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Abstract. Many large -scale spatial data analysis problems involve an 
investigation of relationships in heterogeneous databases. In such situations, 
instead of making predictions uniformly across entire spatial data sets, in a 
previous study we used clustering for identifying similar spatial regions and 
then constructed local regression models describing the relationship between 
data characteristics and the target value inside each cluster. This approach 
requires all the data to be resident on a central machine, and it is not 
applicable when a large volume of spatial data is distributed at multiple sites. 
Here, a novel distributed method for learning from heterogeneous spatial 
databases is proposed. Similar regions in multiple databases are identified by 
independently applying a spatial clustering algorithm on all sites, followed by 
transferring convex hulls corresponding to identified clusters and their 
integration. For each discovered region, the local regression models are built 
and transferred among data sites. The proposed method is shown to be 
computationally efficient and fairly accurate when compared to an approach 
where all the data are available at a central location. 

 
 
1. Introduction  
 
The number and the size of spatial databases are rapidly growing in various GIS 
applications ranging from remote sensing and satellite telemetry systems, to computer 
cartography and environmental planning. Many large-scale spatial data analysis 
problems also in volve an investigation of relationships among attributes in 
heterogeneous data sets. Therefore, instead of applying global recommendation 
models across entire spatial data sets, they are varied to better match site-specific 
needs thus improving prediction capabilities [1]. Our recently proposed approach 
towards such a modeling is to define spatial regions having similar characteristics, 
and to build local regression models on them describing the relationship between the 
spatial data characteristics and the target attribute [2]. 

However, spatial data is often inherently distributed at multiple sites and cannot be 
localized on a single machine for a variety of practical reasons including physically 
dispersed data over many different geographic locations, security services and 
competitive reasons. In such situations, the proposed approach of building local 
regressors [2] can not be applied, since the data needed for clustering can not be 



centralized on a single site. Therefore, there is a need to improve this method to learn 
from large spatial databases located at multiple data sites. 

A new viable approach for distributed learning of locally adapted models is explored 
in this paper. Given a number of distributed, spatially dispersed data sets, we first 
define more homogenous spatial regions in each data set using a distributed clustering 
algorithm. The next step is to build local regression models and transfer them among 
the sites. Our experimental results showed that this method is computationally 
effective and f airly accurate when compared to an approach where all data are 
localized at a central machine. 
 
 
2. Methodology 
 
Partitioning spatial data sets into regions having similar attribute values should result 
in regions of similar target value. Therefore, using the relevant features, a spatial 
clustering algorithm is used to partition each spatial data set independently into 
“similar” regions. A clustering algorithm is applied in an unsupervised ma nner 
(ignoring the target attribute value). As a result, a number of partitions (clusters) on 
each spatial data set is obtained. Assuming similar data distributions of the observed 
data sets, this number of clusters on each data set is usually the same (Figure 1). If 
this is not the case, by choosing the appropriate clustering parameter values the 
discovery of an identical number of clusters on each data set can be easily enforced. 

The next step is to match the clusters among the distributed sites, i.e. which cluster 
from one data set is the most similar to which cluster in another spatial data set. This 
is followed by building the local regression models on identified clusters at sites with 
known target attribute values. Finally, learned models are transferred to the remaining 
sites where they are integrated and applied to estimate unknown target values at the 
appropriate clusters. 
 
2.1. Learning at a single site 
 
Although the proposed method can be applied to an arbitrary number of spatial data 
sets, for the sake of simplicity assume first that we predict on the set D2 by using local 
regression models built on the set D1. Each of k clusters C1,i , i = 1,...k, identified at D1 
(k = 5 at Figure 1), is used to construct a corresponding local regression model Mi.  

To apply local models trained on D1 subsets to unseen data set D 2 we construct a 
convex hull for each cluster on the data set D1, and transfer all convex hulls to a site 
containing unseen data set D2 (Figure 1). Using the convex hulls of the clusters from 
D1 (shown with solid lines in Figure 1), we identify the correspondence between the 
clusters from two spatial data sets. This is determined by identifying the best matches 
between the clusters C1,i (from the set D1) and the clusters C2,i (from the set D2). For 
example, the convex hull H1,4 at Figure 1 covers both the clusters C2,5 and C2,4, but it 
covers C2,5 in much larger fraction than it covers C2,4. Therefore, we concluded that 
the cluster C1,4 matches the cluster C2,5, and the local regression model M4 built on the 
cluster C1,4 is applied to the cluster C2,5.  

However, there are also situations where the exact matching can not be determined, 
since there are significant overlapping regions between the clusters from different 



data sets (e.g. the convex hull H1,1 covers both the clusters C2,2 and C2,3 on Figure 1, 
and there is an overlapping region O1). To improve the prediction, the combination of 
the local regression models built on neighboring clusters is used on overlapping 
regions. For example, the prediction for the region O1 at Figure 1 is made using the 
simple averaging of local prediction models learned on the clusters C1,1 and C1,5. 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1. Clusters in the feature space for two spatial data sets: D1 and D2 and convex 
hulls (H1,i) from data set D1 (a) transferred to the data set D2 (b). 
 

However, there are also situations where the exact matching can not be determined, 
since there are significant overlapping regions between the clusters from different 
data sets (e.g. the convex hull H1,1 covers both the clusters C2,2 and C2,3 on Figure 1, 
so there is an overlapping region O1). To improve the prediction, averaging of the 
local regression models built on neighboring clusters is used on overlapping regions. 
For example, the prediction for the region O1 at Figure 1 is made using the simple 
averaging of local prediction models learned on the clusters C1,1 and C1,5. In this way 
we hope to achieve better prediction accuracy than local predictors built on entire 
clusters. 
 
2.2. Learning from multiple data sites 
 
When data from more physically distributed sites are available for modeling, the 
prediction can be further improved by integrating learned models from several data 
sites. Without loss of generality, assume there are 3 dispersed data sites, where the 
prediction is made on the third data set (D3) using the local prediction models from 
the first two data sets D1 and D2. The key idea is the same as in the two data sets 
scenario, except more overlapping is likely to occur in this scenario. To simplify the 
presentation, we will discuss the algorithm only for the matching clusters C1,1, C2,2 
and C3,2 from the data sets D1, D2 and D3 respectively (Figure 2). 

The intersection of H1,1, H2,2 and C3,2 (region C) represents the portion of the cluster 
C3,2, where clusters from all three fields are matching. Therefore, the prediction on 
this region is made by averaging the models built on the clusters C1,1 and C2,2, whose 
contours are represented in Figure 2 by convex hulls H1,1 and H 2,2, respectively. 
Making the predictions on the overlapping portions Oi, i = 1,2,3 is similar to learning 
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at a single site. For example the prediction on the overlapping portion O1 is made by 
averaging of the models learned on the clusters C1,1, C2,2 and C2,3.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Transferring the convex hulls from   Figure 3. The alternative representation 
two sites with spatial data sets to a third site   of the clusters with MBRs 
 
2.3. The comparison to minimal bounding rectangle representation 
 
An alternative method of representing the clusters, popular in database community, is 
to construct a minimal bounding rectangle (MBR) for each cluster. The apparent 
advantages of this approach are limiting the data transfer further, since the MBR can 
be represented by less data points than convex hulls, and reducing the computational 
complexity from Θ(n⋅log n) for computing a convex hull of n points to Θ(n) for 
computing a corresponding MBR. However, this approach results in large 
overlapping of neighboring clusters (see shadowed part on Figure 3). Therefore, using 
a convex hull based algorithm leads to a much better cluster representation for the 
price of slightly increasing the computational time and the data transfer rate. 
 
 
3. Experimental Results 
 
Our experiments were performed using artificial data sets generated using our spatial 
data simulator [4] to mix 5 homogeneous data distributions, each having different 
relevant attributes for generation of the target attribute. Each data set had 6561 
patterns with 5 relevant attributes, where the degree of relevance was different for 
each distribution. Spatial clustering is performed using a density based algorithm 
DBSCAN [5], which was previously used in our centralized spatial regression 
modeling.  

As local regression models, we trained 2 -layered feedforward neural network 
models with 5, 10 and 15 hidden neurons. We used Levenberg-Marquardt [3] learning 
algorithm and repeated experiments starting from 3 random initializations of network 
parameters. For each of these models, the prediction accuracy was measured using the 
coefficient of determination defined as R2 = 1 – MSE/σ2, where σ is a standard 
deviation of the target attribute. R2 value is a measure of the explained variability of 
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the target variable, where 1 corresponds to a perfect prediction, and 0 to a trivial mean 
predictor. 

Method R2 ± std  R2 value ± std 
Global model 0.73±0.01 combine models from 

Matching clusters  0.82±0.02 
 Method     

single site all sites 
 Global models 0.75±0.02 0.77±0.02 
 Matching clusters  0.89±0.02 0.90±0.02 

Matching clusters + 
averaging for 

overlapping regions 
0.87±0.03 

 
 

Matching clusters + averaging for 
overlapping regions  0.90±0.02 0.92±0.03 Centralized clustering 

(upper bound) 0.87±0.02  Centralized clustering (upper bound) 0.90±0.01 0.92±0.02 
Table1. Models built on set D1  Table 2. Models built on sets D1 and D2 applied to D3   
applied on D2 

When constructing regressors using spatial data from a single site and testing on 
spatial data from another site, the prediction accuracies averaged over 9 experiments 
are given in the Table 1. The accuracy of local specific regression models 
significantly outperformed the global model trained on all D1 data. By incorporating 
the model combinations on significant overlapping regions between clusters, the 
prediction capability was improved. This indicated that indeed confidence of the 
prediction in the overlapping parts can be increased by averaging appropriate local 
predictors. In summary, for this data set, the proposed distributed method can 
successfully approach the upper bound of centralized technique, where two spatial 
data sets are merged together at a single site and when the clustering is applied to the 
merged data set.  

The prediction changes depending on the noise level, the number and the type of 
noisy features (features used for clustering and modeling or for modeling only). We 
have experimented with adding different levels of Gaussian noise to clustering and 
modeling features (5%, 10% and 15%) for the total number of noisy features ranging 
from 1 to 5. (Figure 4). 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. The influence of different noise levels on the prediction accuracy. We added 
none, 1, 2 and 3 noisy modeling features to the 1 or 2 noisy clustering features. We 
have experimented with 5%, 10% and 15% of noise level. We used matching clusters. 
 

Figure 4 shows that when a small noise is present in features (5%, 10%), even if 
some of them are clustering features, the method is fairly robust. However, by 
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increasing the noise level (15%), the prediction accuracy starts to decrease 
significantly. 

Finally, when models from 2 distributed data sites are combined to make prediction 
on the third spatial data set, the prediction accuracy was improved more than when 
considering only the models from a single site (Table 2). The influence of the noise is 
similar in this case, and the experimental results are omitted for lack of space. 
 
 
4. Conclusions 
 
Experiments on two and three simulated heterogeneous spatial data sets indicate that 
the proposed method for learning local site -specific models in a distributed 
environment can result in significantly better predictions as compared to using a 
global model built on the entire data set. When comparing the proposed approach to a 
centralized method (all data are available at the single data site), we observe no 
significant difference in the prediction accuracy achieved on the unseen spatial data 
sets. The communication overhead of data exchange among the multiple data sites is 
small, since only the convex hulls and the models built on the clusters are transferred. 
Furthermore, the suggested algorithm is very robust to small amounts of noise in the 
input features.  

Although the performed experiments provide evidence that the proposed approach is 
suitable for distributed learning in spatial databases, further work is needed to 
optimize methods for combining models in larger distributed systems. We are 
currently extending the method to a distributed scenario with different sets of known 
features at various databases. 
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