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ABSTRACT

For health and human services, fraud detection and other
security services, identity resolution is a core requirement for
understanding big data in the cloud. Due to the lack of a globally
unique identifier and captured typographic differences for the
same identity, identity resolution has high spatial and temporal
complexities. We propose a filter and verify method to
substantially increase the speed of approximate string matching
using edit distance. This method has been found to be almost 80
times faster (130 times when combined with other
optimizations) than Damerau-Levenshtein edit distance and
preserves all approximate matches. Our method creates
compressed signatures for data fields and uses Boolean
operations and an enhanced bit counter to quickly compare the
distance between the fields. This method is intended to be
applied to data records whose fields contain relatively short-
length strings, such as those found in most demographic data.
Without loss of accuracy, the proposed Fast Bitwise Filter will
provide substantial performance gain to approximate string
comparison in database, record linkage and deduplication data
processing systems.

1 INTRODUCTION

The primary motivation for this research is to develop a faster
method to compare relatively short strings as are typically found
in demographic data collected in the cloud. This paper reports
the findings in developing a distributed and cloud-based Record
Linkage (RL) system for an urban health service department.
Record Linkage is a process that compares pairs of records from
heterogeneous databases to find similar or identical entities [1].
Whether the RL system uses a deterministic or probabilistic [2]
methodology, it is necessary to compare the data within each pair
of records.

The department needs to match client records across 11
independent health and social sciences databases without a
reliable unique identifier. There are 1.5 million clients and 50
million records. Some of the clients have been in the system
since birth. The system has to link records that span the clients’
lives. The department currently uses a proprietary deterministic
point and threshold RL method using a combination of the
Soundex [3] for names, exact matches for gender, addresses and
phone numbers, and other proprietary linear complexity
approximate string matching algorithms for birthdates and Social
Security Numbers in their record comparator but has experienced
high false positive and false negative rates. We cannot provide
the actual algorithm, real data or results based on real data due to
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a confidentiality agreement with the client and HIPPA

requirements.

Studies have determined that the Soundex is highly prone to both
low sensitivity (as low as 40%) and low precision (as low as
33%) [4][5]. We replaced the Soundex with the Damerau-
Levenshtein (DL) edit distance algorithm, which increased true
positive matches by more than 46% but also increased the
runtime by 500%. The data has to be updated daily, which
currently requires approximately 8 hours per night, when the
system is not being queried for client matches. It would take
approximately 40 hours to run the algorithm with DL. The
system would not be able to keep up with updates and would also
harm performance for client match queries.

Traditional blocking methods pre-compute candidate pairs of
records and can decrease the accuracy of RL due to sensitivity to
errors and inconsistencies in the data, thus ignoring potential
matches and increasing the number of false negatives.
Traditional blocking methods include standard blocking [7],
sorted neighborhood [8], bigram indexing [9] and canopy
clustering with tf-idf [10][11]. In [12] an analysis of each
method is described. It has been noted that, in practice, sets of
records based on blocking keys are usually very large [27].
Blocking on the last name “Smith” could create a very large
block because it is the most common name in the U.S. Census.

In the reported study, data fields available for identity resolution
include: First Name, Last Name, Address, Phone Number,
Gender, Social Security Number and Birth Date. Although many
databases have universal identifiers, like the Social Security
Number, discrepancies from data entry errors, inconsistent data
values and missing data fields can substantially depreciate its
value to link entities. Data entry errors can include substitution,
deletion, insertion and transposition of characters. There is a
significant amount of missing and inconsistent data. As many as
32 % of Social Security Numbers have been reported missing
from health related databases [13]. More than 40 % of SSNs are
missing from our data. If the data fields selected as blocking
keys contain missing, inconsistent or erroneous data, the records
will not assigned to the correct blocks. All of the data fields have
missing, inconsistent and erroneous data. This method is not
offered as a replacement for blocking. In fact, it may increase
performance in systems that both block and use our filter as a
wrapper for the DL edit distance function.

The primary contribution of this paper is the development of an
improved “filter and verify” method, called the Fast Bitwise
Filter (FBF), which substantially decreases the computation
required to compare short alphabetic, numeric and alphanumeric
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strings for demographic data fields prior to evaluation with an
edit distance metric. The FBF compresses the signature of a
record’s fields into 32-bit integers and allows the use of fast
Boolean operations to quickly compare the string signatures. We
combine FBF with an existing method, called length filtering to
further increase computational efficiency of approximate string
matching using the edit distance metric.  This method
substantially decreases the number of pair-wise comparisons
using more computationally expensive DL edit distance by
quickly disqualifying fields that are guaranteed not to match.

This paper is organized as follows. We discuss string distance
metrics methods in the Background section. We describe FBF in
the Methodology section. The Proof of Correctness section
contains a proof that the FBF optimization has no false negatives
with respect to DL. The Experiments section explains how
experiments were performed and the data. The Results section
discusses the computational results for both string and record
experiments.

2 BACKGROUND

We discuss some traditional string comparison metrics below. In
[14], the authors determined that token-based methods do not
perform well for this type of data. Hence, we do not include
token-based methods in our background or experiments. We
include descriptions of the Damerau-Levenshtein edit distance,
Prefix Pruning—a performance enhancement for DL, the Jaro [7]
string similarity metric and the Jaro-Winkler [15] string
similarity metric—an enhancement to Jaro.

2.1 Damerau-Levenshtein Edit Distance

For effective string difference measurement, edit distance has an
advantage over other metrics because it considers the ordering of
characters and allows nontrivial alignment [16]. The Levenshtein
edit distance algorithm is a dynamic programming solution for
calculating the minimum number of character substitutions,
insertions and deletions to convert one word into another. For
example, the Levenshtein distance between the words “Saturday”
and “Sunday” is 3 because the ‘a’ and ‘t’ can be deleted and the
‘T’ can be substituted with an ‘n’ to convert “Saturday” to
“Sunday”.

Damerau extended Levenshtein distance to also detect
transposition errors and treat them as one edit operation.
Approximately 80% of data entry errors can be corrected using a
one character substitution, one character deletion, one character
insertion or a transposition of two characters [17]. The main
problem with the DL algorithm is its complexity: O(mn), where
m and n are the lengths of the compared strings, s and t. This
can require significant computation for comparisons of very large
datasets—even if the compared strings are relatively short. The
algorithm below is DL:

Algorithm 1: DL(s, t)
Input: s, #: strings of characters
Output: d,, ,,: integer
d = |s| + 1 x |t| + 1: array of integer zeros
m, n: integers
Begin
Step 1: Check for empty strings
m=|s|
n=|t|
if m = 0: return » end-if
if n = 0: return m end-if
Step 2: Create distance matrix d
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fori = 0tom:d;, =i end-for
for j = 1ton:d; = j end-for
Step 3: Calculate distance matrix d
fori=1tom

forj=1ton
ifSi_l = tj—l
dij=di_1j-1
else

di; =min(d;—qj,dij-1,di-1j-1) +1
ifi>1landj>1
ifSi_l = tj—Z and Si—2 = tj—l
di,j = min(di_j, di—Z,j—Z + 1)
end-if
end-if
end-if
end-for
end-for
return d, ,,
end

Fig. 1 contains the DL matrix. The dark grey cells show the
initial cell numbers for rows and columns and the light grey area
is where the edit distance is calculated for standard DL. The
intersections of character columns and rows in the light grey area
are the optimal calculated distances for all substrings. For
example the distance between “Sat” and “Sun” is 2 because the
intersection at ‘t’ and ‘n’ is 2, which is the number of edits
necessary to convert one to the other.

Figure 1. Damerau-Levenshtein (DL) distance matrix

2.2 Prefix Pruning

Once a pair of strings has been determined to be sufficiently
different for an edit distance measurement, the calculation should
be terminated. A user-defined threshold can be added to decrease
the computation required for DL. For a threshold k, it is only
necessary to compute the elements in Alg. 1 Step 3 from
j=1i—k toj =i+ k, which reduces the search to a diagonal
2k + 1 wide strip on the diagonal [18]. The threshold can be
used to force an early termination if d;, >k [19]. The
implementation, called Pruning-Damerau-Levenshtein (PDL),
below is similar to an edit distance Prefix Pruning method for
Trie-based string similarity joins [20]. There is a counter
variable x added to count the d; i< k. If x <0, for row i, the
function terminates and returns a Boolean value FALSE. This
decreases the complexity of DL from O (mn) to O (kl), where [ is
the length of the shortest string. If PDL completes and
d(m,n) < k, the function returns TRUE, otherwise it returns
FALSE. There are two lines that assign elements in the distance
matrix d to 1000. This is to impose a border of arbitrarily large
integers just outside the 2k + 1 strip, ensuring the selection of a
correct minimum value in the line
d;j =min(di_qj,d;j_1,di_1j-1) + 1 because d is initially
zeros. The algorithm for PDL differs from the algorithm in [20]
because it has been modified to perform DL instead of the
standard Levenshtein distance and it returns a Boolean value:



Algorithm 2: PDL(s, t, k)
Input: s, t: strings of characters
k: integer threshold
Output: Boolean
d = |s| + 1 x [t| + 1: array of integer zeros
m,n, x: integers
Begin
Step 1: Check for empty strings and string lengths
m=|s|
n=|t|
if m = 0: return FALSE end-if
if n = 0: return FALSE end-if
if abs(m — n) > k: return FALSE end-if
Step 2: Create distance matrix d
fori = 0tom:d;, = i end-for
for j = 1ton:d; = j end-for
Step 3: Calculate distance matrix
fori=1tom
x=0
ifi <k+1:d;;_r—, = 1000
for j = max(i-k,1) to min(i + k,n)
if Si—1 = tj—l
dij=di_1j-1
else
di; =min(di—qj,dij-1,di-1j-1) +1
ifi>landj>1
ifSi_l = tj_z and Si_2 = tj—l
dij =min(d;;,di—zj-2 +1)
end-if
end-if
end-if
ifd;; < k:x+=1 end-if
end-for
ifj <n:d;; =1000
if x <= 0: return FALSE end-if
end-for
if d, , <= k : return TRUE
else: return FALSE
end-if
end

The matrix for PDL is in Fig. 2. The 15 ‘K’ and 16 ‘X’ cells are
the computational savings for PDL with k = 2, a difference of 2
or less characters. PDL only required 17 cell evaluations of the
48 required by DL. For k=1, PDL would terminate
immediately because abs(|s| — |t]) > k. If this restriction was
removed, only 8 cell evaluations would be required because the
underlined cells would be skipped.

Figure 2. Prefix Pruning DL (PDL) distance matrix

2.3 Jaro Similarity Metric

Instead of increasing with the degree of difference between two
strings, s and t, as is done in edit distance algorithms, the Jaro
similarity metric [5] increases on the interval [0, 1] for strings

that have more characters in common within an n character
position search width. In other words matching characters in
strings s and t can be no more than n positions apart, where:

max((sl, It
S

The Jaro similarity metric is calculated as:

r

1fm m Mm—3
jaro(s,t) =z —+7+—
Jaro(s, 0 =3\ [ T
where m is the number of matching characters and r is the

number of transposed characters. An example: for s = SMITH
and t = SMIHT,

= 0.967

The Jaro score for s = SMITH and t = JONES would be 0.0
because the S’s in the strings are more than one character apart.

2.4 Jaro-Winkler Similarity Metric

Winkler enhanced Jaro by awarding higher scores to strings that
have longer matching prefixes. The Jaro-Winkler [15] string
similarity metric is calculated:

wink(s,t) = jaro(s,t) + £p(1 — jaro(s,t))

where jaro(s, t) is the Jaro score, ¢ is the length of the matching
prefix and p is a scaling factor. Again for s = SMITH and
t =SMIHT andp = 0.1,

wink(s,t) = 0.967 + 3 x 0.1 x (1 — 0.967) = 0.977
2.5 Filter and Verify Methods

In the ‘90s, methods to decrease data comparison using
edit distance called “filter and verify” methods were
introduced. Research on these methods is still very active
and filters have the potential to discard a very large
number of more comprehensive and expensive
comparisons [28]. One of the most common methods,
Length Filtering [29], is based on the fact that if two
strings s and ¢ differ by k or less edits, the difference in
their lengths cannot be greater than k. Consider that “Joe”
and “Jose”; and “Jose” and “Josef’ are approximate
matches for k = 1 but “Joe” and “Josef” are not. It is
obvious that length filtering will not work on fixed-length
strings, such as phone numbers, Social Security Numbers
and many other typed of IDs. The length filter from [29]
is defined as shown in Algorithm 3:

Algorithm 3: LengthFilter(s, t)

Input: s, t: strings of characters

Output: Boolean

Begin
if abs((|s| — |t])) > k: return FALSE
else: return TRUE
end-if



end

3 METHODOLOGY

Our proposed optimization has two parts: generating FBF
signatures and filtering the signatures. The FBF method takes
advantage of a computer's ability to perform logical and
arithmetic operations on unsigned integers very quickly [21].
The idea is that the filter signature is compressed into 32-bit
unsigned integers, which have sufficient capacity to contain a
checklist of numeric and alphabetic characters in bits as shown
below in Fig. 3 and Fig. 4.

The signature x for string s is actually a checklist of a subset of
characters in s, where bit x, = 1 iff ‘A’ € s and bit x; = 1 iff
‘B’ € s, etc. 32 bits is large enough to store all characters in
the alphabet (A to Z) once that occur in a string and all numbers
(0 to 9) that occur 1 to 3 times in a string as shown in the
Figures below. These do require some storage for the signatures
for each string but these signatures can be created very quickly.
The unused bits can store extra information about the string (e.g.
“Does any character in the string occur more than 2 times for an
alphabetic string?”  Or “Are 2 of the same character
juxtaposed?”)

ABCDEFGH IJKLMNOP QRSTUVWX YZ-—————
00000001 10001000 00110000 00OO0OOQOOO

Figure 3. 32-bit alphabetic FBF bit signature for “SMITH”

00011122 23334445 55666777 888999--
11011011 00000001 11000000 10000000

Figure 4. 32-bit numeric FBF bit signature for “8005551212”

For SSN, birthdates and phone numbers, one 32-bit integer
should be sufficient for an FBF signature. This is because, like
edit distance, FBF measures the difference between strings. If
one of the compared numeric strings has many repeated
characters, say a phone number “213-333-3333”, the signature
will only record three of the 3s. If the other compared number
has n less 3s, than there are n different characters that will be
revealed when the signatures are compared as described in Alg.
6. The FBF difference between “213-333-3333” and “213-333-
4444”, would be 3 because three of the 4s would be recorded.
An FBF comparison is a fast approximation for edit distance.
An FBF signature only need contain a subset of the characters in
its string to be effective. To record more than one occurrence of
each character in alphabetic strings, just add integers. A two
integer vector can record 2 occurrences of alphabetic characters.

3.1 Generating FBF Signatures

Algorithm 4, SetAlphaBits(s), shows the process for generating
an [-length vector of signatures to count [ or less occurrences of
each character for a string s containing only alphabetic
characters. The algorithm, as implemented in code, should
ignore case and will ensure an accurate count of all 2.(...Z.)/ €
s, where £={AB,C, .., X,Y,Z} . Upon completion of
SetAlphaBits(s), the following condition is true: xjpic = 1 &
2 (.Z) Es,cEZ0<c<|I|, jEZO<j<l Note that
« below represents the bit shift operator.

Algorithm 4: SetAlphaBits(s, [)
Input: s: string of characters
1: length of array x
Output: x: vector of 32-bit unsigned integers
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¥ ={AB,C ... XY,7Z}
J: |Z] integer vector of zeros
begin
for each s; € s
ifSi €E X
c=cli =5
ifj. <!
end-if
Jet=1
end-if
end-for
end

Algorithm 5, SetNumBits(s), shows the process of generating a
signature for a numeric only string, such as a Social Security
Number, phone number or birth date. It uses a 32-bit unsigned
integer, which can count up to three instances of numbers in the
string s using 30 bits and ignores non-numeric characters. Since
the strings are relatively short, only one integer is used for the
signature. This algorithm can be modified to count more than 3
occurrences as is done in Alg. 4 above. For X =
{0,1,2,...,7,8,9}, the following condition is true upon completion
of SetNumBits(s): Xpi¢3c4; =1 & Z.(..2) €s,c€Z|0 <
c<I|Z,jEZ0O<j<3.

Algorithm 5: SetNumBits(s)
Input: s: string of characters
Output: x: 32-bit unsigned integer
¥ =1{0,1,2,3,4,56,7,8,9}

Jj: |Z| integer vector of zeros

begin
for each s; € s
ifs; € X
c=cli =5
ifj.=2
x=xV (4<<(3*c))
else-if j. =1
x=xV (2K (3*c))
else-if j. =0
x=xV (1<<(3*c))
end-if
Jet=1
end-if
end-for
end

3.2 Filtering FBF Signatures

The different characters between strings s and t can be found by
using the exclusive disjunction on their signatures m and n,
respectively.  Algorithm FindDiffBits(m, n,l) uses a fast bit
counting method to count the ones in the exclusive disjunction
result of m and n. The loop only executes as many times as there
are ones in the string [22]. The longest last names in the Census
data are 15 characters. The longest numeric string is the phone
number, which has 10 characters. The address strings are
alphanumeric and the maximum length in a list of real
standardized local addresses is 25 characters. Because of the
relatively short length of these strings, they will most likely
produce sparse bit vectors from the FindDiffBits(m,n,l)
algorithm, described below. The loop will only execute x times
for each of the x ones in the integers’ exclusive disjunction’s bits,
which represents x members in a set, and is denoted as x =
|mé@n|. The algorithm for FindDiffBits(m,n, 1) is:



Algorithm 6: FindDiffBits(m, n, [)
Input: m: 32-bit vector signature for string s
n: 32-bit vector signature for string t
1: 32-bit integer length of m and n vectors
Output: x: 32-bit integer count of different bits
d: 32-bit unsigned integer
begin
i=0
x=0
while i <
d= mi@ni
whiled > 0
x+=1
d=dn(d-1)
end-while
i+=1
end-while
end

The length variable [ is set to 1 for numeric signatures as defined
in Alg. 4. Both the alphabetic and numeric signature and filter
methods can be combined to process alphanumeric fields. This
method has two significant performance properties: it compresses
the signatures into compact primitive data types, which means
faster loading to registers and storing from registers, and allows
machine-level operations to be used to process the primitive data
very quickly, which means much faster processing.

4 PROOF OF CORRECTNESS

We define an approximate match as “strings s and t differ by k
or less edits” where k is a user-defined variable. Implementing
this in PDL forces termination once a magnitude of distance less
than or equal to k is no longer possible. To process numeric

strings s and t, we create FBF signatures m, n as: m =
SetNumBits(s) and n = SetNumBits(t). There is a relation
between PDL and FBF signature comparison,

FindDiffBits(m, n), that the set of all string pairs (s,t) € S X T
with a FindDiffBits(m, n,l) < 2k, contains all string pairs that
will pass PDL for a maximum of k edits, where PDL(s, t, k) =
TRUE. In other words, if we select sets of pairs G<yp =
V(s,t) € S x T, FindDiffBits(m,n,l) < 2k, where m is the
signature of s and n is a signature of t, and He; = V(s,t) € S X
T,PDL(s, t, k) = TRUE, then we claim G<y; 2 Hey.

Consider that PDL returns a Boolean value that is TRUE if the
number substitutions, deletions, insertions and transpositions to
convert string s into t is less than or equal to k edits and that
FindDiffBits(m, n,l) = |m®n|.

If a single edit operation found for a pair (s,t) € SX T is a
transposition, the filter will show a difference of zero because
[m@n| = 0 since Vs; € 5,3s; €tand Vt; €t,3t; €s. Lets
= “13245” and t = “12345”. Since s and t have the same
characters, [m@®n| = 0.

If a single edit operation is a delete, the worst case is |mé@n| =
1 if the member to be deleted s; € s such that s; € t. Lets =
“123456” and t = “12345”. Since s and t differ by one delete
operation, they differ by one character 6, [m@®n| = 1.

If the single edit is an insertion, the worst case is |[m@®n| = 1if
the character to be inserted t; € ¢ into s such that ¢; € 5. Lets =
“1234” and t = “12345”. Since s and t differ by one insert
operation, they differ by one character 5, [m@n| = 1.
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If the single edit is a substitution, the worst case is |m@n| = 2 if
the member substituted s; is changed to ¢; such thats; € s, but
si¢tandt; Etbutt; € s. Lets= “12346” and t = “12345”.
Since s and ¢ differ by one substitution operation, each differs
from the other by one character. Notice that 5 is in ¢ but not in s
and ‘6’ is in s but not in ¢, and we have |m®n| = 2.

This is also valid for strings that contain multiples of the same
character because each new occurrence of a character that is
already in a string is recorded as a new character. Consider s =
“123456” and t = “1234566”. The second 6 is considered
different than the first and sets the “found a second 6 bit” to 1.
Since there is no second ‘6’ in s, we have et such that tiés
because the second ‘6’ is considered different than the first.

The worst case for a PDL of k is [/m@®n| = 2k if all k edits are
substitutions and result in the worst case condition above for each
of the substitutions then Vh(s,t, k) € He,Ag(m,n, 1) € Gy
and PDL(s, t, k) = TRUE = FindDiffBits(im,n, 1) < 2k.

Algorithm 7 below shows an example of an approximate string
similarity join on the lists S and T using the FBF and PDL
together as a Filtered and Pruned Damerau-Levenshtein
distance (FPDL). Each string in the lists has a single numeric
field. FindDiffBits(m, n,[) uses signatures m and n for strings s
and t, respectively, to decide which pairs to perform the
computationally more expensive PDL(s,t, k) using the
aforementioned threshold relationship. To process numeric
strings, create FBF signature arrays M, N as: Vs € S,Im €
M, m; = SetNumBits(s;) and Vt€T,d3n € N,n; =
SetNumBits(t;) and follow the process in
MatchStrings(S, T, M, N, k, 1):

Algorithm 7: MatchStrings(S,T, M, N, k, )
Input: S, T: Strings lists to be matched
M, N: FBF signature lists for S and T
k: Integer threshold
1: Integer length of signatures
i,j: Integers
begin
V(s,t) ESXT
if FindDiffBits(m;, n;, 1) < 2k
if PDL(s;, t;, k) = TRUE
match(si, tj)
else
unmatch(si, tj)
else
unmatch(si, tj)
end-if
end-if
end

The filter can also be used to determine the unmatch condition
as shown in the second else statement above for FPDL because
it is already established that the strings can’t match since
Gezx 2 Hep and Gy N Gsop = @, Where Gsop = V(s,t) € S X
T,Im®n|>2k , then H NGy =0 Vh(s,t, k) €
Hep,Ag(m,n, 1) € Gsy, and  FindDiffBits(im,n, 1) > 2k =
PDL(s,t, k) # TRUE. This alphabetic and alphanumeric FBF
proofs are similar to this proof because the signature bits are
generated and processed in the same way. The Venn diagram in
Fig. 5 below shows a typical relation between the four sets:
GSZk . G>2k . Hsk and H>k = V(S, t) ESX T, PDL(S, t, k) *



TRUE. The large black circle is Hsj and the small black circle
is G<yr . The intersection is the (s,t) € SX T in which
FindDiffBits(m, n,1) < 2k but PDL(s, t, k) = TRUE. It may
also be the case that G.p, N Hsy = @ if FindDiffBits(m, n, 1)
and PDL(s, t, k) are in perfect agreement.

H>k

G

Figure 5. Venn diagram for FPDL relationship

5 EXPERIMENTS

The experiments include only comparable string distance metrics,
meaning that the compared methods are likely to be effective on
short strings. The primary use of this method is intended for
linking fields in the previously described demographic type data
(and possibly other relatively short strings). According to the
1990 US Census data obtained from [23], the minimum,
maximum and average character lengths for first names are: 2, 11
and 5.96, respectively. These statistics are 2, 15 and 6.89 for last
names. The birth date, Social Security number and phone
number fields are fixed-length at 8, 9 and 10 characters,

respectively. The string comparators used in the experiments
include:

1. Damerau-Levenshtein (DL)

2. Prefix Pruned Damerau-Levenshtein (PDL)

3. Jaro string similarity (Jaro)

4. Jaro-Winkler string similarity (Wink)

5. Hamming Distance (Ham) [24]

6. FBF Filtered DL (FDL)

7. FBF Filtered PDL (FPDL)

8.  FBF Filtered only (FBF)

9. Length Filtered DL (LDL)

10. Length Filtered PDL (LPDL)

11. Length Filter only (LF)

12. Length then FBF Filtered DL (LFDL)
13. Length then FBF Filtered PDL (LFPDL)
14. Length then FBF only (LFBF)

The experiments were run 5 times and their average was
recorded as the result. The data for the experiments included
randomly selected strings from:

5,163 Census first names (FN)

151,670 Census last names (LN)

547,771 local addresses (Ad)

12,000 synthetic phone numbers (Ph)

35,525 random birthdates (Bi)

12,000 synthetic Social Security Numbers (SSN)

AN

The first names were merged from the male and female first
names lists from the 1990 U.S. Census. The last names were
from the 2000 U.S. Census. The addresses were from local tax
records containing 3,874 unique streets. The phone numbers
were synthetically generated based on the numbering scheme of
the North American Numbering Plan (NANP) [25]. The
birthdates were randomly selected over 100 years between

1239

2/25/1912 and 2/24/2012 or 36,525 unique dates. The Social
Security Numbers were synthetically generated by the same rules
that the Social Security Administration uses to issue actual SSNs
to clients [26]. Each entry in the initial or “clean” data sets were
injected with single edit errors to produce a second “error” data
set to simulate data entry errors, where the clean entries match
the error entries by index position in each list to maintain a
ground truth. Samples of 5,000 were selected from each list and
matched using the string comparison algorithms.

Our second set of results generates runtime curves for all of
the methods from the first experiment. When executed on two
same-size lists, the FBF algorithm is clearly O(n®) as are all of
the others but the work for each string pair comparison is, on
average, significantly reduced. We ran experiments using a
variable n from 1000 to 18000 strings in each of the two datasets
to be merged from the 151,671 last names from the Census data.
We randomly selected 5 clean datasets for each n (1000 to 18000
last names or 90 clean datasets) and created 90 error datasets by
injecting single edit distance error to a set copied from the clean
data. We ran each experiment 5 times, discarding the fastest and
slowest times from each and averaging the remaining times.

Our third set of experiments perform the same experiments as the
second set but using the length filter from [29] and the
combination of length filtering with FBF using the Census last
names. The length filter was used as a wrapper for FBF as FBF
is used as a wrapper for DL and PDL as shown in Alg. 7,
basically adding another if-else statement. We also ran the
experiments for the first set of experiments with the local last
names, addresses and the first names. We did not perform any
length-based filter experiments on the fixed-length numeric
strings (birthdates, SSNs and phone numbers) because, as
mentioned, the length filter is useless for fixed-length data
strings.

The test computer is an Acer Aspire 7745G notebook, has a 64-
bit Intel i7 processor 720QM, 16 GB PC1333 RAM and
Windows 7 Ultimate 64-bit operating system. The code was
written and compiled in 32-bit GCC.

6 RESULTS

The experimental results show significant performance gains
using FBF. The results for SSN are shown below in Table 1 with
the edit distance threshold k = 1 and the Jaro/Wink threshold set
to 0.8 (0.75 for FN). Only 5000 of the 25,000,000 pairs actually
match. The DL method is used as the baseline for all of the other
methods. The first column is the method, the second is Type 1
errors (false positives), the third is Type 2 errors (false
negatives), the fourth is time in milliseconds and the last is the
performance gain over DL. Notice that all of the DL-based
methods have very few Type 1 errors compared to Jaro and
Wink. Ham is the only method that has Type 2 errors. The time
had to be recorded in milliseconds because the FBF functions run
very quickly.

As shown in the last row of Table 1, Gen, the SetNumBits(s)
described in the Methodology section function processes 10,000
SSNs in 0.6 milliseconds or 60 nanoseconds per FBF SSN
signature. The FBF row shows the results for matching the
strings using only the FBF filter. Notice that the filter has
123,318 Type 1 errors. This shows that FBF removed
12,369,182 unnecessary pair-wise comparisons before
processing the strings with DL or PDL. FPDL is 62.24 times
faster than DL. The average FBF comparison for an SSN was
less than 58 nanoseconds per pair using FindDiffBits(m, n, ).



Table 1. Accuracy and performance results for SSN string experiment

Ig_N Type 1 Type 2 Time ms |Speedup
DL 42 0] 52,807.2 1.00]
PDL 42 0f 17,449.2 3.03]
Jaro 93,658 0| 16,043.6 3.29
Wink 239,922 0| 17,720.2 2.98]
Ham 41 2,352| 3,571.6 14.79
FDL 42 0] 1,060.8 49.78|
FPDL 42 0 848.4] 62.244
FBF 123,318 0 729.0 72.44'
Gen 0.6| 88,012.00|

Table 2 shows the experimental results for SSN with k = 2.
Notice that even with a more relaxed match threshold, the edit
distance methods still have less Type 1 errors and the FBF filter
still provides significant performance gain with no loss to true
positive matches. Notice that the FBF performance gain is less
that with k = 1. The reason is that the FBF passed 1,344,669,
10.9 times as many candidate pairs. FPDL is still faster than
Hamming distance.

Table 2. Accuracy and performance results for SSN experiment k=2

I%NZ Typel |[Type2 |Time ms |Speedup
DL 1,229 0 51,523.4 1.00
PDL 1,229 0 22,441.4 2.30]
Jaro 93,658 0f 15,473.6) 3.33)
Wink 239,922 0f 17,120.0 3.01|
Ham 1,014 0f 3,518.4 14.64]
FDL 1,229 0f 3,625.6 14.21]
FPDL 1,229 0f 2,097.0 24.57
FBF 1,344,669 0 713.2 72.241
Gen 0.8] 64,404.25

Fig. 6 shows the plot of the average runtime for an FBF filter
comparison on a single pair of SSNs by total number of pairwise
comparisons performed. The performance gain is stable and
consistent with and average time of 58 nanoseconds for a FBF
only pairwise comparison, 67.9 nanoseconds for FPDL and 84.9
nanoseconds for FDL. The average time for DL was 4,122.7
nanoseconds per comparison. The plot for LN was more erratic
because the strings are not of fixed length as in SSN but seemed
to converge on runtimes between 56 and 58 nanoseconds per
comparison.
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Figure 6. Plot of average pairwise comparison by number of comparisons
Table 3 shows the results for Census last names, LN, with edit
distance threshold k = 1 and the Jaro/Wink threshold set to 0.8.
There are also two lists with each containing 5,000 strings. The
performance gain is still evident, the edit based methods continue
to have lower Type 1 errors and the FPDL method is also
approximately 3 times faster than Ham. The remaining results
are similar and are reported in the Appendix.
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Table 3. Accuracy and performance results for LN string experiment

LN Typel |Type2 [Time ms |Speedup

DL 766) 0] 31,073.2 1.00]
PDL 766 0] 6,201.0 5.01
Jaro 18,615 44| 10,707.2 2.90
Wink 47,195 28| 12,242.6) 2.54)
Ham 559 3,011] 3,344.0 9.29)
FDL 766 0] 1,154.4] 26.92
FPDL 766 0] 1,138.6) 27.29
FBF 20,174 0] 1,142.6] 27.20
Gen 0.8 38,841.50

Our best performance results were realized in the street address,
Ad, experiments, shown in Table 4. The FDL method achieved a
78.18 times speedup and FPDL reached 79.6.

Table 4. Accuracy and performance results for Ad string experiment
IA__d Typel [Type2 [Time ms [Speedup
DL 120 0] 135,098.8 1.00]
PDL 120 0| 15,887.4 8.50
Jaro 103,368| 0| 35,034.8 3.86)
Wink 192,108 0| 36,587.8 3.69
Ham 69 3,444 5,537.8 24.40)
FDL 120 0| 1,728.0 78.18]
FPDL 120 0] 1,697.2 79.60
FBF 3,452 0] 1,664.6 81.16|
Gen 2.0| 67,549.40)

Table 5 shows the performance gains for FPDL compared to all
non-filtered methods. FPDL is almost 80 times faster than DL
for comparing address strings and almost 5 times faster than Ham
for phone numbers—Hamming distance has an 0(n)
computational complexity and FPDL is faster and has the
matching power of DL. The results show that FBF yields better
performance on longer strings. Street addresses are the longest,
phone numbers are the second and SSNs are the third longest.
The difference is due to DLs O(mn) complexity. Table 4 shows
the performance speedups from the smallest average length, FN
on the left, to the longest, Ad on the right.

Table 5. Runtime and speedup for FPDL versus all other methods

FPDL |FN LN Bi SSN Ph Ad

DL 23.23 26.10 42.46 62.24 75.00 79.60

PDL 6.04 522 1591 20.57 22.63 9.36

Jaro 876 9.52 14.08 18.91 23.87 20.64f
Wink 10.08 11.06 15.80 20.89 25.98 21.56|

Ham 289 300 386 421 471 3.26

Table 6 shows the results from an RL experiment using FBF.
The RL method was a simple deterministic point and threshold
based algorithm. There were two datasets—one with 1000 clean
records and the other with 1000 single edit error injected records.
The table shows that FDL is 45 times faster and FPDL is 48.9
times faster than the baseline DL-based RL.

Table 6. Performance results for RL experiment

RL DL PDL FDL FPDL FBF Gen
Time ms 13762.0]  3464.6 305.6 281.6 273.2 2.0
Speedup 1.0 4.0 45.0 48.9 50.4| 6881.0]

For completeness, we provide results from experiments using the
Soundex (SDX) in Table 7. These experiments were performed
using the same datasets as described for the previous
experiments—one clean dataset and one with single edit errors



injected. DL is 2.3 times slower for first names and 2.6 times
slower for last names. When implemented in aforementioned RL
system, DL-based RL was 5 times slower than the department’s
proprietary system. FPDL is 10.3 time faster than the Soundex
for first names and 10.8 times faster for last names. We did not
compare the Soundex to the other data because it is primarily a
name matching phonetic algorithm. The accuracy of the
Soundex is much worse than DL. In both cases, the Soundex
found less than half of the true positive matches and the number
of false positives are 6.4 times that of DL for first names and
almost 40 times greater than DL for last names. The Soundex
even has false negative results.

Table 7. Soundex vs. DL with error injected

Error TP FN FP TN Time ms

FN-DL 5,000 0 6,458| 24,988,542, 24,586
FN-SDX 2,259 2,741 47,137| 24,947,863 10,664
LN-DL 5,000 0 766] 24,994,234 32,308|
LN-SDX 2,499 2,501 30,606| 24,964,394 12,344'

Table 8 shows the results of matching the clean dataset against
itself. Both found all true positives and both have higher false
positives than the previous experiment but the false positives are
much higher for the Soundex than for DL. These results show
that the presence of single edit data entry errors can cripple the
Soundex’s ability to find true positive matches. In both
experiments, the Soundex suffers from substantially higher false
positive matches.

Table 8. Soundex vs. DL with clean data

Clean [TP FN FP ™ Time ms |
FN-DL 5,000 o|  18,268]24,976,732]  24,464|
FN-SDX 5,000 o| 70,476|24,924,524] 10,936
LN-DL 5,000 o 1,760]24,993,240] 31,586
LN-SDX 5,000 o| 37,654]24,957,346] 11,938

Fig. 7 shows the results of the runtime curves from the second set
of experiments. Notice that the greatest growth rate is DL and
the smallest growth rates are the FBF methods (FDL and FPDL).
The FBF methods grow slower than Hamming distance and
almost appear linear when compared to DL in this context.
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Figure 7. Runtime curves for all methods

The runtimes and # for each method were analyzed with Matlab’s
polyfit function for a second degree polynomial solution in the
form an® + bn + c. Table 9 below shows the coefficients for
the second and first degree terms, and the constant. The FBF
methods’ growth rates (a for FDL and a for FPDL) are two
orders of magnitude smaller than DL (a for DL).
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Table 9. Coefficients and constants for speedup polynomials for FBF

DL PDL Jaro Wink Ham FDL FPDL Fil

a | 1.32E-03| 2.57E-04| 4.68E-04| 5.48E-04] 9.30E-05| 4.69E-05( 4.67E-05 4.57E-05

b -0.374| -0.080] -0.171] -0.496] -0.039] -0.008| -0.013| -0.012

[4 512.739| 127.316] 247.971|1134.396) 71.392 12.328| 28.035] 27.081]

The actual speedups for the experiments comparing speedup for
FPDL against DL are shown in Table 10 below. Based on the
polynomial, the expected speedup of FPDL over DL for very
large n (500,000 or more) is approximately 28.3 and is stable.
DL would take approximately 3.8 days to merge 2 datasets with
500,000 strings each. FPDL would only require 0.13 days.

Table 10. Speedups for last name data by n

n speedup n speedup
1,000 27.6 10,000 28.2)
2,000 27.3 11,000 28.3
3,000 27.7 12,000 28.6|
4,000 28.3 13,000 28.4)
5,000 27.9 14,000 28.0
6,000 27.8 15,000 28.2)
7,000 27.8 16,000 28.2)
8,000 28.0 17,000 28.5
9,000 28.1 18,000 28.1]

Fig. 9 shows the comparison curves for FBF, length filtering and
both methods combined for last name. The bottom curve is
LFPDL, which is also obscuring the LFDL curve. These are the
fastest methods. The Length filter methods LDL and LPDL were
the slowest. The results for the FBF methods, FDL and FPDL
from Table 3, are the middle two curves.

Lengh and FBF Methods
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Figure 9. Runtime curves for length filter and FBF methods for last name

The results of polyfit on the runtime curves from Fig. 9 are
shown in Table 11. Notice that the coefficient a for LFPDL,
3.41E-05, is about 27% smaller than the a coefficient for FPDL
in Table 7.

Table 11. Coefficients and constants for speedup polynomials for length

filter
LDL LPDL Len LFDL LFPDL  |LFil
a | 5.38E-04) 2.21E-04] 9.23E-06| 3.34E-05]| 3.41E-05| 3.21E-05
0.263 0.119 0.004] 0.012 0.001] -0.003}
¢ |-531.126] -244.743] -9.159| -10.796 6.730 14.420|

Table 12 shows the last name results for DL and FPDL from
Table 3 and new results for length filtering (LF) and the
combination of length filtering and FBF. Notice that the FPDL
method is 27.29 times faster than the traditional DL method but
the combination of both methods is 36.01 times faster than the
DL method—an improvement of about 32% over FPDL. Also



notice that LF or the length filter only method was 127.52 times
faster than DL. The LF row shows that the length filter passed
11,196,547 string pairs of 12,497,500 possible pairs. This is why
the LDL and LPDL methods did not perform as well as the FBF
or combined filter methods. The combined decreased the number
of calls to DL and PDL to 12,735 as shown in the LFBF row.
None of the methods in table 10 or any of the other experiments
that use these filtering methods have any type 2 errors.

Table 12. Accuracy and performance results for LN string experiment
using length filter

LN Typel Type2 Time ms |Speedup
DL 766 0| 31,073.2 1.00
FPDL 766 0| 1,138.6 27.29
LDL 766 0| 13,599.0 2.28
LPDL 766 0| 5,666.7 5.48]
LF 11,196,547 0 243.7 127.52
LFDL 766 0 890.7, 34.89
LFPDL 766 0 863.0 36.01
LFBF 12,735 0 795.3 39.07

The main reason for this performance gain is that the minimum
length of a last name in the Census data is 2 and the maximum
length is 15 with an average string length of 6.89. There is
increased efficiency by limiting calls to FBF’s

FindDiffBits(m, n, [) function for every possible string pair. The
FBF row in Table 3 shows 20,174 calls passed to be verified to
DL and PDL and LFBF only processed 12,735—a savings of
7,439 calls. The increased precision is from adding FBF to
length filtering. Table 11 shows the counts for string lengths for
the Census last name data used in our experiments.

Table 13. Counts of Census last name string lengths

Length | Frequency Length | Frequency I
2 175 9 14424)
3 1585 10 7772
4 8768| 11] 3215
5 23233 12| 1190
6| 34025/ 13 442
7 33256 14 177
8 23380 15 23]

Table 14 shows the street address results for DL and FPDL from
Table 4 and new results for length filtering and the combination
of length filtering and FBF. The combined method increased the
speedup of FPDL from 79.6 times faster than DL to 130.83 times
faster for LFPDL.

Table 14. Accuracy and performance results for Ad string experiment
using length filter

|A__d Typel Type2 Time ms [Speedup

DL 120 0f 135,098.8 1.00]
FPDL 120 of 1,697.2 79.60)
LDL 120 0| 48,879.3 2.76)
LPDL 120 0f 14,343.3 9.42
LF 9,623,583 0 237.3 569.24)
LFDL 120 of 1,164.0 116.06|
LFPDL 120 0of 1,032.7 130.83|
LFBF 3,200 0 985.3 137.11

7 CONCLUSION

As more data are stored in clouds, identity resolution is a
commonly required function for health and human services, fraud
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detection and other security services. Our goal was to reduce
unnecessary edit distance computation by identifying and
filtering record pairs that are guaranteed not to match. Our
computational results clearly show that there are superior
performance gains while using the FBF over even the leanest
string distance metrics. The results also show that there is
absolutely no loss to accuracy—FBF, when combined with DL or
PDL, produces the same results as DL. FBF takes advantage of a
computer’s ability to quickly compare differences in primitive
data types using a single instruction, exclusive disjunction, and
an enhanced while loop to count ones.

The computational cost of creating FBF signatures is very low
and only 4 bytes are needed for a numeric string, 8 bytes for an
alphabetic string (to count two occurrences of each character) and
12 for an alphanumeric string. Considering that addresses can be
at least 25 characters (or 50 for 16-bit Unicode) bytes and a
phone number is 10 characters (or 20 bytes), the space
complexity is not unreasonable given the performance benefits.
The record pair search spaces for FDL and FPDL are as
exhaustive as DL but completes each comparison, on average,
much quicker by eliminating unnecessary work when comparing
string pairs. FBF and PDL work efficiently together to deliver
the same resulting accuracies as DL, in significantly less time.
Our results provide evidence that FPDL can perform the same
work in as little as one day that would take DL nearly 80 days to
complete. The 40 hour record linkage (RL) update mentioned in
the Introduction can now be completed in an hour or two. This
performance is far superior to using low complexity Soundex
alone with more than 46% yield in true positive matches. Our
goal is to implement a distributed in-memory data graph to
process demographic data and resolve entities within the data in a
cloud.

Our methodology substantially differs from SSJoin [30] in
similarity handling. SSJoin is a DBMS operator that uses edit
similarity and other string comparators for approximate joins. It
also uses a prefix similarity filter based on matching tokens. The
similarity filter cannot guarantee zero accuracy loss. FBF instead
focuses on the difference between strings, which allows it to use
a single machine instruction, the exclusive or, to find a subset of
differing characters—in nanoseconds.

The Appendices contain tables for experiments with first names,
phone numbers and birthdates. Sample code and datasets (used
in experiments) can be downloaded at:
http://astro.temple.edu/~joejupin/FBF.zip
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9 APPENDIX: OTHER EXPERIMENTAL

RESULTS

Table 9. Accuracy and performance results for FN string experiment

EN Type 1 |Type 2 |Time ms |Speedup
DL 6,458 0] 24,081.4 1.00
PDL 6,458 0] 6,257.0 3.85)
Jaro 215,874 102 9,080.0) 2.65)
Wink 314,994 102| 10,450.4] 2.30]
Ham 4,539 2,972| 3,000.8 8.02]
FDL 6,458 0] 1,102.0 21.85)
FPDL 6,458 0] 1,036.6 23.23)
FBF 91,072 0 996.2 24.17,
Gen 0.6] 40,135.67|

Table 10. Accuracy and performance results for Ph string experiment

Ph Typel |Type2 [Time ms |Speedup

DL 7 0] 63,311.6 1.00
PDL 7 0] 19,102.6, 3.31
Jaro 82,748 10| 20,153.8 3.14]
Wink 567,118 10] 21,930.0 2.89)
Ham 7 2,272| 3,976.0 15.92
FDL 7 0 961.6) 65.84]
FPDL 7 0 844.2) 75.00]
FBF 61,277 0 738.8 85.70]
Gen 0.4[158,279.00

Table 11. Accuracy and performance results for Bi string experiment

Bi Typel |[Type2 |Time ms |Speedup
DL 7,899 0] 42,121.0 1.00]
PDL 7,899 0] 15,786.8 2.67|
Jaro 597,466 7] 13,971.2 3.01
Wink 1,470,453 7| 15,673.6 2.69
Ham 6,152] 3,006 3,833.8 10.99
FDL 7,899 0 1,368.8 30.77]
FPDL 7,899 0| 992.0 42.46)
FBF 355,860 0 711.4 59.21
Gen 1.0| 42,121.00




