrix 

2.3 Jaro Similarity Metric 
Instead of increasing with the degree of difference between two 
strings, � and �, as is done in edit distance algorithms, the Jaro 
similarity metric [5] increases on the interval 20, 13 for strings 

that have more characters in common within an �  character 
position search width.  In other words matching characters in 
strings � and � can be no more than � positions apart, where: 
 � = 4��%�|�|, |�|�2 5 − 1 

 
 

The Jaro similarity metric is calculated as:  
 

��6���, �� = 138�|�| + �|�| + � − 62� 9 

 

where �  is the number of matching characters and 6  is the 
number of transposed characters.  An example: for � = ,:;<= 
and � = ,:;=<, � = >52@ − 1 = 1 

 � = 5 6 = 1 

��6���, �� = 138 5|�| + 5|�| + 5 − 125 9 = 0.967 

 

The Jaro score for � = ,:;<=  and � = E�F-,  would be 0.0 
because the S’s in the strings are more than one character apart. 

2.4 Jaro-Winkler Similarity Metric 
Winkler enhanced Jaro by awarding higher scores to strings that 
have longer matching prefixes.  The Jaro-Winkler [15] string 
similarity metric is calculated: 
 G��!��, �� = ��6���, �� + ℓI�1 − ��6���, ��� 
 

where ��6���, �� is the Jaro score, ℓ is the length of the matching 
prefix and I  is a scaling factor.  Again for � = ,:;<=  and � = ,:;=< and I = 0.1, 
 G��!��, �� = 0.967 + 3 × 0.1 × �1 − 0.967� = 0.977 

2.5 Filter and Verify Methods 

In the ‘90s, methods to decrease data comparison using 
edit distance called “filter and verify” methods were 
introduced.  Research on these methods is still very active 
and filters have the potential to discard a very large 
number of more comprehensive and expensive 
comparisons [28].  One of the most common methods, 
Length Filtering [29], is based on the fact that if two 
strings s and t differ by k or less edits, the difference in 
their lengths cannot be greater than k.  Consider that “Joe” 
and “Jose”; and “Jose” and “Josef” are approximate 
matches for k = 1 but “Joe” and “Josef” are not.  It is 
obvious that length filtering will not work on fixed-length 
strings, such as phone numbers, Social Security Numbers 
and many other typed of IDs.  The length filter from [29] 
is defined as shown in Algorithm 3: 
 

Algorithm 3: LengthFilter��, �� 
Input: �, �: strings of characters 
Output: Boolean 
Begin 
    if �.���|�| −	 |�|�� > !: return FALSE 
    else: return TRUE 
    end-if 
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end 

3 METHODOLOGY 

Our proposed optimization has two parts: generating FBF 

signatures and filtering the signatures.  The FBF method takes 

advantage of a computer's ability to perform logical and 

arithmetic operations on unsigned integers very quickly [21].  

The idea is that the filter signature is compressed into 32-bit 

unsigned integers, which have sufficient capacity to contain a 

checklist of numeric and alphabetic characters in bits as shown 

below in Fig. 3 and Fig. 4. 
 

The signature % for string � is actually a checklist of a subset of 

characters in �, where bit %� = 1	 iff ′A′	 ∈ 	� and bit %� = 1 iff 	′B′	 ∈ 	�, etc.  32 bits is large enough to store all characters in 

the alphabet (A to Z) once that occur in a string and all numbers 

(0 to 9) that occur 1 to 3 times in a string as shown in the 

Figures below.  These do require some storage for the signatures 

for each string but these signatures can be created very quickly.  

The unused bits can store extra information about the string (e.g. 

“Does any character in the string occur more than 2 times for an 

alphabetic string?”  Or “Are 2 of the same character 

juxtaposed?”) 
 

ABCDEFGH IJKLMNOP QRSTUVWX YZ------ 

00000001 10001000 00110000 00000000 

Figure 3.  32-bit alphabetic FBF bit signature for “SMITH” 
 

00011122 23334445 55666777 888999-- 

11011011 00000001 11000000 10000000 

Figure 4.  32-bit numeric FBF bit signature for “8005551212” 
 

For SSNs, birthdates and phone numbers, one 32-bit integer 

should be sufficient for an FBF signature.  This is because, like 

edit distance, FBF measures the difference between strings.  If 

one of the compared numeric strings has many repeated 

characters, say a phone number “213-333-3333”, the signature 

will only record three of the 3s.  If the other compared number 

has n less 3s, than there are n different characters that will be 

revealed when the signatures are compared as described in Alg. 

6.  The FBF difference between “213-333-3333” and “213-333-

4444”, would be 3 because three of the 4s would be recorded.  

An FBF comparison is a fast approximation for edit distance.  

An FBF signature only need contain a subset of the characters in 

its string to be effective.  To record more than one occurrence of 

each character in alphabetic strings, just add integers.  A two 

integer vector can record 2 occurrences of alphabetic characters. 

3.1 Generating FBF Signatures 

Algorithm 4, SetAlphaBits���, shows the process for generating 
an '-length vector of signatures to count ' or less occurrences of 
each character for a string s containing only alphabetic 
characters.  The algorithm, as implemented in code, should 

ignore case and will ensure an accurate count of all Σ\�… Σ\�� ∈� , where Σ = ^A, B, C, … , X, Y, Zc .  Upon completion of SetAlphaBits���, the following condition is true:  %�	d�e	\ = 1 ⟺Σ\�… Σ\�� ∈ �, g ∈ ℤ|0 ≤ g < |Σ|, 	� ∈ ℤ|0 ≤ � < ' .  Note that ≪ below represents the bit shift operator. 
 

Algorithm 4: SetAlphaBits��, '� 
Input: �: string of characters 
           ': length of array x 
Output: %: vector of 32-bit unsigned integers 

Σ = ^A, B, C, … , X, Y, Zc 
j: |Σ| integer vector of zeros 
begin 
    for each �� ∈ � 

        if �� ∈ 	Σ 
             g = g|Σ\ = �� 
            if �\ < ' 
                %� = %� 	∨ 	 �1 ≪ g� 
            end-if 
             �\+= 1 
        end-if 
    end-for 
end 
 

Algorithm 5, SetNumBits���, shows the process of generating a 
signature for a numeric only string, such as a Social Security 
Number, phone number or birth date.  It uses a 32-bit unsigned 
integer, which can count up to three instances of numbers in the 
string � using 30 bits and ignores non-numeric characters.  Since 
the strings are relatively short, only one integer is used for the 
signature.  This algorithm can be modified to count more than 3 
occurrences as is done in Alg. 4 above.  For Σ =^0,1,2,… ,7,8,9c, the following condition is true upon completion 

of SetNumBits���:  %d�e	o\p� = 1 ⟺ Σ\�…Σ\�� ∈ �, g ∈ ℤ|0 ≤g < |Σ|, � ∈ ℤ|0 ≤ � < 3. 
 

Algorithm 5: SetNumBits��� 
Input: �: string of characters 
Output: %: 32-bit unsigned integer Σ = ^0,1,2,3,4,5,6,7,8,9c �: |Σ| integer vector of zeros 
begin 
    for each �� ∈ � 
        if �� ∈ 	Σ 
             g = g|Σ\ = �� 
            if �\ = 2 

                % = %	 ∨	r4 ≪ �3 ∗ g�s 
            else-if �\ = 1 
                % = %	 ∨	�2 ≪ �3 ∗ g��  
            else-if �\ = 0 

                % = %	 ∨	r1 ≪ �3 ∗ g�s 
            end-if 
             �\+= 1 
        end-if 
    end-for 
end 

3.2 Filtering FBF Signatures 

The different characters between strings � and � can be found by 
using the exclusive disjunction on their signatures �  and � , 
respectively.  Algorithm FindDiffBits��, �, '�  uses a fast bit 
counting method to count the ones in the exclusive disjunction 
result of � and �.  The loop only executes as many times as there 
are ones in the string [22].  The longest last names in the Census 
data are 15 characters.  The longest numeric string is the phone 
number, which has 10 characters.  The address strings are 
alphanumeric and the maximum length in a list of real 
standardized local addresses is 25 characters.  Because of the 
relatively short length of these strings, they will most likely 
produce sparse bit vectors from the FindDiffBits��, �, '� 
algorithm, described below.  The loop will only execute x times 
for each of the % ones in the integers’ exclusive disjunction’s bits, 
which represents %  members in a set, and is denoted as % =|�⨁�|.  The algorithm for FindDiffBits��, �, '� is: 
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Algorithm 6: FindDiffBits��, �, '� 
Input: �: 32-bit vector signature for string � 
           �: 32-bit vector signature for string � 
           ': 32-bit integer length of � and � vectors 
Output: %: 32-bit integer count of different bits �: 32-bit unsigned integer 
begin 
    � = 0 
    % = 0 
    while � < ' 
        � = ��⨁��  
        while � > 0 
            %+= 1 
            � = � ∧ �� − 1� 
        end-while 
        �+= 1 
    end-while 
end 
 

The length variable ' is set to 1 for numeric signatures as defined 
in Alg. 4.  Both the alphabetic and numeric signature and filter 
methods can be combined to process alphanumeric fields.  This 
method has two significant performance properties: it compresses 
the signatures into compact primitive data types, which means 
faster loading to registers and storing from registers, and allows 
machine-level operations to be used to process the primitive data 
very quickly, which means much faster processing. 

4 PROOF OF CORRECTNESS 

We define an approximate match as “strings � and � differ by ! 
or less edits” where ! is a user-defined variable.  Implementing 
this in PDL forces termination once a magnitude of distance less 
than or equal to !  is no longer possible.  To process numeric 
strings �  and � , we create FBF signatures � , �  as:  	� =SetNumBits���  and 	� = SetNumBits��� .  There is a relation 
between PDL and FBF signature comparison, FindDiffBits��, ��, that the set of all string pairs 〈�, �〉 ∈ , × < 
with a FindDiffBits��, �, '� ≤ 2!, contains all string pairs that 
will pass PDL for a maximum of ! edits, where PDL��, �, !� =<z{- .  In other words, if we select sets of pairs |} 0 =∀��, �� ∈ , × <,  FindDiffBits��, �, '� ≤ 2! , where �  is the 
signature of � and � is a signature of �, and =}0 = ∀��, �� ∈ , ×<, PDL��, �, !� = <z{-, then we claim	|} 0 ⊇ =}0.  
 

Consider that PDL returns a Boolean value that is TRUE if the 

number substitutions, deletions, insertions and transpositions to 

convert string � into � is less than or equal to !  edits and that FindDiffBits��, �, '� = |�⨁�|. 
 

If a single edit operation found for a pair ��, �� ∈ , × <  is a 
transposition, the filter will show a difference of zero because |�⨁�| = 	0 since ∀�� ∈ �, ∃�� 	 ∈ � and ∀�� ∈ �, ∃�� 	 ∈ �.  Let � 

= “13245” and �  = “12345”.  Since �  and �  have the same 
characters, |�⨁�| = 	0.  
 

If a single edit operation is a delete, the worst case is |�⨁�| =	1 if the member to be deleted �� ∈ � such that 	�� ∉ �.  Let � = 
“123456” and � = “12345”.  Since � and � differ by one delete 
operation, they differ by one character 6, |�⨁�| = 	1.  
 

If the single edit is an insertion, the worst case is |�⨁�| = 	1 if 

the character to be inserted �� ∈ � into � such that �� ∉ �.  Let � = 

“1234” and �  = “12345”.  Since �  and �  differ by one insert 
operation, they differ by one character 5, |�⨁�| = 	1.  
 

If the single edit is a substitution, the worst case is |�⨁�| = 	2	if 
the member substituted ��  is changed to ��  such that �� ∈ �, but �� ∉ � and �� ∈ � but �� ∉ �.  Let � = “12346” and � = “12345”.  

Since � and � differ by one substitution operation, each differs 
from the other by one character.  Notice that 5 is in � but not in � 
and ‘6’ is in � but not in �, and we have |�⨁�| = 	2. 
 

This is also valid for strings that contain multiples of the same 
character because each new occurrence of a character that is 
already in a string is recorded as a new character.  Consider � = 
“123456” and �  = “1234566”.  The second 6 is considered 
different than the first and sets the “found a second 6 bit” to 1.  

Since there is no second ‘6’ in �, we have �� ∈ � such that �� ∉ � 

because the second ‘6’ is considered different than the first.  
 

The worst case for a PDL of ! is |�⨁�| = 2! if all ! edits are 
substitutions and result in the worst case condition above for each 
of the substitutions then ∀ℎ��, �, !� ∈ =}0 , ∃���, �, '� ∈ |} 0 
and PDL��, �, !� = <z{- ⟹ FindDiffBits��, �, '� ≤ 2!.  
 

Algorithm 7 below shows an example of an approximate string 

similarity join on the lists ,  and <  using the FBF and PDL 

together as a Filtered and Pruned Damerau-Levenshtein 

distance (FPDL).  Each string in the lists has a single numeric 

field. FindDiffBits��, �, '� uses signatures � and � for strings � 

and � , respectively, to decide which pairs to perform the 

computationally more expensive PDL��, �, !�  using the 

aforementioned threshold relationship.  To process numeric 

strings, create FBF signature arrays M, N as:  ∀� ∈ ,, ∃� ∈:,�� = SetNumBits����  and ∀� ∈ <, ∃� ∈ F, �� =SetNumBits����  and follow the process in MatchStrings�,, <,:,F, !, '�: 
 

Algorithm 7: MatchStrings�,, <,:,F, !, '� 
Input: ,, <: Strings lists to be matched 

           :,F: FBF signature lists for , and < 
           !: Integer threshold 
           ': Integer length of signatures �, �: Integers 
begin 
    ∀��, �� ∈ , × < 

        if FindDiffBitsr�� , �� , 's ≤ 2! 

            if PDLr�� , �� , !s = <z{- 

                ���gℎr�� , ��s 
            else 

                �����gℎr�� , ��s 
        else 

            �����gℎr�� , ��s 
        end-if 
    end-if 
end 
 

The filter can also be used to determine the unmatch condition 

as shown in the second else statement above for FPDL because 

it is already established that the strings can’t match since |} 0 ⊇ =}0 and |} 0 ∩ |� 0 = ∅, where |� 0 = ∀��, �� ∈ , ×<, |�⨁�| > 2! , then =}0 ∩ |� 0 = ∅ ,  ∀ℎ��, �, !� ∈=}0, ∄���, �, '� ∈ |� 0  and FindDiffBits��, �, '� > 2! ⟹PDL��, �, !� ≠ <z{-.  This alphabetic and alphanumeric FBF 

proofs are similar to this proof because the signature bits are 

generated and processed in the same way.  The Venn diagram in 

Fig. 5 below shows a typical relation between the four sets:  |} 0 , 	|� 0 , =}0  and =�0 = ∀��, �� ∈ , × <, PDL��, �, !� ≠
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<z{-.  The large black circle is =�0 and the small black circle 

is |} 0 .  The intersection is the ��, �� ∈ , × <  in which FindDiffBits��, �, '� ≤ 2!  but PDL��, �, !� ≠ <z{- .  It may 

also be the case that |} 0 ∩ =�0 = ∅  if FindDiffBits��, �, '� 
and PDL��, �, !� are in perfect agreement. 
 

 
Figure 5.  Venn diagram for FPDL relationship 

5 EXPERIMENTS 

The experiments include only comparable string distance metrics, 
meaning that the compared methods are likely to be effective on 
short strings.  The primary use of this method is intended for 
linking fields in the previously described demographic type data 
(and possibly other relatively short strings).  According to the 
1990 US Census data obtained from [23], the minimum, 
maximum and average character lengths for first names are: 2, 11 
and 5.96, respectively.  These statistics are 2, 15 and 6.89 for last 
names.  The birth date, Social Security number and phone 
number fields are fixed-length at 8, 9 and 10 characters, 
respectively.  The string comparators used in the experiments 
include: 
 

1. Damerau-Levenshtein (DL) 
2. Prefix Pruned Damerau-Levenshtein (PDL) 
3. Jaro string similarity (Jaro) 
4. Jaro-Winkler string similarity (Wink) 
5. Hamming Distance (Ham) [24] 
6. FBF Filtered DL (FDL) 
7. FBF Filtered PDL (FPDL) 
8. FBF Filtered only (FBF) 
9. Length Filtered DL (LDL) 
10. Length Filtered PDL (LPDL) 
11. Length Filter only (LF) 
12. Length then FBF Filtered DL (LFDL) 
13. Length then FBF Filtered PDL (LFPDL) 
14. Length then FBF only (LFBF) 

 

The experiments were run 5 times and their average was 

recorded as the result.  The data for the experiments included 

randomly selected strings from: 
 

1. 5,163 Census first names (FN) 

2. 151,670 Census last names (LN) 

3. 547,771 local addresses (Ad) 

4. 12,000 synthetic phone numbers (Ph) 

5. 35,525 random birthdates (Bi) 

6. 12,000 synthetic Social Security Numbers (SSN) 
 

The first names were merged from the male and female first 
names lists from the 1990 U.S. Census.  The last names were 
from the 2000 U.S. Census.  The addresses were from local tax 
records containing 3,874 unique streets.  The phone numbers 
were synthetically generated based on the numbering scheme of 
the North American Numbering Plan (NANP) [25].  The 
birthdates were randomly selected over 100 years between 

2/25/1912 and 2/24/2012 or 36,525 unique dates.  The Social 
Security Numbers were synthetically generated by the same rules 
that the Social Security Administration uses to issue actual SSNs 
to clients [26].  Each entry in the initial or “clean” data sets were 
injected with single edit errors to produce a second “error” data 
set to simulate data entry errors, where the clean entries match 
the error entries by index position in each list to maintain a 
ground truth.  Samples of 5,000 were selected from each list and 
matched using the string comparison algorithms. 
 

Our second set of results generates runtime curves for all of 
the methods from the first experiment.  When executed on two 
same-size lists, the FBF algorithm is clearly O(n2)  as are all of 
the others but the work for each string pair comparison is, on 
average, significantly reduced.  We ran experiments using a 
variable n from 1000 to 18000 strings in each of the two datasets 
to be merged from the 151,671 last names from the Census data.  
We randomly selected 5 clean datasets for each n (1000 to 18000 
last names or 90 clean datasets) and created 90 error datasets by 
injecting single edit distance error to a set copied from the clean 
data.  We ran each experiment 5 times, discarding the fastest and 
slowest times from each and averaging the remaining times. 
 

Our third set of experiments perform the same experiments as the 
second set but using the length filter from [29] and the 
combination of length filtering with FBF using the Census last 
names.  The length filter was used as a wrapper for FBF as FBF 
is used as a wrapper for DL and PDL as shown in Alg. 7, 
basically adding another if-else statement.  We also ran the 
experiments for the first set of experiments with the local last 
names, addresses and the first names.  We did not perform any 
length-based filter experiments on the fixed-length numeric 
strings (birthdates, SSNs and phone numbers) because, as 
mentioned, the length filter is useless for fixed-length data 
strings. 
 

The test computer is an Acer Aspire 7745G notebook, has a 64-
bit Intel i7 processor 720QM, 16 GB PC1333 RAM and 
Windows 7 Ultimate 64-bit operating system.  The code was 
written and compiled in 32-bit GCC. 

6 RESULTS 

The experimental results show significant performance gains 
using FBF.  The results for SSN are shown below in Table 1 with 
the edit distance threshold ! = 1 and the Jaro/Wink threshold set 
to 0.8 (0.75 for FN).  Only 5000 of the 25,000,000 pairs actually 
match.  The DL method is used as the baseline for all of the other 
methods.  The first column is the method, the second is Type 1 
errors (false positives), the third is Type 2 errors (false 
negatives), the fourth is time in milliseconds and the last is the 
performance gain over DL.  Notice that all of the DL-based 
methods have very few Type 1 errors compared to Jaro and 
Wink.  Ham is the only method that has Type 2 errors.  The time 
had to be recorded in milliseconds because the FBF functions run 
very quickly. 
 

As shown in the last row of Table 1, Gen, the SetNumBits��� 
described in the Methodology section function processes 10,000 
SSNs in 0.6 milliseconds or 60 nanoseconds per FBF SSN 
signature.  The FBF row shows the results for matching the 
strings using only the FBF filter.  Notice that the filter has 
123,318 Type 1 errors.  This shows that FBF removed 

12,369,182 unnecessary pair-wise comparisons before 
processing the strings with DL or PDL.  FPDL is 62.24 times 
faster than DL.  The average FBF comparison for an SSN was 
less than 58 nanoseconds per pair using FindDiffBits��, �, '�. 
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Table 1.  Accuracy and performance results for SSN string experiment 

 
 
Table 2 shows the experimental results for SSN with ! = 2 .  
Notice that even with a more relaxed match threshold, the edit 
distance methods still have less Type 1 errors and the FBF filter 
still provides significant performance gain with no loss to true 
positive matches.  Notice that the FBF performance gain is less 
that with ! = 1.  The reason is that the FBF passed 1,344,669, 
10.9 times as many candidate pairs.  FPDL is still faster than 
Hamming distance. 
 

Table 2.  Accuracy and performance results for SSN experiment k=2 

 
 
Fig. 6 shows the plot of the average runtime for an FBF filter 
comparison on a single pair of SSNs by total number of pairwise 
comparisons performed.  The performance gain is stable and 
consistent with and average time of 58 nanoseconds for a FBF 
only pairwise comparison, 67.9 nanoseconds for FPDL and 84.9 
nanoseconds for FDL.  The average time for DL was 4,122.7 
nanoseconds per comparison.  The plot for LN was more erratic 
because the strings are not of fixed length as in SSN but seemed 
to converge on runtimes between 56 and 58 nanoseconds per 
comparison. 
 

 
Figure 6.  Plot of average pairwise comparison by number of comparisons 

 
Table 3 shows the results for Census last names, LN, with edit 
distance threshold ! = 1 and the Jaro/Wink threshold set to 0.8.  
There are also two lists with each containing 5,000 strings.  The 
performance gain is still evident, the edit based methods continue 
to have lower Type 1 errors and the FPDL method is also 
approximately 3 times faster than Ham.  The remaining results 
are similar and are reported in the Appendix. 
 

Table 3.  Accuracy and performance results for LN string experiment 

 
 
Our best performance results were realized in the street address, 
Ad, experiments, shown in Table 4.  The FDL method achieved a 
78.18 times speedup and FPDL reached 79.6. 
 

Table 4.  Accuracy and performance results for Ad string experiment 

 
 
Table 5 shows the performance gains for FPDL compared to all 
non-filtered methods.  FPDL is almost 80 times faster than DL 
for comparing address strings and almost 5 times faster than Ham 
for phone numbers—Hamming distance has an ���� 
computational complexity and FPDL is faster and has the 
matching power of DL.  The results show that FBF yields better 
performance on longer strings.  Street addresses are the longest, 
phone numbers are the second and SSNs are the third longest.  
The difference is due to DLs ����� complexity.  Table 4 shows 
the performance speedups from the smallest average length, FN 
on the left, to the longest, Ad on the right. 
 

Table 5.  Runtime and speedup for FPDL versus all other methods 

 
 
Table 6 shows the results from an RL experiment using FBF.  
The RL method was a simple deterministic point and threshold 
based algorithm.  There were two datasets—one with 1000 clean 
records and the other with 1000 single edit error injected records.  
The table shows that FDL is 45 times faster and FPDL is 48.9 
times faster than the baseline DL-based RL. 
 

Table 6.  Performance results for RL experiment 

 
 
For completeness, we provide results from experiments using the 
Soundex (SDX) in Table 7.  These experiments were performed 
using the same datasets as described for the previous 
experiments—one clean dataset and one with single edit errors 

SSN Type 1 Type 2 Time ms Speedup

DL 42 0 52,807.2 1.00

PDL 42 0 17,449.2 3.03

Jaro 93,658 0 16,043.6 3.29

Wink 239,922 0 17,720.2 2.98

Ham 41 2,352 3,571.6 14.79

FDL 42 0 1,060.8 49.78

FPDL 42 0 848.4 62.24

FBF 123,318 0 729.0 72.44

Gen 0.6 88,012.00

SSN2 Type 1 Type 2 Time ms Speedup

DL 1,229 0 51,523.4 1.00

PDL 1,229 0 22,441.4 2.30

Jaro 93,658 0 15,473.6 3.33

Wink 239,922 0 17,120.0 3.01

Ham 1,014 0 3,518.4 14.64

FDL 1,229 0 3,625.6 14.21

FPDL 1,229 0 2,097.0 24.57

FBF 1,344,669 0 713.2 72.24

Gen 0.8 64,404.25

LN Type 1 Type 2 Time ms Speedup

DL 766 0 31,073.2 1.00

PDL 766 0 6,201.0 5.01

Jaro 18,615 44 10,707.2 2.90

Wink 47,195 28 12,242.6 2.54

Ham 559 3,011 3,344.0 9.29

FDL 766 0 1,154.4 26.92

FPDL 766 0 1,138.6 27.29

FBF 20,174 0 1,142.6 27.20

Gen 0.8 38,841.50

Ad Type 1 Type 2 Time ms Speedup

DL 120 0 135,098.8 1.00

PDL 120 0 15,887.4 8.50

Jaro 103,368 0 35,034.8 3.86

Wink 192,108 0 36,587.8 3.69

Ham 69 3,444 5,537.8 24.40

FDL 120 0 1,728.0 78.18

FPDL 120 0 1,697.2 79.60

FBF 3,452 0 1,664.6 81.16

Gen 2.0 67,549.40

FPDL FN LN Bi SSN Ph Ad

DL 23.23 26.10 42.46 62.24 75.00 79.60

PDL 6.04 5.22 15.91 20.57 22.63 9.36

Jaro 8.76 9.52 14.08 18.91 23.87 20.64

Wink 10.08 11.06 15.80 20.89 25.98 21.56

Ham 2.89 3.00 3.86 4.21 4.71 3.26

RL DL PDL FDL FPDL FBF Gen

Time ms 13762.0 3464.6 305.6 281.6 273.2 2.0

Speedup 1.0 4.0 45.0 48.9 50.4 6881.0
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injected.  DL is 2.3 times slower for first names and 2.6 times 
slower for last names.  When implemented in aforementioned RL 
system, DL-based RL was 5 times slower than the department’s 
proprietary system.  FPDL is 10.3 time faster than the Soundex 
for first names and 10.8 times faster for last names.  We did not 
compare the Soundex to the other data because it is primarily a 
name matching phonetic algorithm.  The accuracy of the 
Soundex is much worse than DL.  In both cases, the Soundex 
found less than half of the true positive matches and the number 
of false positives are 6.4 times that of DL for first names and 
almost 40 times greater than DL for last names.  The Soundex 
even has false negative results. 
 

Table 7.  Soundex vs. DL with error injected 

 
 
Table 8 shows the results of matching the clean dataset against 
itself.  Both found all true positives and both have higher false 
positives than the previous experiment but the false positives are 
much higher for the Soundex than for DL.  These results show 
that the presence of single edit data entry errors can cripple the 
Soundex’s ability to find true positive matches.  In both 
experiments, the Soundex suffers from substantially higher false 
positive matches. 

 
Table 8.  Soundex vs. DL with clean data 

 
 
Fig. 7 shows the results of the runtime curves from the second set 
of experiments.  Notice that the greatest growth rate is DL and 
the smallest growth rates are the FBF methods (FDL and FPDL).  
The FBF methods grow slower than Hamming distance and 
almost appear linear when compared to DL in this context. 
 

 
Figure 7.  Runtime curves for all methods 

 
The runtimes and n for each method were analyzed with Matlab’s 
polyfit function for a second degree polynomial solution in the 

form �� + .� + g.  Table 9 below shows the coefficients for 
the second and first degree terms, and the constant.  The FBF 
methods’ growth rates (a for FDL and a for FPDL) are two 
orders of magnitude smaller than DL (a for DL). 
 
 
 

Table 9.  Coefficients and constants for speedup polynomials for FBF 

 
 
The actual speedups for the experiments comparing speedup for 
FPDL against DL are shown in Table 10 below.  Based on the 
polynomial, the expected speedup of FPDL over DL for very 
large n (500,000 or more) is approximately 28.3 and is stable.  
DL would take approximately 3.8 days to merge 2 datasets with 
500,000 strings each.  FPDL would only require 0.13 days. 
 

Table 10.  Speedups for last name data by n 

 
 

Fig. 9 shows the comparison curves for FBF, length filtering and 
both methods combined for last name.  The bottom curve is 
LFPDL, which is also obscuring the LFDL curve.  These are the 
fastest methods.  The Length filter methods LDL and LPDL were 
the slowest.  The results for the FBF methods, FDL and FPDL 
from Table 3, are the middle two curves. 
 

 
Figure 9.  Runtime curves for length filter and FBF methods for last name 

 
The results of polyfit on the runtime curves from Fig. 9 are 
shown in Table 11.  Notice that the coefficient a for LFPDL, 
3.41E-05, is about 27% smaller than the a coefficient for FPDL 
in Table 7. 
 
Table 11.  Coefficients and constants for speedup polynomials for length 

filter 

 
 
Table 12 shows the last name results for DL and FPDL from 
Table 3 and new results for length filtering (LF) and the 
combination of length filtering and FBF.  Notice that the FPDL 
method is 27.29 times faster than the traditional DL method but 
the combination of both methods is 36.01 times faster than the 
DL method—an improvement of about 32% over FPDL.  Also 

Error TP FN FP TN Time ms

FN-DL 5,000 0 6,458 24,988,542 24,586

FN-SDX 2,259 2,741 47,137 24,947,863 10,664

LN-DL 5,000 0 766 24,994,234 32,308

LN-SDX 2,499 2,501 30,606 24,964,394 12,344

Clean TP FN FP TN Time ms

FN-DL 5,000 0 18,268 24,976,732 24,464

FN-SDX 5,000 0 70,476 24,924,524 10,936

LN-DL 5,000 0 1,760 24,993,240 31,586

LN-SDX 5,000 0 37,654 24,957,346 11,938

DL PDL Jaro Wink Ham FDL FPDL Fil

a 1.32E-03 2.57E-04 4.68E-04 5.48E-04 9.30E-05 4.69E-05 4.67E-05 4.57E-05

b -0.374 -0.080 -0.171 -0.496 -0.039 -0.008 -0.013 -0.012

c 512.739 127.316 247.971 1134.396 71.392 12.328 28.035 27.081

n speedup n speedup

1,000 27.6 10,000 28.2

2,000 27.3 11,000 28.3

3,000 27.7 12,000 28.6

4,000 28.3 13,000 28.4

5,000 27.9 14,000 28.0

6,000 27.8 15,000 28.2

7,000 27.8 16,000 28.2

8,000 28.0 17,000 28.5

9,000 28.1 18,000 28.1

LDL LPDL Len LFDL LFPDL LFil

a 5.38E-04 2.21E-04 9.23E-06 3.34E-05 3.41E-05 3.21E-05

b 0.263 0.119 0.004 0.012 0.001 -0.003

c -531.126 -244.743 -9.159 -10.796 6.730 14.420
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notice that LF or the length filter only method was 127.52 times 
faster than DL.  The LF row shows that the length filter passed 
11,196,547 string pairs of 12,497,500 possible pairs.  This is why 
the LDL and LPDL methods did not perform as well as the FBF 
or combined filter methods.  The combined decreased the number 
of calls to DL and PDL to 12,735 as shown in the LFBF row.  
None of the methods in table 10 or any of the other experiments 
that use these filtering methods have any type 2 errors. 
 

Table 12.  Accuracy and performance results for LN string experiment 
using length filter 

 
 

The main reason for this performance gain is that the minimum 
length of a last name in the Census data is 2 and the maximum 
length is 15 with an average string length of 6.89.  There is 
increased efficiency by limiting calls to FBF’s FindDiffBits��, �, '� function for every possible string pair.  The 
FBF row in Table 3 shows 20,174 calls passed to be verified to 
DL and PDL and LFBF only processed 12,735—a savings of 
7,439 calls.  The increased precision is from adding FBF to 
length filtering.  Table 11 shows the counts for string lengths for 
the Census last name data used in our experiments. 
 

Table 13.  Counts of Census last name string lengths 

 
 

Table 14 shows the street address results for DL and FPDL from 
Table 4 and new results for length filtering and the combination 
of length filtering and FBF.  The combined method increased the 
speedup of FPDL from 79.6 times faster than DL to 130.83 times 
faster for LFPDL. 
 

Table 14.  Accuracy and performance results for Ad string experiment 
using length filter 

 

7 CONCLUSION 

As more data are stored in clouds, identity resolution is a 
commonly required function for health and human services, fraud 

detection and other security services. Our goal was to reduce 
unnecessary edit distance computation by identifying and 
filtering record pairs that are guaranteed not to match.  Our 
computational results clearly show that there are superior 
performance gains while using the FBF over even the leanest 
string distance metrics. The results also show that there is 
absolutely no loss to accuracy—FBF, when combined with DL or 
PDL, produces the same results as DL.  FBF takes advantage of a 
computer’s ability to quickly compare differences in primitive 
data types using a single instruction, exclusive disjunction, and 
an enhanced while loop to count ones. 
 
The computational cost of creating FBF signatures is very low 
and only 4 bytes are needed for a numeric string, 8 bytes for an 
alphabetic string (to count two occurrences of each character) and 
12 for an alphanumeric string.  Considering that addresses can be 
at least 25 characters (or 50 for 16-bit Unicode) bytes and a 
phone number is 10 characters (or 20 bytes), the space 
complexity is not unreasonable given the performance benefits.  
The record pair search spaces for FDL and FPDL are as 
exhaustive as DL but completes each comparison, on average, 
much quicker by eliminating unnecessary work when comparing 
string pairs.  FBF and PDL work efficiently together to deliver 
the same resulting accuracies as DL, in significantly less time.  
Our results provide evidence that FPDL can perform the same 
work in as little as one day that would take DL nearly 80 days to 
complete.  The 40 hour record linkage (RL) update mentioned in 
the Introduction can now be completed in an hour or two. This 
performance is far superior to using low complexity Soundex 
alone with more than 46% yield in true positive matches. Our 
goal is to implement a distributed in-memory data graph to 
process demographic data and resolve entities within the data in a 
cloud. 
 
Our methodology substantially differs from SSJoin [30] in 
similarity handling.  SSJoin is a DBMS operator that uses edit 
similarity and other string comparators for approximate joins.  It 
also uses a prefix similarity filter based on matching tokens. The 
similarity filter cannot guarantee zero accuracy loss.  FBF instead 
focuses on the difference between strings, which allows it to use 
a single machine instruction, the exclusive or, to find a subset of 
differing characters—in nanoseconds. 
 
The Appendices contain tables for experiments with first names, 
phone numbers and birthdates.  Sample code and datasets (used 
in experiments) can be downloaded at:  
http://astro.temple.edu/~joejupin/FBF.zip 

8 REFERENCES 

[1] Dunn, H. L.: Record Linkage, In: American Journal of 
Public Health 36 (12): pp. 1412–1416. 
doi:10.2105/AJPH.36.12.1412. (1946) 

[2] Fellegi, I., Sunter, A.: A Theory for Record Linkage, In: 
Journal of the American Statistical Association 64 (328): pp. 
1183–1210. (1969) 

[3] Knuth, D. E.: The Art of Computer Programming: Volume 
3, Sorting and Searching. Addison-Wesley. pp. 391–92. 
ISBN 9780201038033. OCLC 39472999 (1973) 

[4] Stanier, A.:, Computers in Genealogy, Vol. 3, No. 7 
(September 1990) 

[5] Lait, A.J. and Randell, B.: AN Assessment of Name Matching 
Algorithms, Technical Report Series, University of 
Newcastle Upon Tyne Computing Science  (1996) 

LN Type1 Type2 Time ms Speedup

DL 766 0 31,073.2 1.00

FPDL 766 0 1,138.6 27.29

LDL 766 0 13,599.0 2.28

LPDL 766 0 5,666.7 5.48

LF 11,196,547 0 243.7 127.52

LFDL 766 0 890.7 34.89

LFPDL 766 0 863.0 36.01

LFBF 12,735 0 795.3 39.07

Length Frequency Length Frequency

2 175 9 14424

3 1585 10 7772

4 8768 11 3215

5 23238 12 1190

6 34025 13 442

7 33256 14 177

8 23380 15 23

Ad Type1 Type2 Time ms Speedup

DL 120 0 135,098.8 1.00

FPDL 120 0 1,697.2 79.60

LDL 120 0 48,879.3 2.76

LPDL 120 0 14,343.3 9.42

LF 9,623,583 0 237.3 569.24

LFDL 120 0 1,164.0 116.06

LFPDL 120 0 1,032.7 130.83

LFBF 3,200 0 985.3 137.11

1242



[6] Levenshtein, V. I.: Binary codes capable of correcting 
deletions, insertions, and reversals. Soviet Physics Doklady, 
(1966) 

[7] Jaro, M. A.: Advances in Record Linkage Methodology as 
Applied to Matching the 1985 Census of Tampa, Florida. In: 
Journal of the American Statistical Society, 84(406):414–
420, (1989) 

[8] Hernandez, M., Stolfo, S.: Real-world data is dirty: data 
cleansing and the merge/purge problem, In: Journal of Data 
Mining and Knowledge Discovery, 1(2), (1998) 

[9] Christen, P., Churches T.: Febrl: Freely extensible 
biomedical record linkage: Manual, release 0.2 edition 
(2003) 

[10] McCallum, A., Nigam, K., Ungar, L.: Efficient clustering of 
high-dimensional data sets, In: Proc. of 6th ACM SIGKDD 
Int. Conf. on KDD, pp. 169–178 (2000) 

[11] Cohen, W., Richman, J.: Learning to Match and Cluster 
Large High-Dimensional Data Sets for Data Integration. In: 
SIGKDD’02, (2002) 

[12] Baxter, R., Christen, P., Churches, T.: A Comparison of Fast 
Blocking Methods for Record Linkage, In: First Workshop 
on Data Cleaning, Record Linkage and Object 
Consolidation, KDD 2003, Washington DC, August 24-27 
(2003) 

[13] Campbell, K. M., Deck, D., Krupski, A.: Record Linkage 
Software in the Public Domain: A Comparison of Link Plus, 
The Link King, and a “Basic” Deterministic Algorithm, In: 
Health Informatics Journal, Vol. 14(1) (2008) 

[14] Cohen, W., Ravikumar, P., Fienberg, S.: A Comparison of 
String Metrics for Matching Names and Records . In 
Proceedings of the IJCAI-2003 Workshop on Information 
Integration on the Web, 2003. 

[15] Winkler, W. E.: String Comparator Metrics and Enhanced 
Decision Rules in the Fellegi-Sunter Model of Record 
Linkage, In: Proceedings of the Section on Survey Research 
Methods, American Statistical Association: pp. 354-359 
(1990) 

[16] Xiao, C., Wang, W., Lin, X.: Ed-join: an efficient algorithm 
for similarity joins with edit distance constraints. PVLDB, 
1(1):933–944 (2008) 

[17] Damerau F. J.: A technique for computer detection and 
correction of spelling errors, In: Communications of the 
ACM, (1964) 

[18] Gusfield, D.: Algorithms on strings, trees, and sequences: 
computer science and computational biology, Cambridge, 
UK: Cambridge University Press, ISBN 0-521-58519-8 
(1997) 

[19] Sakoe, H., Chiba, S.: Dynamic programming algorithm 
optimization for spoken word recognition, pp. 159–165, 
(1990) 

[20] Wang, J., Feng, J., Li, G.: Trie-Join: Efficient Trie-based 
String Similarity Joins with Edit-Distance Constraints, In: 
Proc. of the VLDB Endowment, V.3, No.1 (2010) 

[21] Microsoft MSDN:  http://msdn.microsoft.com/en-
us/library/x79h55x9.aspx 

[22] Wegner, P.: A technique for counting ones in a binary 
computer, In: Communications of the ACM 3 (5): 322 
(1960) 

[23] US Census:  http://www.census.gov/ 

[24] Hamming, R. W.: Error detecting and error correcting 
codes, In: Bell System Technical Journal 29 (2): 147–160, 
MR0035935 (1950) 

[25] NANP: North American Numbering Plan:  
http://www.nanpa.com/ 

[26] Social Security Administration: The SSN Numbering 
Scheme:  http://www.socialsecurity.gov/ 

[27] Gu L., Baxter, R.: “Adaptive Filtering for Efficient Record 
Linkage”, SIAM 2004 

[28] Navarro, G.: A guided tour to approximate string matching”, 
ACM Computing Surveys (CSUR) Volume 33 Issue 1, 
Pages 31 – 88, March 2001 

[29] Gravano, L., Ipeirotis, H., “Approximate string joins in a 
database (almost) for free”, In Proc. 27th Intl. Conf. on 
VLDB, pages 491 – 500, 2001 

[30] Chaudhuri, S., Ganti, V., Kaushik, R.: “A Primitive 
Operator for Similarity Joins in Data Cleaning”, In Proc. 
22nd Intl. Conf. on Data Engineering, Page 5, 2006 

9 APPENDIX: OTHER EXPERIMENTAL 

RESULTS 
Table 9.  Accuracy and performance results for FN string experiment 

 
 

Table 10.  Accuracy and performance results for Ph string experiment 

 
 

Table 11.  Accuracy and performance results for Bi string experiment 

 

FN Type 1 Type 2 Time ms Speedup

DL 6,458 0 24,081.4 1.00

PDL 6,458 0 6,257.0 3.85

Jaro 215,874 102 9,080.0 2.65

Wink 314,994 102 10,450.4 2.30

Ham 4,539 2,972 3,000.8 8.02

FDL 6,458 0 1,102.0 21.85

FPDL 6,458 0 1,036.6 23.23

FBF 91,072 0 996.2 24.17

Gen 0.6 40,135.67

Ph Type 1 Type 2 Time ms Speedup

DL 7 0 63,311.6 1.00

PDL 7 0 19,102.6 3.31

Jaro 82,748 10 20,153.8 3.14

Wink 567,118 10 21,930.0 2.89

Ham 7 2,272 3,976.0 15.92

FDL 7 0 961.6 65.84

FPDL 7 0 844.2 75.00

FBF 61,277 0 738.8 85.70

Gen 0.4 158,279.00

Bi Type 1 Type 2 Time ms Speedup

DL 7,899 0 42,121.0 1.00

PDL 7,899 0 15,786.8 2.67

Jaro 597,466 7 13,971.2 3.01

Wink 1,470,453 7 15,673.6 2.69

Ham 6,152 3,006 3,833.8 10.99

FDL 7,899 0 1,368.8 30.77

FPDL 7,899 0 992.0 42.46

FBF 355,860 0 711.4 59.21

Gen 1.0 42,121.00
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