
 
Abstract--Due to restr ictive data access and a lack of
appropr iate data mining software, spatial information from
physically dispersed sites is often not proper ly exploited in e-
commerce. In the proposed distr ibuted spatial knowledge
discovery system for e-commerce, a secure centralized server
collects propr ietary heterogeneous data from subscribed
businesses as well as relevant data from public and
commercial sources and then integrates knowledge to provide
valuable management information to subscr ibers. Considered
knowledge discovery methods include: (1) providing estimated
values for  unobserved, typically expensive attr ibutes of
interest to a par ticular  business; or  (2) deliver ing learned
models for  generalizing extracted knowledge. An evaluation
on large, highly nonlinear  simulated data suggests that both
approaches can provide profitable, effective and useful
management recommendations in spatial e-commerce
applications.

I. INTRODUCTION

In various e-commerce domains involving spatial data
(real estate, environmental planning, precision agriculture),
participating businesses may increase their economic
returns and improve environmental stewardship using
knowledge extracted from spatial databases. However, in
practice, spatial data is often inherently distributed at
multiple sites. Due to security, competition and a lack of
appropriate knowledge discovery algorithms, spatial
information from such physically dispersed sites is often
not properly exploited.

Many large-scale spatial data analysis problems also
involve an investigation of relationships among attributes in
heterogeneous data sets. Instead of applying global
recommendation models across entire spatial data sets,
designing an ensemble of local models is preferable to
better match site-specific needs thus improving financial
benefits [1].

One of the applications that may prosper from novel
techniques for analysis of spatial data is precision
agriculture aimed at lowering production costs and
protecting the environment by controlling the
environmental characteristics at a sub-field level [2]. This
can be achieved by collecting more and better information
and by extracting useful knowledge from data, so the
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farmers can make the more suitable decisions and thus
successfully accomplish their multifaceted goals. This is
possible by employing technological advances, such as
global positioning systems, combine-mounted yield
monitors, and computer controlled variable rate application
equipment, that provide an opportunity for improving upon
traditional approaches of treating agricultural fields
uniformly. Profitability of precision agriculture, the risk of
equipment incompatibility and its obsolescence are one of
the largest concerns listed by farmers, who are generally
interested in this new approach, especially if the costs are
modest.

A possible approach towards overcoming all these
limitations is developing a distributed spatial knowledge
discovery system for precision agriculture. In the proposed
system a centralized server provides methods for
conversion of protocols and data formats, such that
customers have not to be concerned about data
incompatibility due to obsolete and non-standardized
equipment. The server collects proprietary site-specific
spatial data from subscribed businesses as well as relevant
data from public and commercial sources and integrates
knowledge in order to provide valuable management
information to subscribed customers. In general, there are
two methods for providing useful recommendation actions.
The first method assumes distributed spatial data sets with
different sets of attributes. Here, the estimation for
unobserved (typically expensive) attributes of interest to a
particular business can be made according to similarity
among the observed attributes with data from another
source where the desired attribute is available. The second
method includes constructing models for generalizing
knowledge extracted from spatial data and delivering them
to subscribed customers. However, sometimes the
prediction problem in spatial data sets can be extremely
complex since a large number of attributes may influence
the target attribute and also significant amounts of noise can
exist in data.

Given a number of distributed, both heterogeneous and
homogeneous spatial data sets, a profitability evaluation of
the proposed methods is discussed in Section 2. Extensive
experimental results, reported in Section 3, provide
evidence that both methods can be computationally
efficient and fairly helpful in developing useful
management decisions in precision agriculture and other
spatial e-commerce applications.
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Fig. 1. The scheme of acquiring information to the secure centralized server

II. METHODOLOGY

In the proposed distributed spatial knowledge discovery
system farmers interested in improving their management
are subscribed to the centralized server, and they
communicate to the server through a wireless
communication channel. The system collects two groups of
relevant spatial attributes from subscribed businesses. The
first group consisting of x and y coordinates and the target
attribute is collected by integrating the combine-mounted
yield monitors and GPS units. The second group of relevant
attributes includes typically expensive soil characteristics
which are not necessary available from all farmers. After
performing a local data reduction [3] all attributes are
transferred through a wireless channel to the centralized
server (Fig. 1).

In addition to obtained information from subscribed
customers, the server acquires relevant information from
other sources available on the World Wide Web (WWW).
Publicly available relevant information needed for giving
profitable advises include an average temperature, air
humidity, precipitation etc., as well the forecasts for those
attributes. Commercial information of interest include
topographic attributes e.g. slope, elevation, topographic
indices, etc. and they are collected through miscellaneous
business services, e.g. global positioning systems (GPS),
satellite telemetry systems, remote sensing etc. (Fig. 1). The
server uses commercial services for acquiring relevant
information for all customers, and it shares the costs among
all subscribed businesses, hence allowing customers to gain
interesting information for less money. In addition,
customers are provided with many useful recommendations
resulting from integrating knowledge obtained from other
subscriber’s data.

A. Telecommunication subsystem

A telecommunication sub-system (Fig. 2) consists of the
base station located at the site of the central server and
mobile stations located on each of harvesting machines that
collect crop yield information. Base and mobile stations
communicate through a wireless communication channel. A

mobile station collects crop yield information, requests
communication and after the request is acknowledged,
starts with transmission of a data packet from its
transmitting buffer (

�
 in Fig. 2). Each data packet contains

collected data as well as information for control, error
correction and mobile station identification. In the
meantime, new-collected data are gathered into an
acquisition buffer. The base station receives messages,
identifies the sender, and performs error control. If an error
in data transmission is detected and cannot be corrected, the
base station requests retransmission of an information
packet from the corresponding sender by broadcasting the
request code along with the sender id ( �  in Fig 2.). When a
wireless channel is not available, a mobile station retries
data transmission after a fixed or a random time interval ( �
in Fig. 2). A telecommunication subsystem can utilize
either of accepted wireless data-transmission multiplex
techniques [4]: frequency (FDMA), time-division (TDMA)
or code-division multiple access (CDMA). In this paper, we
suggest an application of Carrier-Sense Multiple
Access/Collision Detection (CSMA/CD) systems that
belong to the class of TDMA [5].

In CSMA/CD systems, there is no centralized
assignment of the channel to a particular user. Instead,
transmitter perceives the channel and starts transmission if
there is no signal detected.  Due to a propagation delay,
another transmitter may broadcast at the same time, when a
collision occurs. Once a collision is detected, transmitter
retransmits according to one of adopted algorithms. In the
simplest case, non-persistent CSMA/CD, which is to be
discussed afterward, retransmission occurs after a random
time interval. In this paper we will discuss following
aspects of an applied telecommunication system:

• the maximal number of mobile stations
• an average number of retransmissions
• the size of an acquisition buffer
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1) The maximal number of mobile stations

Recall that a yield monitor with global positioning
system (GPS) collects one record with the current latitude,
longitude and crop yield information each tc seconds. Let P
is the size of transmitting buffer, of which P’  bytes are
reserved for the transmission of collected records.

The maximal number of mobile station Nmax can be
estimated using the theory of maximal line utilization [5]
as:

(1)

where ρmax is the maximal line utilization,  λ is customer
arrival rate, m is the customer average service time, d is the
average distance between a mobile and a base station, fB is
the system byte transmission rate, b is the number of bytes
per data record and c is the light speed.

The maximal number of mobile stations increases with
the increase of fB, tc and P’  (assuming that the number of
control bytes P-P’  is constant) and decreases with the
increment of b and d. Typically, sampling rate tc depends on
required yield sampling density and thus cannot be
arbitrarily varied. Also, the size P of transmission buffer is
limited due to economic reasons. Transmission rate fB
depends on the bandwidth of a wireless channel. On the
other hand, the number of bytes per data record depends on
the resolution of collected data, while the average distance
d depends on various factors, such as the carrier frequency
of wireless channel and terrain configuration. For typical
values of parameters: d = 20 km, P = 2Kbytes, fB =
8KBytes/s, tc = 1s and b = 10 bytes, we obtain small values
of propagation delay 0.13ms, and a high maximal line
utilization, ρmax = 0.996. If we choose utilization ρ = 0.8 (to
prevent problems that can occur when working near
maximal utilization) and assume P’ /P>0.5 (which is rather

pessimistic), we obtain Nmax=320 that satisfies practical
requirements for the maximal number of users in an
agriculture system

2) The average number of retransmissions

The number J of retransmissions due to collisions
satisfies geometric distribution [5] with the average number
of retransmissions Javg=1/v, where v=Np(1-p)N-1 is the
probability that an attempted transmission occurs without a
collision. Parameter p is the probability that in a given
moment a particular station occupies the channel. Using an
expression for the average time for a successful
transmission in the case of non-persistent CSMA/CD [5]
the probabilities v and p can be shown to satisfy:

                                                                (2)

For adopted values of system parameters, after few
iterations of (2), one can obtain p=0.0025 and v=0.196.
Hence, the average number of retransmission is Javg≈5.

3) The size of an acquisition buffer

While re-transmitting, a mobile station acquires new
data. To accomplish the quality of service, the probability
that data overflows an acquisition buffer must be held
within specified boundaries. Given a small probability α,
we choose the size B of an acquisition buffer such that

                                                                                           (3)

Due to a geometric distribution of J, it can be shown
that the size of an acquisition buffer must satisfy:

                                             (4)
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Therefore, the size of the acquisition buffer must be
larger that the size of the transmission buffer. However, due
to τ<<tc, the effect of this acquisition buffer “enlargement”
is practically negligible. Even with very high quality
requirements (α=0.01%), to satisfy (4) it is enough to set
B=P’+1. Therefore, the acquisition buffer can practically be
realized by an addition of one 1-byte shift register to the
transmission buffer.

4) Security aspects

Businesses in general do not like to share their data due
to competitive and other reasons, and therefore one of the
most important issues is to verify customer’s identity and to
provide a confidential and secure communication with the
central server.

Customer authentication in the proposed system can be
implemented by computing a Message Authentication Code
(MAC) [6] as a function of a secret key and the message.
This MAC is then appended to the message. Both the
customer (sender) and the server (receiver) share the same
secret key, where the server uses this key to decide if the
message is sent by the customer who claims to have sent it
(the only other person with the same secret key).

For communication between customers and the
centralized server, subscribed businesses share the same
wireless communication channel, and there is an exposure
to eavesdropping data transfer on the channel. Therefore,
there is also a need to achieve confidentiality of
communication, i.e. to pass information between two
parties (customer and server) without a third party being
able to understand it. Confidentiality can be addressed by
encrypting all data packages sent by customers and then
decrypting by the server upon receiving the data. For that
matter, the customers and the server may use the same keys
(private key encryption – DES) or different keys (public
key encryption – RSA) [6]. Furthermore, the server should
be trustworthy to all customers, in order to be allowed to
collect their proprietary relevant information.

B. Data Processing Subsystem

In the proposed system the server collects a large
amount of spatial data from different sources. To maintain
and analyze this data there is a need for a server with large
secondary storage devices, huge memory capacity, and a
high processing speed. When data from all sources is

collected at the server site, they are organized into a
database with spatial indexing (e.g. R-tree [7]).

Spatial data mining software [8] interfaces this database
to extract interesting and novel knowledge from data.
Specific objectives include a better understanding of spatial
data, discovering relationships between spatial and non-
spatial data, construction of spatial knowledge-bases, query
optimization and data reorganization in spatial databases.
Knowledge extracted from spatial data can consist of
characteristic and discriminant rules, prominent structures
or clusters, spatial associations and other forms.

Challenges involved in spatial data mining include
multiple layers of data, missing attributes and high noise
due to a low sensibility of instruments and to spatial
interpolation on sparsely collected attributes. To address
some of these problems, data is cleaned by removing
duplicates, removing outliers and by filtering through a
median filter with a specified window size.

C. Knowledge Discovery Methods

The goal of precision agriculture management is to
estimate and perform site-specific crop treatment in order to
maximize profit and minimize environmental damage.
Through a knowledge discovery (KDD) process, learning
algorithms perform data modeling using data sets from
different fields in possibly different regions and years. Each
data set may contain attributes whose values are not
manageable, (e.g. topographic data) as well as these
attributes that are manageable (e.g. nutrient concentrations).

Approaches to the modeling in agriculture KDD process
supported by our proposed system include a direct and
inverse attributes optimization (Fig. 3).

In an inverse modeling, crop yield is modeled based on
both unmanageable and manageable attributes. This yield
prediction helps farmers to distinguish regions in a field
with high and low yield potential and henceforth to adjust
an agronomic practice appropriately. A sensitivity analysis
of the obtained model, along with techniques of
mathematical optimization are used to estimate the optimal
concentration of manageable attributes resulting in site-
specific fertilizer concentration recommendations.

In a direct modeling, the task of a learning algorithm is
to predict one of more manageable attributes using other
available attributes and the target attribute (crop yield). This
approach provides a direct estimation of a manageable

Model

Unmanageable attributes
Crop yield

Manageable attributes

Model

Unmanageable attributes
Manageable
attributes

Crop yield

                 b) Direct modelinga) Inverse modeling

Fig. 3. Basic modeling approaches in agriculture KDD process



attribute concentration and therefore can help in
determining the optimal treatment for an attribute.
Furthermore, it is possible to attempt predicting an attribute
whose values are not measured on a particular farm
providing relatively cheap nutrient information instead of
relaying entirely on an expensive data collection from soil
sampling and a subsequent chemical analyses.

The main requirements imposed to learning algorithms
employed in precision agriculture are to:

- provide predictions with a sufficiently high
generalization,

- allow an user-comprehensible explanation of an
observed phenomena,

-discover and exploit spatially similar regions,
-handle noisy data, including sensor and interpolation

error and an unexplained yield variance.
The potentials and drawbacks of several knowledge

discovery algorithms (ordinary least squares (OLS) linear
regression, neural networks, clustering algorithms) are
investigated in this paper.

Ordinary least squares (OLS) linear regression is a
common method to explain variability of a dependent
variable as a linear combination of observed explanatory
variables. Weighting coefficients for particular influences
are obtained using minimization of a residual error on
training data. Linear regression is computationally feasible
for large data sets and it provides reasonably robust models
of linearly-dependent data. However, when the process to
be modeled is highly non-linear, predictions obtained using
linear regression are less accurate and there is a need for
more sophisticated methods.

Unlike linear regression, neural networks are capable of
modeling non-linear dependence in data. The most widely
used neural networks are feed-forward multi-layered neural
networks [9] (FF-NN). FF-NN consists of several (usually
2) layers of neurons. Each neuron generates its output as a
non-linear function of weighted sum of inputs. Inputs for
the first layer consist of normalized values of explanatory
variables. Outputs of neurons in each layer become inputs
of neurons in the subsequent layer. Finally, the output of the
last layer becomes a prediction of the response variable.
(Fig. 4). On such a way, the output of a FF-NN is a
composition of non-linear functions, hence capable of an
accurate approximation of a wide class of continuous
functions. In practice, neuron non-linearity is usually
introduced by a logarithmic sigmoid (as we proceed in this
paper) or tangent hyperbolic function. To provide a good
generalization, neural networks have to be supplied with an
amount of data typically larger than when linear models are
learned. Otherwise, we can obtain models specialized to the
training data and without capability to explain data
variability on previously unseen datasets. Furthermore, a
neural network represents a “black box”  in which data
relation and properties are hard-coded. Therefore, their
comprehensibility is often questioned among practitioners.
Finally, large amounts of noise and sensor error and the
presence of data heterogeneity can dramatically decrease a
neural network explanatory power making them to perform
in some cases even worse than linear regression models.

In order to improve prediction ability when dealing with
heterogeneous spatial data, an approach employed in the
proposed system is based on identifying spatial regions
having similar characteristics using a clustering algorithm.
A clustering algorithm is used for partitioning multivariate
data into meaningful subgroups (clusters), so that patterns
within a cluster are more similar to each other than are
patterns belonging to different clusters. Local regression
models are built on each of these spatial regions describing
the relationship between the spatial data characteristics and
the target attribute [10]. Therefore, local models are adapted
to specific subsets of the wide range of environments that
can exist in spatial data sets even in a small geographic
area.

III. EXPERIMENTAL RESULTS

To illustrate the abilities of the proposed e-commerce
system, we performed a series of experiments on simulated
data sets. Using simulated data provides a possibility to
vary data properties and to determine their impact on the
knowledge-discovery process [11]. Experiments were
performed on two different collections of simulated data
sets.

The first collection consisted of five simulated data sets
(fields). For simplicity, each field was a rectangular of
800*800m2 with driving attributes influencing the response
and corresponding to the relevant soil and topographic
attributes in two consecutive years. The soil attributes
included levels of Nitrogen, Phosphorus and Potassium,
while topographic attributes were Water content and Slope.
Each attribute had approximately a normal distribution and
statistics (mean value, variance, spatial variability) similar
to that of real-life data. Moreover, temporal variability of
soil attributes was introduced using AR(1) spatio-temporal
model [12]. Piecewise linear models were used to model
yield dependence on spatial attributes and AR(1) models to
simulate the influence of parameters that vary in time (e.g.
weather). Parameters of crop yield models were chosen
according to expert knowledge and fertilization guidelines.

Distribution heterogeneity was simulated through a
second data collection containing 5 simulated fields with
the same attributes that were generated to satisfy the same
spatial and temporal properties as in the first collection.
However, unlike the first data collection where attributes
had approximately normal distributions, in the second
collection topographic variables were simulated to be in

Fig. 4. The architecture of FF-NN model



five clusters, using the technique of feature agglomeration
[12]. Furthermore, instead of using one model for response
generation on the entire field, in the second data collection
a different data generation process was applied per each
cluster.

Knowledge-discovery algorithms were evaluated
through the repetitive process of training on a field from
one year, and testing on the same data set from the
successive simulated year. Prediction accuracy on test data
is measured using the coefficient of determination R2

value1. The reported prediction accuracy of considered
methods was evaluated through 10 trainings of learning
models starting from different random initializations of
modeling parameters.

A. Experiments on homogeneous data

In experiments with homogenous data both linear (OLS)
and non-linear (FF-NN) models were evaluated on the first
data collection. We used inverse modeling for prediction of
yield and manageable attributes (N,P,K).

In the first experiment, in order to examine
generalization capabilities of the proposed methods,
models were trained on each of 5 fields and tested on the
remaining ones. Depending on a training field, prediction
accuracy of linear models expressed through R2 value was
within (0.42, 0.54) range. Since yield was simulated using
highly nonlinear models, an introduction of nonlinearity in
learning algorithms by applying FF-NN resulted in a higher
prediction accuracy (average R2 value was within
(0.66,0.80) range with standard deviation 0.01-0.02).

Although the simple strategy of building models using
data from one field demonstrated promising results, in
practice it is often necessary to perform yield prediction on
an unseen field by building prediction models on a number
of fields. Assuming that the total number of available fields
is n, we investigating:

- Training one prediction model on merged (n-1)
fields and testing on the remaining one;

- Training one model on each of (n-1) fields and
computing prediction accuracy on the test field as an
averaged prediction of all (n-1) local models

When one model was trained on merged data, R2 value
was in range (0.54,0.59) for OLS and (0.84,0.86) for FF-
NN. It is evident that accuracy typically was higher than
when the model was trained on only one field, as in
previous experiments. Averaging predictions led to a small,
but significant increase of FF-NN accuracy (R2 value in
range (0.85,0.88)), whereas the accuracy of OLS was the
same as in previous case. Finally, we performed a weighted
averaging of model predictions. For each point in the test
data, weights of particular models were computed
according to the similarity of the test point to the
distributions of each training set, measured using 4-layer
neural networks for learning data distributions on training
                                                       
1 Coefficient of determination is equal to R2=1-average prediction
error/variance(target variable). R2 is a measure of the explained
variability of the target variable, where larger value is better with
1 corresponding to a perfect prediction and 0 to a trivial mean
prediction.

fields [21]. Due to very similar distributions on all fields,
this approach did not lead to an improvement of prediction
accuracy. Therefore, for yield prediction on homogeneous
fields a simple averaging of prediction models appears to be
the most promising technique. This technique is also
suitable for distributed databases, where the data sets are
physically dispersed, since local models can be trained on
the sites where the data are actually stored.

Next, we performed the prediction of manageable
attributes by averaging of local prediction models.

Fig. 5. Prediction of Nitrogen concentration on
heterogeneous data using direct modeling. a)
True concentration b) prediction using OLS and
c) prediction using FF-NN.
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Depending on used attributes and a testing field (attributes
on fields with smaller temporal variability tend to be more
predictable using time-lagged data), average prediction
accuracy varied in range (0.44,0.74) for FF-NN and
(0.13,0.33) for OLS.

As it can be seen from Fig. 5, using OLS results in
smoother values of predicted attributes. On the other side,
FF-NN result in better prediction (R2=0.71 vs. 0.33 with
OLS). Since predicted values of FF-NN resemble high-
frequency noise on an image, there might be possible to
increase FF-NN prediction accuracy using subsequent 2-D
filtering of predicted spatial values.

B. Experiments on heterogeneous data

To investigate performance of the proposed knowledge
discovery algorithms on heterogeneous data, we repeated
previous experiments on all fields from the second data set.
Due to data heterogeneity, yield prediction results obtained
using global models were significantly worse than when the
same models were applied on homogeneous data. Global
FF-NN models trained on one and tested on the remaining
fields achieved average R2 value in the range (0.22,0.39)
with standard deviation of 0.03-0.04, which was 22-25%
worse than for experiments on homogeneous data in the
previous section.  Due to data heterogeneity, performance
of linear models was close to those of non-linear ones: OLS
achieved R2 in range (0.19,0.35).

An analogue set of experiments to those for
homogeneous data sets, suggests again that prediction
achieved by simple averaging of models trained on distinct
fields is better than the prediction achieved by applying one
model trained on merged data. By averaging, we were able
to increase R2 value to (0.17-0.40) range.

In direct modeling of manageable attributes, FF-NN
models consistently outperformed OLS. However, due to
data heterogeneity, FF-NN was not able to correctly
identify regions of low and high attribute values, predicting
usually values around the mean of true value, Fig. 6. In
contrast, OLS provided a good detection of low- and high-
value regions, which can be useful for fertilizer treatment.

To determine benefits of inverse modeling in
identifying the optimal concentration of fertilization, we
performed a series of experiments on heterogeneous data.
Since the outcome of these experiments depends on current
market price and local regulations for treatment parameters
(e.g. cost of unit of fertilizer, the unit price of crop, the
maximal allowed fertilizer concentration) we were not able
to provide a general assessment of an overall prediction
quality. However, experiments suggested that using inverse
modeling can help in successfully discovering regions
where profit does not increase if fertilization is performed
and in obtaining a fertilization recommendations similar or
close to known optima elsewhere (see an example on Fig.
7).

In order to better generalize, the prediction models are
constructed for each distribution separately. The total
prediction accuracy of the yield was computed as a
weighted average of prediction accuracies for learned
distributions, where the weights were proportional to the
number of instances in each distribution. First, we
performed experiments on 5 data sets when all relevant
attributes were available for modeling. Since the data sets
were simulated through time for two consecutive years, we
also tested generalization capabilities of built prediction
models in time dimension. Global and local regression
models were constructed on each data set from the first year
and tested on the same data set from the second year. The
experimental results for both model types on all 5 spatial
data sets (fields) are shown in Table 1.

Fig. 6. Prediction of Nitrogen
concentration on heterogeneous
data using direct modeling. a) True
concentration b) Prediction using
OLS c) Prediction using FF-NN
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TABLE I
THE ACCURACY OF GLOBAL AND LOCAL REGRESSION

MODELS THROUGH TIME
Field 1 Field 2 Field 3 Field 4 Field 5Regression

Method R2 ± std R2 ± std R2 ± std R2 ± std R2 ± std
Global 0.73 ± 0.10 0.76 ± 0.15 0.78 ± 0.10 0.71 ± 0.13 0.79 ± 0.06
Local 0.89 ± 0.04 0.91 ± 0.05 0.92 ± 0.03 0.87 ± 0.04 0.92 ± 0.03

Although performance of the global models for
heterogeneous spatial data sets declined substantially when
comparing to using global models on homogeneous data,
such an approach can still provide useful capabilities for
prediction of the yield in the next year. However, the
mixture of local regression models significantly
outperformed the global model thus leading to very good
generalization abilities.

To simulate the scenario when customers (farmers) do
not have access to all relevant soil attributes, and when only
topographic attributes are available, we performed
experiments on data with different sets of observed soil
attributes. In these experiments, Field 1 had attributes
corresponding to Nitrogen and Phosphorus, Field 2 had
Nitrogen and Potassium, Field 3 had Nitrogen, Phosphorus
and Potassium, Field 4 had Phosphorus and Potassium, and
Field 5 had only Nitrogen. Generalization capabilities of
yield prediction models through time for this scenario are
summarized in Table 2.

TABLE II
THE ACCURACY OF GLOBAL AND LOCALPREDICTION MODELS

THROUGH TIME WHEN SOME SOIL ATTRIBUTES ARE NOT

AVAILABLE
Field 1 Field 2 Field 3 Field 4 Field 5Regression

Method R2 ± std R2 ± std R2 ± std R2 ± std R2 ± std
Global 0.48 ± 0.10 0.48 ± 0.05 0.75 ± 0.12 0.48 ± 0.07 0.54 ±0.03
Local 0.63 ± 0.03 0.64 ± 0.05 0.91 ± 0.06 0.65 ± 0.04 0.75 ± 0.02

Similar to a situation when all relevant attributes are
available for modeling, the mixture of local regression
models significantly outperformed the method of building
global prediction models. However, it is also evident that
generalization capabilities of both methods considerably
dropped comparing to the previous experiment, where all
attributes were available. Hence, it appears that the soil
attributes provide a lot of information needed for fairly
accurate generalization.

In order to test generalization capabilities of prediction
models built on fields with incomplete set of soil attributes,
we tested models constructed on those fields on Field 3,
where all soil and topographic attributes were available. To
further improve achieved prediction accuracy of the yield,
we also used simple averaging of models built on different
fields. The experimental results for both scenarios, when all
relevant attributes were available and when only some of
them are obtained, are shown in Table 3.

TABLE III
THE PREDICTION ACCURACY ON FIELD 3 WHEN PREDICTING

FROM THE REMAINING FIELDS WITH MISSING ATTRIBUTES
Not all attributes available All attributes availableUsed fields in

Predicting F3 Global Local Global Local
F1 0.63 ± 0.01 0.70± 0.01 0.75 ± 0.04 0.89 ± 0.01
F2 0.70 ± 0.02 0.75 0.01 0.80 ± 0.03 0.90 ± 0.01
F4 0.55 ± 0.03 0.64 ± 0.01 0.77 ± 0.01 0.90 ± 0.01
F5 < 0 < 0 < 0 < 0

F1, F2 0.76 ± 0.01 0.82 ± 0.01 0.84 ± 0.04 0.90 ± 0.01
F1, F2, F4 0.77 ± 0.02 0.84 ± 0.02 0.85 ± 0.03 0.91 ± 0.01

F1, F2, F4, F5 0.66 ± 0.11 0.72 ± 0.07 0.78 ± 0.04 0.81 ± 0.08

Analyzing the results from Table 3, it is evident that
averaging of models constructed on different fields
outperformed generalization from single field models. In
addition, the mixture of local regression models was able to
improve the prediction accuracy over the global models.

IV. CONCLUSIONS

A new distributed spatial knowledge discovery system
for e-commerce applications is proposed. In the proposed
system, the centralized server is collecting proprietary site-
specific spatial data and then integrating knowledge in
order to provide valuable management information to
subscribed customers. An overview of the proposed
methodology, with emphasize on telecommunication and
security aspects, is provided along with a brief description
of the proposed knowledge-discovery techniques. The new
approach is successfully applied to several simulated
homogeneous and heterogeneous spatial data sets.

Methods for estimating values of unobserved attributes
of interest to a particular business as well as the target (crop
yield prediction and fertilizer recommendation in our case)
were examined. It is shown that a negative influence of
distribution heterogeneity on prediction accuracy can be
substantially compensated using clustering-based learning
algorithms. The extensive experimental results indicate that
the proposed system can be computationally efficient and

Figure 7: Nitrogen fertilization on heterogeneous
data. a) the optimal treatment; b) a recommendation
obtained using inverse modeling
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fairly helpful in providing useful recommendations for
spatial e-comerce applications.

Although the performed experiments provide evidence
that the proposed approaches are suitable for distributed
learning in spatial databases, further work is needed to
optimize methods for combining models in larger
distributed systems.
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