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Abstract. We propose a novel Dynamic Recursive Partitioning approach for 
discovering discriminative patterns of functional MRI activation. The goal is to 
efficiently identify spatial regions that are associated with non-spatial variables 
through adaptive recursive partitioning of the 3D space into a number of hyper-
rectangles utilizing statistical tests. As a case study, we analyze fMRI datasets 
obtained from a study that explores neuroanatomical correlates of semantic 
processing in Alzheimer’s disease. We seek to discover brain activation areas 
that discriminate controls from patients. We evaluate the results by presenting 
classification experiments that utilize information extracted from these regions. 
The discovered areas elucidated large hemispheric and lobar differences being 
consistent with prior findings. The overall classification accuracy based on ac-
tivation patterns in these areas exceeded 90%. The proposed approach being 
general enough has great potential for elucidating structure-function relation-
ships and can be valuable to human brain mapping. 

1 Introduction 

The detection of relationships between human brain structures and brain functions 
(i.e., human brain mapping) has been recognized as one of the main goals of the Hu-
man Brain Project [1]. Several approaches have been used in this problem domain [2]. 
One of the approaches used in functional brain mapping is to seek associations be-
tween brain activation patterns and tasks performed. A current obstacle in this type of 
analysis is the lack of methods to automatically classify such patterns (i.e., activation 
regions) and quantitatively measure levels of their similarity. In this paper, we focus 



on analyzing patterns of brain activity obtained using functional Magnetic Resonance 
Imaging (fMRI). 

One of the most common approaches currently in use, statistical parametric map-
ping (SPM) [3] analyzes each voxel’s changes independently of the others and builds 
a corresponding map of statistical values. The significance of each voxel is ascer-
tained statistically by means of Student’s t-test, F-test, correlation coefficient, or other 
univariate statistical parametric tests. The multiple comparison problem, which occurs 
when computing a statistic for many pairwise tests (introducing significant computa-
tional overhead), is usually handled by estimating corrected p-values for clusters.  

Another approach to the problem is to model (estimate) the underlying distribu-
tions of the distinct classes (controls vs. patients) [4-5], utilizing parametric, non-
parametric or semi-parametric techniques. EM and k-means algorithms [6] have been 
used in order to estimate the distribution densities. Statistical distance based methods 
are often used for distinguishing among distributions. The Mahalanobis distance [7] 
and the Kullback-Leibler divergence [6] are most often employed. The main problem 
of these techniques is that real data are not accurately modeled using a simple mixture 
of Gaussian components, since they correspond to highly non-uniform distributions. 

In the proposed approach, we use an adaptive recursive partitioning approach on 
the 3D domain to discover highly informative 3D sub-regions with respect to the de-
velopment of a disease. The method operates on brain activation maps generated by 
SPM when analyzing the subjects independently (post-analysis of activation maps has 
been shown to be very useful [8]). More specifically, we utilize Dynamic Recursive 
Partitioning (DRP) initially presented in [9] for the analysis of binary artificial and re-
alistic data. Some initial attempts to apply the technique on brain images have been 
reported in [10]. Here, we present a detailed description of how we extended DRP in 
order to be applicable to real 3D functional activity data. We also present the results 
of a comprehensive study on a collection of datasets obtained from a series of seman-
tic decision tasks designed to explore neuroanatomical correlates in Alzheimer’s dis-
ease (AD) [11]. These results clearly demonstrate the ability of DRP to identify dis-
criminative spatial patterns arising from functional imaging information, assisting in 
medical decision making. We also investigate the case of developing a classification 
model based on neural networks that utilizes information extracted from the sub-
regions indicated by DRP to provide prediction and diagnosis.  

2 Methodology 

We seek to discover highly discriminative regions with respect to class membership 
(controls vs. patients). In the discussion that follows we present the method for a two-
class problem although it can be easily extended to more than two classes. In order to 
evaluate the method we also seek to construct features (attributes) that can be used to 
develop and train a classification model for prediction and medical diagnosis.  

The method is applied on activation maps that are the output of SPM (operating on 
individual subjects independently). SPM creates 3D activation maps of contrast and 
statistical significance values for pairs of conditions. The proposed algorithm treats 
the  initial 3D volume of  activation maps  as a hyper rectangle and searches for infor-  



 Given:  Oct-tree T corresponding to the spatial domain D; Two sets SY = {S1,Y,...Sn1,Y}, SN = 
{S1,N ,...Sn2,N} containing region data for samples belonging to classes Y and N respectively. 

DYNAMIC RECURSIVE PARTITIONING (T,node, SY, SN )  
If SPLITTING_CRITERION(T,node, SY, SN)==’yes’  

T=SPLIT(T,node)  
for node_c in CHILDREN (T,node)  
T=DYNAMIC RECURSIVE PARTITIONING (T,node_c, SY, SN )  
Else  

 ADD_TO_LEAF_LIST (node)  
             Return T  

Fig. 1. The outline of the DRP algorithm in pseudocode 

mative regions by partitioning the space into sub-regions (cuboids), in an adaptive 
way. We use the mean Vmean of all voxel values belonging to the cuboid under consid-
eration as a measurement of activation/deactivation level. This measurement is treated 
as a candidate feature (attribute) for the corresponding sub-region. The adaptive parti-
tioning of the 3D space continues in the following way: A hyper-rectangle is parti-
tioned only if the corresponding attribute does not have a sufficient discriminative 
power to determine the class of samples. This is determined by the use of statistical 
tests, where a statistical significance threshold is employed (e.g. p-value < 0.001) as a 
stopping criterion for splitting. The procedure progresses recursively until all remain-
ing sub-regions are discriminative or a sub-region becomes so small that it cannot be 
further partitioned. For this reason, the maximum number of partitioning steps (depth) 
that the partitioning can go through is also predefined. For the implementation of this 
procedure, efficient data representation and manipulation is accomplished using aug-
mented oct-trees [12] and a dynamic array [13] to store pointers to the leaf nodes. If 
the splitting criterion is satisfied, the spatial sub-domain (or cuboid) corresponding to 
the node of the oct-tree is partitioned into 8 smaller sub-domains. The corresponding 
tree node becomes the parent of eight children nodes, each representing a new sub-
domain. The new measurements Vmean corresponding to the children nodes become 
the new candidate attributes. Figure 1 shows the outline of the DRP algorithm. 

As described above, the adaptive partitioning of the 3D space is guided by a statis-
tics-based stopping criterion. Several statistical tests can be applied for this purpose. 
For example, the Pearson correlation coefficient [14] between the class label (consid-
ered as a binary numeric value) and the attribute value for each sample (Vmean) could 
be computed and an attribute considered significant if the correlation coefficient is 
larger than the pre-determined threshold. Another criterion is based on discretization 
of the candidate attribute and evaluation of the class/attribute contingency matrix us-
ing statistical tests (chi-square or the Fisher exact test [15]) with pre-determined 
maximal type I errors. A suitable value for the discretization threshold can be set ad-
hoc or by using discretization techniques that maximize class/attribute mutual infor-
mation [16].  Finally, the significance of a candidate attribute can be assessed by de-
ciding whether the distributions of attribute values corresponding to the classes differ 
substantially using parametric (e.g. t-test [14]) or non-parametric tests (e.g. Wilcoxon 
rank sum [17]).  

The proposed method effectively reduces the number of times a statistical test is 
applied due to the adaptive approach that is used. This is because the statistical tests 



are applied selectively on groups of voxels (cuboids), focusing only on certain poten-
tially discriminative sub-regions. This is in contrast to the traditional voxel-wise ap-
plication of statistical tests, such as in SPM [3], were repeated statistical tests on a 
voxel-wise basis introduce the multiple comparison problem (see Section 1). 

3 Experimental Evaluation 

3.1 The Dataset and Preprocessing 

Our dataset consisted of 3D activation maps of 9 Alzheimer’s disease patients and 
9 elderly controls. The brain activation data were collected during a series of cogni-
tive tests [11]. These tasks were selected to differentially probe semantic knowledge 
of categorical, functional, and phonological congruence between word pairs: (a) 
Category exemplar (catx): identify word pairs with correct category exemplar rela-
tionships from among incorrect ones, (b) Category function (catf): identify word pairs 
with correct category function relationships from among incorrect ones, (c) Nonsense 
pairs (nonpr): listen to nonsense pseudo-word pairs and decide if they are the same or 
different, and (d) Episodic recognition memory task (imprec): identify formerly heard 
words and pseudowords encountered in catx and catf tasks above versus new foils.  

The word pairs were presented in groups of four at 7.0 second intervals, with each 
28.0 second block of decision followed by a 10.5 second period of rest. Scans were 
conducted at 1.5 Tesla using a single shot, gradient echo, echo planar functional scan 
sequence (TR = 3500 ms, TE = 40 ms, interleaved, FOV = 24 cm, slice thickness = 6 
mm, NEX = 1, flip angle= 90) on a General Electric Signa scanner with a multi-axial 
local gradient head coil system (Medical Advances, Inc., Milwaukee, WI). Scans con-
sisted of 20–23 contiguous sagittal slices in a 64x64 matrix with in-plane resolution of 
3.75mm2 (total slice acquisitions per run = 1920 scans) with anatomical reference im-
ages in the same slice locations using aT1-weighted spin-echo pulse sequence (TR = 
450 ms; TE = 17 ms; interleaved; matrix = 256x192; NEX = 1; same FOV, slice 
thickness, and locations as the functional scans). All scans for each subject were ac-
quired in the same session.  

Prior to the application of the proposed technique, we applied preprocessing to 
bring homologous regions into spatial coincidence through spatial normalization. The 
spatial normalization of the scans to a standard template brain using the anatomical 
reference images was carried out in SPM99, resulting in resampling of the data to 
2mm3 isotropic voxels. The resampled data were smoothed with a Gaussian filter 
(FWHM 15mm3). Each subject's task-related activation was analyzed individually 
versus the subject’s rest condition, resulting in individual contrast maps giving a 
measurement of fMRI signal change at each voxel. 

To reduce the effect of noise and sensor fluctuations in the original functional data 
we applied the following steps. First, we removed the effect of the background noise 
by subtracting the signal value measured in representative background voxels from all 
the voxels of the 3D volume. Second, we masked the data using a binary mask ex-
tracted from the T1 anatomical atlas used as the template the data were spatially regis-
tered to. Only signal within the binary mask was included in the analysis. 



3.2 Experiments and Results 

After preprocessing (see Section 3.1) we applied the DRP algorithm to the dataset 
to detect discriminative activation patterns. As splitting criterion, we considered two 
different statistical tests: t-test and non-parametric rank-sum test. The maximum al-
lowed tree depth was set to 3 and 4. For the significance threshold value of the stop-
ping criterion (min correlation or maximal p-value for statistical tests) we experi-
mented with the values of 0.05 and 0.01. The majority of the results elucidated large 
hemispheric and lobar differences between Alzheimer's patients and controls for all 
semantic decision tasks. In particular, for CATX (semantic memory) major differ-
ences were seen in the right posterior parietal and temporal lobe regions.  A more fo-
cal left inferior prefrontal region was also present. For CATF (semantic memory) 
group differences appeared primarily in the right frontal and distributed posterior re-
gions including the left inferior temporal lobe. The NONPR (phonological discrimina-
tion) task showed differences in a highly dispersed set of regions including bilateral 
frontotemporal, parietal and subcortical sites which were more pronounced for the 
right than left hemisphere. Finally, in IMPREC (episodic memory), a distributed net-
work of differences in memory associated regions including the right frontal and me-
dial temporal regions and the left fronto-temporal neocortex was demonstrated.  

The neuropathology of early AD is relatively diffuse with atrophy in widespread 
cortical and subcortical areas, including the medial temporal lobes and temporal pa-
rietal and frontal cortical regions [18]. On functional neuroimaging studies (fMRI and 
PET) patients with very early AD manifest as Mild Cognitive Impairment (MCI) of-
ten show compensatory activations outside of areas typically used by healthy elderly 
controls [19].  This is thought to represent the brain's recruitment of proximal and 
possibly distal neural units in an attempt to maintain performance in the face of pro-
gressive pathology.  Therefore, the findings of multiple distributed regions that differ-
entiate patients and controls, as detected by the DRP, may be consistent with a dis-
tributed reorganization of networks subserving the semantic memory task [11]. Due to 
space limitations, Figure 2 illustrates some of these regions (overlayed on the T1 at-
las).  

To evaluate the predictive power and association of the indicated ROIs with the 
disease, we proceeded with classification experiments. The goal is, given an fMRI im-
age of a new subject, to determine the group to which it belongs, i.e., control vs. pa-
tient. For the classification model we used Neural Networks. As inputs to the classifier 
we used the attributes Vmean of the detected discriminative regions, standardized to 
have zero mean and unit standard deviation. As output we used a binary class label 
indicating the class of the samples. To avoid overfitting due to a small training dataset 
we applied one-layer perceptron networks trained by the Pocket algorithm [20]. The 
leave-one-out approach was employed to evaluate out of sample classification [6-7]. 
More specifically, the training set consisted of patients and controls with indices 
1,2,3,…,i-1,i+1,…9 and the method was tested on patient and control with an index i, 
where i=1,…,9. Taking into consideration the stochastic nature of the Pocket algo-
rithm, we repeated the process of training and testing the model in each of the leave-
one-out loops for 5 times and averaged the percentage of the correct predictions to ob-
tain the reported accuracy. Table 1 shows the most characteristic classification results 
obtained for control  and patient  samples  separately as well as the total classification  



Table 1. Classification accuracy based on discriminative regions detected by DRP for different 
experimental settings and cognitive task dataset 

Accuracy Cognitive 
Test 

Statistical  
Test Threshold Tree 

Depth Controls Patients  Total 
CATX t-test 0.05 4 84.44 % 100 % 92.22 % 
CATF t-test 0.05 4 82.22 % 97.78 % 90.00 % 

IMPREC t-test 0.05 4 93.33 % 93.33 % 93.33 % 
NONPR t-test 0.05 4 86.67 % 95.56 % 91.11 % 
CATF ranksum 0.01 4 88.89 % 100 % 94.44 % 

NONPR ranksum 0.01 4 91.11 % 100 % 95.56 % 
 
Table 2. Comparative classification accuracy using distributional distance-based approaches 
and static partitioning of the volume for the CATX set 

Accuracy Alternative Method 
Controls Patients Total 

Maximum Likelihood - EM 77.04 67.04 72.04 
Kullback-Leibler - EM 79.26 57.04 68.15 

Static partitioning 57.78% 78.89% 68.33% 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 2. The areas discovered by DRP when applied with t-test, significance threshold 0.05 and 
maximum tree depth 4  for (a) CATX, (b) CATF, (c) IMPREC and (d) NONPR tasks  

accuracy for each experiment; the accuracy achieved was 90% or more. As Table 2 
shows, DRP outperforms other methods, such as distributional distance-based meth-
ods [4-5] and static partitioning where each dimension is split into 3 equal length bins, 
resulting in 27 cuboids that span the entire 3D space (best obtained results). DRP also 
outperformed a Fisher linear discriminant classifier approach [21]. Finally the results 
support the argument that the regions discovered by DRP in the specific study are in-
deed discriminative for AD and may be useful in assisting early detection of AD.  



4 Conclusions and Future Work  

We proposed and evaluated methods for the analysis of brain activation scans poten-
tially suitable for the effective discovery of spatial activation patterns that are dis-
criminative among different groups of subjects. The methods are applied on activation 
maps that are the output of SPM (operating on individual subjects independently). We 
replace the typical "second level" of SPM analysis (group model) by a Dynamic Re-
cursive Partitioning (DRP) procedure that utilizes statistical tests to guide the recur-
sive splitting of the spatial domain. We applied DRP to discover discriminative acti-
vation patterns associated with Alzheimer’s disease (AD). DRP identified large 
hemispheric and lobar differences between Alzheimer patients and controls. It was 
not surprising that a broadly distributed set of sites emerged in the results. AD begins 
with microscopic cell loss and pathology in the medial temporal region which then 
spreads to broad posterior lobar areas, as reflected in the numerous reports of poste-
rior hypometabolism seen in PET studies. Most of the sites showing classification dif-
ferences are related to networks involved in human memory processes tapped by one 
or more of the fMRI tasks. Although there is some variation in the discovered areas 
related to the cognitive test that was performed to generate the datasets, the choice of 
the statistical test and other parameters, the most significant regions persist in all ex-
amined cases. Experiments demonstrated the ability of the indicated regions to pro-
vide efficient classification and discriminative information, improving on previous 
work [21] using the Fisher linear discriminant classifier. The proposed technique con-
siders groups of voxels (spatial sub-domains) and effectively reduces the computa-
tional cost of repeated statistical tests. Experiments demonstrated that this technique 
outperforms other approaches, such as distributional distance-based methods, static 
partitioning and Fisher linear discriminant classifier. It is also more robust than meth-
ods performing voxel-wise analysis that are more prone to registration errors and 
variability of individual voxel values across runs, subjects and analysis techniques. 

Acknowledgements 

This work was supported in part by NSF (IIS-0083423, IIS-0237921), NIH R01 
MH68066-01A1 (funded by NIMH, NINDS, and NIA), Alzheimer's Association, 
Delaware State University PDF fund, and NIA AG19771. 

References 

1. Koslow, S.H., Huerta, M.F., NeuroInformatics: an Overview of the Human Brain project, 
Mahway, NJ, Lawrence Erlbaum, (1997)  

2.  Megalooikonomou, V., Ford, J., Shen, L., Makedon, F., Saykin, F.: Data mining in brain 
imaging, Statistical Methods in Medical Research, 9 (2000) 359-394 

3.  Friston, KJ., Holmes, AP., Worsley, KJ., Poline, JP., Frith, CD., Frackowiak, RSJ.: Statisti-
cal parametric maps in functional imaging: a general linear approach. Human Brain Map-
ping (1995) 189–210 



4.  Lazarevic, A., Pokrajac, D., Megalooikonomou, V., Obradovic, Z.: Distinguishing Among 
3-D Distributions for Brain Image Data Classification, in Proceedings of the 4th Interna-
tional Conference on Neural Networks and Expert Systems in Medicine and Healthcare, 
Milos Island, Greece (2001) 359-394 

5.  Pokrajac, D., Lazarevic, A., Megalooikonomou, V., Obradovic, Z.: Classification of brain 
image data using meaasures of distributional distance, 7th Annual Meeting of the Organiza-
tion for Human Brain Mapping (OHBM01), Brighton, UK (2001) 

6. Duda, R., Hart, P., Stork, D.: Pattern Classification, John Wiley and Sons, NY (2000) 
7. Fukunaga, K.: Introduction to Statistical Pattern Recognition, Academic Press, San Diego 

(1990) 
8. Coulon, O., Mangin, J.-F., Poline, J.-B., Zilbovicius, M., Roumenov, D., Samson, Y., Frouin, 

V., Bloch, I.: Structural group analysis of functional maps, NeuroImage, 11(6)  (2000) 767-
782 

9. Megalooikonomou, V., Pokrajac, D., Lazarevic, A., V., Obradovic, Z.: Effective classifica-
tion of 3-D image data using partitioning methods, in Proc. of the SPIE 14th Annual Sym-
posium in Electronic Imaging: Conference on Visualization and Data Analysis San Jose, 
CA, Jan. (2002) 

10. Megalooikonomou, V., Kontos, D., Pokrajac, D., Lazarevic, A., Obradovic, Z., Boyko, O., 
Saykin, A., Ford, J., Makedon, F.:Classification and Mining of Brain Image Data Using 
Adaptive Recursive Partitioning Methods: Application to Alzheimer Disease and Brain Ac-
tivation Patterns, Human Brain Mapping Conf. (OHBM'03), New York, NY (2003) also in 
NeuroImage, 19 (2) S48 (2003) 

11. Saykin, A.J.,  Flashman, L.A., Frutiger, S.A., Johnson, S.C., Mamourian, A.C., Moritz, 
C.H., O'Jile, J.R., Riordan, H.J., Santulli, R.B., Smith, C.A., Weaver, J.B.: Neuroanatomic 
substrates of semantic memory impairment in Alzheimer's disease: Patterns of functional 
MRI activation, Journal of the International Neuropsychological Society, 5  (1999) 377-392 

12. Fujimura, K. , Toriya, H., Yamaguchi, K.,  Kunii, T. L.: Oct-tree algorithms for solid mod-
eling, in Computer Graphics, Theory and Applications, T. L. Kunii ed., Springer Verlag, 
(1983) 96-110 

13. Cormen, T. H., Leadsperson, C. E., Rivest, R. L.: Introduction to Algorithms, 2nd edn., 
MIT Press, Cambridge (2001)  

14. Devore, J.L.: Probability and Statistics for Engineering and the Sciences, 5th edn., Interna-
tional Thomson Publishing Company, Belmont (2000)  

15. Agresti, A.: An Introduction to Categorical Data Analysis, Wiley, New York (1996)  
16. Ching, J., Wong, A.: Class-dependent discretisation for inductive learning from continuous 

and mixed-mode data, IEEE Trans. Pattern Analysis and Machine Inteligence, 17 (1995) 
641-651 

17. Conover, W.J.: Practical Nonparametric Statistics, Wiley, New York (1999)  
18. Flashman, L.A., Wishart, H.A., Saykin, A.J.: Boundaries Between Normal Aging and De-

mentia: Perspectives from Neuropsychological and Neuroimaging Investigations, in: Emory 
VOB and Oxman TE, editors. Dementia: Presentations, Differential Diagnosis and 
Nosology. Baltimore: Johns Hopkins University Press (2003) 3-30 

19. Saykin A.J., Wishart H.A.: Mild cognitive impairment: Conceptual issues and structural 
and functional brain correlates. Seminars in Clinical Neuropsychiatry, 8 (2003) 12-30 

20. Gallant, S.I.: Perceptron-Based Learning Algorithms, in IEEE Transactions on Neural Net-
works, 1 (1990) 179-191 

21. Ford, J., Farid, H., Makedon, F., Flashman, L.A., McAllister, T.W., Megalooikonomou, V., 
Saykin, A.J.: Patient Classification of fMRI Activation Maps, in Proc. of the 6th Annual In-
ternational Conference on Medical Image Computing and Computer Assisted Intervention 
(MICCAI'03), Montreal, Canada, Lecture Notes in Computer Science 2879 (2003) 58-65 

 


