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Abstract. Combining multiple global models (e.g. back -propagation based neural
networks) is an effective technique for improving classification accurailyis technique
reduces variance by manipulating the distribution of the training data. In many large scale
data analysis problems involving heterogeneous databases with attribute instability,
standard boosting methods can be improved by coalescing multi@ classifiers. Each
classifier uses different germane attribute information that is identified through the
attribute selection process. We propose a new technique of boosting localized classifiers
when heterogeneous data sets contain more homogeneousidatiautions. Instead of a
single global classifier for each boosting round, we have localized classifiers responsible
for each homogeneous region. The number of regions is identified through a clustering
algorithm performed at each boosting iteration. Aew boosting method applied to real

life spatial data and synthetic spatial data shows improvements in prediction accuracy
when unstable driving attributes and heterogeneity are present in the data. In addition,
boosting localized experts significantly reduces the number of iterations needed for
achieving the maximal prediction accuracy.

1 Introduction

Many large-scale data analysis problems involve an investigation of relationships
between attributes in heterogeneous databases, where different predictdelmcan be
responsible for different regions. In addition, large data sets very often exhibit attribute
instability, such that the set of relevant attributes is not the same through the entire data
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space. This is especially true in spatial databases, whedifferent spatial regions may
have completely different characteristics [1].

One of the most effective recent techniques for improving prediction accuracy in
machine learning theory and pattern classification is combining multiple classifiers.
There ae many general combining algorithms such as bagging [2], boosting [3], or Error
Correcting Output Codes (ECOC) [4] that significantly improve global classifiers like
decision trees, rule learners, and neural networks. These algorithms may manipulate the
training patterns that individual classifiers use (bagging, boosting) or the class labels
(ECOC). In most of the algorithms the weights of different classifiers are the same for all
the patterns within the data set to which they are applied.

In order to improve the global accuracy of the whole, an ensemble of classifiers must
be both accurate and diverse. In heterogeneous databasesusually exist several more
homogeneous regiond.o improve the accuracy of the ensemble of classifiers fdéhese
databasesnstead of applying a global classification model across entire data sets, the
models are varied to better match site  -specific needsthus improving prediction
capabilities [5]. Therefore, in such an approach there is a local classification expert
responible for each region that strongly dominates the others from the pool of local
experts.

Diversity of the ensemble is also required to ensure that all the classifiers do not make
the same errors. In order to increase the diversity of combined classifiers fr spatial
heterogeneous databases with attribute instability, one cannot assume that the same set of
attributes is appropriate for each single classifier. For each training sample, drawn in a
bagging or boosting iteration, a different set of attributes igelevant and therefore the
appropriate attribute set should be used by local classification experts built at each
iteration.

In this paper, we extend the framework for the construction of composite classifiers
through the AdaBoost algorithm [3]. Work bgeveral authors [6, 7, 8, 9] has provided a
rather general approach to boosting, through an incremental greedy minimization of some
empirical cost function. In our approach, in each boosting round we try to maximize the
local information for a drawn sampl e by allowing the weights of the different weak
classifiers to depend on the input. Rather than having constant weights attached to each
of the classifiers (as in standard approaches), we allow weights to be functions over the
input domain. In order to degrmine these weights, at each boosting iteration we identify
local regions having similar characteristics using a clustering algorithm and then build
local classification experts on each of these regions describing the relationdigpveen
the data charadristics and the target class [1]. Therefore, instead of a single classifier
built on a sample drawn in each boosting iteration, there are several local classification
experts responsible for each of the regions identified through the clustering procass.
data points belonging to the same region and hence to the same classification expert will
have the same weights when all classification experts are combined. In addition, the local
information is also emphasized with changing attribute representationatigh attribute
selection methods at each boosting iteration [10].

In the next section, we discuss current ensemble approaches and work related to
localized experts and changing attribute representations of combined classifiers. In
Section 3 we describe t he proposed method and investigate its advantages and
limitations. In Section 4, we evaluate the proposed method onliéahnd synthetic data
sets by comparing it with standard boosting and other methods for dealing with
heterogeneous databases. Finalgection 5 concludes the paper and suggests further
directions in current research.



2 Related Work

Recently, researchers have begun experimenting with general algorithms for improving
classification accuracy by combining multiple versions of a single difigr, also known

as a multiple model or an ensemble approach [2, 3, 4]. Unfortunately, it seems that none
of these combining methods can be very successful in improving the prediction accuracy
for heterogeneous databases [11]. Several recent approachasdlyzing heterogeneous
data are based on changing attribute representation for each of the coalesced classifiers.

FeatureBoost [12] is a recently proposed variant of boosting where attributes are
boosted rather than examples. While standard boostidgaithms alter the distribution
by emphasizing particular training examples, FeatureBoost alters the distribution by
emphasizing particular attributes. The goal of FeatureBoost is to search for alternate
hypotheses amongst the attributes. A distributiorver the attributes is updated at each
boosting iteration by conducting a sensitivity analysis on the attributes used by the model
learned in the current iteration. The distribution is used to increase the emphasis on
unused attributes in the next iterationan attempt to produce different stilypotheses.

Only a few months earlier, a considerably different algorithm exploring a similar idea
for an adaptive attribute boosting technique was published [11]. The technique coalesces
multiple local classifierseach using different relevant attribute information. The related
attribute representation is changed through attribute selection, attribute extraction and
attribute weighting processes performed at each boosting round. In addition, a
modification of the boosting method is developed for heterogeneous spatial databases
with unstable driving attributes by drawing spatial blocks of data at each boosting round.
This method was mainly motivated by the fact that standard combining methods do not
improve local classifiers (e.g. k-nearest neighborgjue to their low sensitivity to data
perturbationalthough the method was also used with global classifiers like neural
networks.

In addition to the previous method, there were a few more experiments in selecting
different feature subsets as an attempt to force the neural network classifiers to make
different and hopefully uncorrelated errors. Although there is no guarantee that using
different attribute sets will decorrelate error, Tumer and Ghosh [13] found that with
neural networks, selectively removing attributes could decorrelate errors. Unfortunately,
the error rates in the individual classifiers increased, and as a result there was little or no
improvement in the ensemble. Cherkauer [14] was more successful, and vgaable to
combine neural networks that used different hand selected attributes to achieve human
expert level performance in identifying volcanoes from images.

Opitz [15] has investigated the notion of an ensemble feature selection with the goal
of finding a set of attribute subsets that will promote disagreement among the component
members of the ensemble. A genetic algorithm approach was used for searching an
appropriate set of attribute subsets for ensembles. First, an initial population of classifiers
is created, where each classifier is generated by randomly selecting a different subset of
attributes. Then, the new candidate classifiers are continually produced, by using the
genetic operators of crossover and mutation on the attribute subsets. The algoithm
defines the overall fitness of an individual to be a combination of accuracy and diversity.

Unlike the approaches that change attribute representation, there is another group of
methods for analyzing heterogeneous databases based on building different local
classification experts, each responsible for a particular data regi@or recent approach
[5] belongs to this category and is designed for analysis of spatially heterogeneous
databases. It first clusters the data in the space of observed atfijlwith an objective of



identifying similar spatial regions. This is followed by local prediction aimed at learning
relationships between driving attributes and the target attribute inside each cluster. The
method was also extended for learning when thta dae distributed at multiple sites.

A similar method is based on a combination of classifier selection and fusion by using
statistical inference to switch between these two [16]. Selection is applied in regions of
the attribute space where one classifer strongly dominates the others from the pool
(clusteringandselection step), and fusion is applied in the remaining regions. Decision
templates (DT) are adopted for classifier fusion, where all classifiers are trained over the
entire attribute space arndereby considered as competitive rather than complementary.

Some researchers also have tried to combine boosting techniques with building single
classifiers in order to improve prediction in heterogeneous databases. One such approach
is based on a superised learning procedure, where outputs of predictors are trained on
different distributions followed by a dynamic classifier combination [17]. This algorithm
applies principles of both boosting and the mixture of experts [18] and shows high
performance ortlassification or regression problems. The proposed algorithm may be
considered either as a boost wise initialized Mixture of Experts, or as a variant of
Boosting which uses a dynamic model for combining the output of the classifiers. The
main characterisc of boosting included in this scheme is the ability to initialize a split of
the training set to different experts. This split is based on a difficulty criterion. Unlike
standard boosting where this difference depends on the errors of the first classifthe
disagreement between the first two classifiers, this method uses a confidence measure as
the difficulty criterion. The algorithm is designed for an arbitrary number of experts as
the ensemble is constructed gradually by adding a new expert grattidoning the data.

The first expert is trained on the entire training set. The patterns on which the current
experts are not confident are assigned to the initial training set of a new expert and used
for its learning. This procedure is repeated untilo more experts are required. When all
experts are constructed, the entire training data set is repartitioned according to the
current confidence level of each expert on each pattern.

3 Boosting Localized Experts

It is known that boosting is an effective €chnique for improving prediction accuracy in

many real life data sets [2, 7, 19]. However, our previous research indicated that in
heterogeneous databases, where several more homogeneous regions exist, boosting does
not enhance the prediction capabilitieas well as for homogeneous databases [11]. In

such cases it is more useful to have several local experts responsible for each region of
the data set. A possible way to approach this problem is to cluster the data first and then

to assign a single classiir to each discovered cluster. In this paper we try to combine

this approach with the standard boosting technique in order to further improve
generalization capabilities of local classification models.

We follow the generalized analysis of AdaBoost.M2 algorithm [3]. Our boosting
extension, described in Figure 1, models a scenario in which the relative significance of
each expert advisor is a function of the attributes from the specific input patterns. This
extension seems to better model real life situat®where particularly complex tasks are
split among experts, each with expertise in a small spatial region.

In this work as in many boosting algorithms, the final composite hypothesis is
constructed as a weighted combination of base classifiers. The coeff icients of the
combination in the standard boosting, however, do not depend on the position of the point
xwhose label is of interest. Since the boosting procedure filters data successively through



re-weighting, it is possible that some of the classifiers hy(x) were not exposed during
training to any data in the vicinity of the point x. Moreover, greater flexibility can be
achieved by having each classifier operate only in a localized region. Therefore, it would
seem more suitable to weight each classifier h;at point x by a local weight  £(x)
depending on the point

o Given: SetS ={(X1, Y1), .- » (Xm, Ym)} X; OX, with labels y OY ={1, ..., k}
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Figure 1. The scheme for boosting localized classifiers with performing attribute
selection (step 1) in each boosting iteration

The algorithm proceeds in a series of T rounds. In each round, the entire weighted
training set is given to the set of local weak learners to compute a unique weak
hypothesish;. The distribution is updated to give wrong classifications higher weights
than correct classifications.



Since at each boosting iteratidrwe have different training samples drawn according
to the distribution Dy, at the beginning of the “for loop” in Figure 1 we include step 1,
wherein we choose different attribute subsets for each sample. Different attribute
representations are realizeurbugh a feature selection process in the boosting iterations.
Regressiofbased attribute selection was carried out through performance feedback [10]
forward selection and backward elimination searchbased on linear regression mean
square error (MSE) mininzation. Ther most relevant attributes are chosen according to
the selection criterion at each round of boosting, and are used by the clustering algorithm
and classification modelsThus, for each round of boosting we have different relevant
attribute sulsets representing the drawn sampla,an attempt to force the single global
classifiers to make different and hopefully uncorrelated errors.

In addition to attribute instability in a sample drawn from a heterogeneous database
there are usually several mo re homogeneous regions. Therefore, at each boosting
iteration we perform clustering in order to find those homogeneous regions. As a result of
the clustering, we obtain several distributiori; (j = 1,..., ¢), wherec is the number of
discovered clusters.df each ofc clusters discovered in the data sample, we first identify
relevant attributes using supervised feature selection procedure. Then, we train a weak
learner using the corresponding data distribution and compute a weak hypothedis.
Furthermorefor every cluster from the data sample, we identify its convex hull in the
attribute space used for clustering, and map these convex hulls to the entire training set in
order to find the corresponding clusters where the local classifiers will be ap(figdre
2) [20]. All data points inside the convex hul;; belong to thej-th cluster discovered at
iterationt. Data points outside the convex hulls are attached to the cluster containing the
closest data pattern. Therefore, instead of a single globklgsifier constructed in every
iteration by the standard boosting approach, there arelassifiers and each of them is
applied to the corresponding mapped cluster.
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Figure 2. Mapping convex hulls Hy; of clusters G, j = 1, ...,c, (discoveredn the data
sample), to the entire training set in order to find corresponding clusters. For example,
all data points inside the contours of the convex hull K, (corresponding to the cluster
C, 1 discovered on the data sample) belong to the new cluster T, ; identified on the
entire training set.

In standard boosting all data points have the same pseuldss €, and the parametei;
when combining the classifiers from the boosting iterations. In our approach data points
from different clusters have differeipseudeloss values and different parameter values
B:.. For each clustey, (j =1,...,c) from iteration t, defined with the convex hulHy;, there



is a pseudeloss €;; and the corresponding parametg;. Each pseuddoss valueg;; is
computed independdy for each cluster where a particular classifier is responsible. The
value of the parameter (3 is also computed separately for each cluster using the

corresponding pseudoss value€;. Before updating the distributiorD;, the parameters
B.; for c clusters are merged into a unique veddpsuch that thé-th pattern from the data
set that belongs to the-th cluster specified by the convex hullH;;, corresponds to the
parametef; at the i-th position in the vector .. Analogously, the hypothesesy; are
merged into a single hypothesis h. Since we merged f;;and h;into Band h
respectively, the updating of the distribution D, can be performed as in the standard
boosting algorithm. However, in making the final hypotheisisthe local classiers from
each iteration are first applied to the corresponding clusters and integrated into a
composite classifier responsible for that iteration. These composite classifiers are then
combined using the standard AdaBoost.M2 algorithm.

The clustering technigue is an important part of the proposed algorithm. Using
attributes derived from feature selection at step 0 of each boosting iteration, two
clustering algorithms were employed to partition the spatial data set into “similar”
regions. The first one cded DBSCAN relies on a density-based notion of clusters and
was designed to discover clusters of an arbitrary shape efficiently [21]. The key idea of
densitybased clustering is that for each point of a cluster its Epsneighborhood for a
given Eps> 0 has to contain at least a minimum number of points (MinPts), (i.e. the
density in the Epsneighborhood of points has to exceed some threshold). Furthermore,
the typical density of points inside clusters is considerably higher than outside of clusters.
DBSCAN uses a simple but effective heuristic for determining the parameté&psand
MinPtsfor the smallest cluster in the database.

The second clustering algorithm used in our proposed method is the stadrdsrdns
algorithm [22]. Here, data set S ={(%, Y1), --- » X m: Ym)}, X OX, is partitioned into k

clusters by finding points {m;} 'szl such that

1 .
= (mind® (x, 4))
n j
x0OX
is minimized, whered®(x, my) usually denotes the Euclidean distance betweeand m,

although other distancmeasures can be used. The pointg/; } Iszlare known ascluster

centroids

When performing clustering during boosting iterations, it is possible that some of the
discovered clusters are relatively small and therefore there is an insufficieotnber of
data points needed for training a local classifier. Several techniques for handling these
scenarios were considered.

The first technique denoted agmplehalts the boosting process when a cluster with a
small number of data points is detectedThis number of data patterns is defined as a
function of the number of patterns in the entire training set. When the boosting procedure
is terminated, only the classifiers from the previous iterations are combined in order to
create the final hypothesis,.

A more sophisticated technique for addressing small clusters does not stop the
boosting process, but instead of training the local classifier on the detected cluster with
insufficient amount of the data, it employs the local classifiers constructed previous
iterations. When a cluster with an insufficient number of data points is identified, its
corresponding cluster from previous iterations is detected using the convex hull matching



(Figure 2) and the model constructed on the corresponding clusters applied on the
cluster discovered in the current iteration. The most effective method for determining the
model that should be applied is to take the classification model constructed in the
iteration where thdocal prediction accuracy for the correspoimgj cluster was maximal.
This technique represented agest_localwill be compared to thesimplemethod as well

as to two similar techniques: previousand best_global The previousmethod always
takes the classifiers constructed on the corresponding aldisien the previousiteration,
while the best_globatechnique uses the classification models constructed on the
corresponding cluster from the iteration where thggobal prediction accuracy, achieved

by applying final hypothesidy,, was maximal. In all these sophisticated techniques, the
boosting procedure ceases when the prespecified number of iterations is reached or there
is a significant drop in the prediction accuracy for the training set.

We used multilayer (2-layered) feedforward neural network chssification models
with the number of hidden neurons equal to the number of input attributes. We also
experimented with different numbers of hidden neurons. The neural network
classification models had the number of output nodes equal to the numbeseéslé3 in
our experiments), where we predicted the class given by the output with largest response.
We used two learning algorithms: resilient propagation [23] and Levenbekdarquardt
[24].

To further experiment with attribute stability properties, misce llaneous attribute
selection algorithms [10] were applied to the entire training set and the most stable
attributes were selected. The standard boosting method was applied to the global and
local classifiers using the identified fixed set of attributes at each boosting iteration.
When boosting is applied with attribute selection at each boosting round, the attribute
occurrence frequency is monitored in order to identify the most stable selected attributes.
The hypothesis considered in the next section wahdt when attribute subsets selected
through boosting iterations become stable, it is appropriate to stop the boosting process.

4 Experimental Results

Our experiments were first performed on two synthetic data sets corresponding to 5
homogeneous data didititions made using our spatial data simulator [25]. The attributes
f4 and f5 were simulated to form five clusters in their attribute space (f4, f5) using the
technique of feature agglomeration [25]. Furthermore, instead of using one model for
generating tle target attribute on the entire spatial data set, a different data generation
process using different relevant attributes was applied per each cluster, such that the
distributions of generated data resembled the distributions of real life data. The defgree
relevance was also different for each distribution. Both data sets had 6561 patterns with 5
relevant (f1, ..., f5) and 5 irrelevant attributes (f6, ..., f10), where one was used for
training, and another one for out of sample testing. The histogramalld attributes for

all 5 distributions are shown in Figure 3.

We also performed experiments using spatial data from a 220 ha field located near
Pullman, WA. All attributes were interpolated to a 10x10 m grid resulting in 24,598
patterns. The Pullman da set contained x and y coordinates (attribute2)1 19 soil and
topographic attributes (attributes-31) and the corresponding crop yield. The field was
spatially partitioned into training and test set (left half of the field was the training set,
while right half served as the test set). The attributes used were: baresoil, soil type,
elevation, primal sketch, solar radiation, compound topographic index, aspectveest,
aspect northsouth, distance to long flow, flow direction, flow width, slope, plan



curvature, profile curvature, tangent curvature, average upslope slope, average upslope
plan curvature, average upslope profile curvature, and average upslope tangent curvature.

Attribute f1 Attribute f2 Attribute f3 Attribute f4 Attribute f5
40 400 400 400 400
Cluster 1 200 I 200 I 200 200 I
0 0 0 0 0
0 100 200 0 50 100 0 1000 2000 0 100 200 300 O 25 5
100 100 100 100 100

Cluster2 50 ' 50 | 50 50 i
0 0 ] 0

0
100 200 O 50 100 O 1000 2000 O 100 200 300 O 25 5

200

.
}u

=]

50

-
_

0 )
300 300 300 300 300
200 200 200 200 200
Cluster 3
100 100 100 100 100
0 0 0 0 0
0 100 200 0 50 100 O 1000 2000 O 100 200 300 O 25 50
150 150 150 150 150
100 100 100 100 100
Cluster4 g ‘ 50 i 50 I 50 50 ‘
0 0 0 0 0
0 100 200 0 50 100 0 1000 2000 0 100 200 309 0 25 50

-
-

150 150 ] 5 150
100 100 100 100 100
Cluster5 5o i 50 50 50 50 '
0 0 0 )

0 0 50 100 O 1000 2000 O 100 200 300 O 25 50

o
=
o
=]
N
o
o

Figure 3. Histograms of all 5 relevant attributes for &b clusters of a synthetic data set

For the synthetic data set we performed standard boosting, adaptive attribute boosting
(boosting with attribute selection at each iteration) and all proposed variants of boosting
localized experts (boosting with clusering). For each of these methods, the reported
classification accuracies for 3 equal size classes were obtained by averaging over 10 trials
of all proposed boosting algorithms applied to neural network classifiefSigure 4 and

Table 1). For all reported results, the best prediction accuracies were achieved when
usingthe LevenberéMarquardt algorithm for training neural networks.
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Table 1. Final classification accuracies for the 3 -class problems. Different boosting
algorithms are applied on out of sample synthetic data with 5 relevaahd 5 irrelevant
attributes and 5 clusters.

Method Classification accuracy (%

Global Approach 61.0+2.2

DBSCAN Clustering with specialized classifiefs 71.3+£0.9

Standard Boosting 69.8+1.1

Adaptive Attribute Boosting 69.4+1.1

Boosting k-means clussti?:;i ;ggi 1;
Localized e

Experts with | DBSCAN previous 744+ 15

Clustering C|USter|ng best_glObal 749+ 1.4

best local 76.6+1.2

Analyzing the data in Table 1 and the charts in Figure 4, the method of adaptivbutri
boosting was not significantly better than the standard boosting model, but the all variants
of boostinglocalized expertgonsiderably outperformed both the standard boosting and
the adaptive attribute boosting.

Observe that the adaptive attribute boosting results showed no improvements in
prediction accuracy. This was due to properties of the synthetic data set, where each
spatial region had not only different relevant attributes related to yield class but also a
different number of relevant attrides. In such a scenario with uncertainty regarding the
number of relevant attributes for each region, we needed to select at least the 4 or 5 most
important attributes at each boosting round, since selecting 3 most relevant attributes may
be insufficient br successful learning. However, the total number of relevant attributes in
the data set was 5 as well, and therefore it was meaningless to select 5 attributes during
the boosting rounds since we cannot achieve any attribute instability. Therefore, we were
selecting the 4 most relevant attributes for adaptive attribute boosting, knowing that for
some drawn samples we would lose beneficial information. In the standard boosting
method we used all 5 relevant attributes from the data set. Nevertheless, we obhaid
similar classification accuracies for both the adaptive attribute boosting and the standard
boosting method, but adaptive attribute boosting reached the “bounded” final prediction
accuracy in fewer boosting iterations. This property could be usefuldducing the time
needed for the latest boosting rounds. Instead of gaanhing the boosted classifiers [26]
we can try to set the appropriate number of boosting iterations at the beginning of the
procedure.

All methods of boosting localized experts resulted in improved generalization of
approximately 10 % as compared to standard and adaptive attribute booKtimgs also
evident that the boosting of localized experts required fewer iterations in order to reach
the maximal prediction accuracy. After the prediction accuracy was maximized, the
overall prediction accuracy on the training set, as well as the total classification accuracy
on the test set, started to decline. This phenomenon was probably due to the fact that in
the later iterations only data points that were difficult for learning were drawn and
therefore the prediction accuracy of the local models built in those iterations began to
deteriorate. As a consequence, the total prediction accuracy decreased too.

The data distribution of discoveredusters was monitored at each boosting iteration
by performing DBSCAN clustering algorithm (Figure 5). Unlike the previous adaptive
attribute boosting method when around 30 boosting iterations were needed to achieve



good generalization results, here tygailly only a few iterations (5— 10) were sufficient

for reaching the maximum prediction accuracy on the training set. As could be observed
in Figure 5, data samples drawn in initial iterations (iteration 1) clearly included data
points from all five clust ers while samples drawn in later iterations (iterations 4, 5)
contained very small number of data points from the clusters where the prediction
accuracy was good. Therefore, as one of the criteria for stopping boosting early, we
accepted the following rule the boosting procedure stops when the size of any of the
discovered clusters is less than some predefined number (usually less than 50).
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Figure 5. Changing the distributions of drawn samples during boosting on the neural
network classfier. Samples from initial iterations contain points from all clusters,
while samples from later iterations contaia small number of points from the central
clusters where the accuracy was good.

An additional criterion for stopping the boosting algorithm early is to observe the
classification accuracy on the entire training set and to stop the procedure when it starts
to decline. Figure 4 shows the iterations when we stop the boosting procedure. This is the
moment when the classification accuracy on ttaning set starts to decline. Although in
practice the prediction accuracy on the test set does not necessarily start to drop in the
same iteration, this difference is usually up to two boosting iterations and does not
significantly affect the total genalizability of the proposed method.

However, when using the k -means clustering algorithm during the boosting
procedure, we did not notice the phenomenon of reducing the number of data points in
discovered clusters. Therefore, for therkeans variant of bosting localized experts we
did not perform the modifications of the proposed algorithm. In addition, it was evident
that boosting localized experts when using kmeans clustering algorithm was not as
successful as boosting localized experts with the DBSCANalgorithm, due to better
quality clusters identified by DBSCAN which was designed to discover spatial clusters of
arbitrary shape.

Nevertheless, when using the DBSCAN algorithm at each boosting round, the
best_locatechnique provided the best predictioraccuracy (Table 1), while the other
methods were not significantly better than the boosting localized experts withnkeans



clustering. Thesimpletechnique failed to achieve improved prediction results, since it

did not reach enough boosting iterations evelop the most appropriate classifiers for
each cluster that need to be combined. On the other hand, thepreviousmethod had
boosting cycle that was long enough, but did not combine appropriate models. Therefore,
both methods coalesced the classifidaat tcould not generalize well or they were built on
clusters without enough training data. Finally, thieest globaknd best_localcombined

the most accurate models for each cluster taken in some of the earlier iterations, and
hence achieved the best gea&rability. However, the prediction accuracy of all models
deteriorated in later boosting iterations, due to drawing only data points that were

difficult to learn.

Experiments with all proposed boosting modifications were repeated for training and
test sts of real life spatial data. The goal was to predict 3 equal size classes of wheat
yield as a function of soil and topographic attributes. For real life data (Pullman data set)
17 miscellaneous attribute selection methods were used to identify the 4 madevant
attributes on the training data set (Table 2) and the histograms for the most stable
attributes (4, 7, 9, 20) are shown in Figure 6. These attributes were used for the global
prediction method when a single model is learned on the entire trainseg and applied
on the test data set, for the standard boosting method, and for variants of the boosting
localized experts without performing attribute selection at each boosting round.

Table 2. Attribute selection methods used to identify 4 most stable a ttributes on
training data set

Attribute Selection Methods Selected attributes

Branch & Probabilistic Mahalanobis distance 7,9,11, 20
Bound distance _|.Bhatacharya distance 4,7,10,14
methods PatrickFisher distance 13,17, 20, 21

Minkowski (order = 1) 7,9,10,11
Inter-class | Minkowski (order = 3) 3,4,5,7
Forward | distance | Euclidean distance 3,4,57
Chebychev distance 3,4,5,7
Seledon _ | Bhatacharya distance 3,4,8,9
Probabilistic "\ jahalanobis distance 7,9, 11, 20
methods |  distance Divergence distance metric 3,4,8,9
PatrickFisher distance 13,16, 20, 21
Minimal Error Probability, kNN with resubstitution 4,7,11,19
Linear regression performance feedback 5,9,7,18
Backwardl Probailistic Mahalanobis d_istance 7,9,11, 20
Eliminationl  distance Bhatacharya distance 4,7,9,14
methods PatrickFisher distance 13,17, 20,21
Linear regression performance feedback 7,9,11,20

When performing attribute selection during boosting the selected at tributes were
monitored and their frequency was comput&tle frequency of selected attributes during
the boosting rounds, when the adaptive attribute boosting without performing clustering
at each iteration was applied to neural network classification modls, is presented in
Figure 7.
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Figure 6. Histograms of 4 most relevant Figure 7. Attribute stability during boosting

attributes of real life data set on the LevenbergMarquardt algorithm on
real life data (* denotes that the attribute is
selected in boosting iteratiory denotes that
the attribute is not selected)

The results in Figure 8 were obtained by the backward elimination attribute selection
technique using the LevenbergMarquardt algorithmfor optimizing neural network
parametersiWhen using the method of boosting localized experts, the best experimental
results were achieved again with tHgest_localtechnique and thd_evenbergMarquardt
algorithmand only these results are reported in Figure 8 and Table 3. The same stopping
criteria for the boosting procedure, as for the synthetic data sets, were used. In these
experiments adaptive attribute boosting outperformed the standard boosting model, while
all 4 variants of boosting localized experts with clustering through iterations werere
successful than the standard boosting, the adaptive attribute boosting and the method of
building specialized classifiers on clusters identified using DBSCAN algorithm (Table 3).

Table 3. Final classification test accuracies for the 3  -class problems.Different
boosting algorithms are applied to the out of sample real life data set with 19 soil and
topographic attributes.

Method Classification accuracy(%)
Global Approach 424+ 2.2
DBSCAN Clustering with specialized classifiers 49.7+0.9
StandardBoosting 455+1.1
Adaptive Attribute Boosting 48.8+1.1
Boosting k-means | without attribute selection 50.3+1.2
Localized | clustering| w|TH attribute selection 50.6+ 1.1
Experts with DBSCAN | without attribute selection 52.2+1.3
Clustering | clustering| WITH attribute selection 52.4+ 1.4
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It appeared that for pure adaptive attribute boosting with only attribute selectio n,
monitoring selected attributes could be a good criterion for stopping boosting early, since
after the selected attribute subsets had became stable, no significant improvements in
prediction accuracy were noticed. The results indicate that 30 boosting rainds were
usually sufficient to maximize prediction accuracy. During the boosting iterations we
were selecting the 4 and 5 most important attributes, and the number of hidden neurons in
a 2-layer feedforward neural network was equal to the number of inpuattributes. We
noticed that further increasing the number of hidden neurons did not improve prediction
accuracy probably due to overfitting.

The boosting localized experts on a real life heterogeneous data set is not as superior
to the adaptive attribute boosting as for the synthetic data set, since higher attribute
instability was apparently beneficial for the adaptive attribute boosting. Similar to
experiments on synthetic data, thest_locakechnique of boosting localized experts was
the most succeasffamong all the proposed methods.

5 Conclusion

Results from two spatial data sets indicate that the proposed algorithm for combining
multiple classifiers can result in significantly better predictions over existing classifier
ensembles, especially for hetogeneous data sets with attribute instabilities. First, this
study provides evidence that by manipulating the attribute representation used by
individual classifiers at each boosting round, classifiers could be more decorrelated thus
leading to higher pediction accuracy. The attribute stability test also served as a good
indicator for stopping further boosting iterations properly. Second, boosting localized
experts with applied clustering at each boosting round further significantly improved the
achievedorediction accuracy on highly heterogeneous databases. Boosting localized
experts also significantly reduces the number of boosting iterations needed for achieving
maximal prediction accuracy.

Although boosting localized experts required order of magtetless boosting rounds
to achieve the maximum prediction accuracy than the standard and adaptive attribute
boosting, the number of constructed prediction models increases drastically through the
iterations. This number depends on the number of discovehesters and on the number



of boosting rounds needed for making the final classifier. In our case, this drawback was
alleviated by the fact that we were experimenting with small numbers of clusters (4, 5)
and that only a few boosting iterations were suffic ient to maximize the prediction
accuracy. Therefore, the memory needed for storing all prediction models is comparable
or even less than for the standard boosting technique.

In addition to the prediction accuracy of the proposed method, the time requifed
building the model is also an important issue when developing a novel algorithm. Albeit
the number of learned classifiers per iteration for the proposed method was much larger
than for the standard boosting, the cluster data sets on which the classifion models
were built were smaller. The computation time for learning by the proposed model
therefore was comparable to learning the models on the entire training data. Hence, the
total computation time depends only on the number of iterations, and shrsmaller for
the proposed boosting localized experts than for the standard boosting or the adaptive
attribute boosting.

Although the performed experiments provide evidence that the proposed approaches
can improve predictions of classifier ensembles, ther work is needed to examine the
method for more heterogeneous data sets with more diverse attributes. We are currently
working on extending the combining of the adaptive attribute boosting and the boosting
localized experts such that other attribute regsentation methods (attribute extraction,
attribute weighting) are applied on each cluster discovered during the boosting rounds.
Furthermore, identifying attributes using supervised learning may not be appropriate for
performing clustering algorithm. Thefore, finding the smallest attribute subsets that best
uncover “natural” groupings (clusters) from the data according to some criterion is
needed [27]. We are also investigating modifying the proposed algorithm for spatial data
sets in which observationsclose to each other are more likely to be similar than
observations widely separated in space.

The other classification models (C4.5 decision treesNearest Neighbors) will also
be examined in order to further improve the generalization capabilitiestbé proposed
method. In addition, we are working to extend the method to regression based problems.
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