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ABSTRACT: To facilitate the process of discovering brain structure-function associations from image and clinical data, we have
developed classification tools for brain image data that are based on measures of dissimilarity between probability distributions. We
propose statistical as well as non-statistical methods for classifying three dimensional probability distributions of regions of interest
(ROIs) in brain images. The statistical methods are based on computing the Mahalanobis distance and Kullback-Leibler distance
between a new subject and historic data sets related to each considered class. The new subject is predicted to belong to the class
corresponding to the dataset that has the smaller distance from the given subject. The non-statistical methods consist of a sequence
of partitioning the brain image into hyper-rectangles followed by applying supervised neural network models. Experiments
performed on synthetic data representing mixtures of nine distributions as well as on realistic brain lesion distributions from a study
of attention-deficit hyperactivity disorder (ADHD) after closed head injury showed that all proposed methods are capable of
providing accurate classification of the subjects with the Kullback-Leibler distance being the least sensitive on the size of the
training set and on information about the new subject. The proposed statistical methods provide comparable classification to neural

networks with appropriately generated attributes, while requiring less computational time.

INTRODUCTION

Data mining in brain imaging is proving to be an effective
methodology for providing prognosis, treatment, and a better
understanding of brain functionality. The detection of
relationships between human brain structures and brain
functions (i.e., human brain mapping) has been recognized as
one of the main goals of the Human Brain Project [1].
Development of large databases [2,3,4] for the purpose of
meta-analysis of data pooled from multiple studies is now
funded by several government initiatives worldwide. These
databases consist of a large collection of studies that include 3-
D images from different medical imaging modalities that
capture structural (e.g, MRI', CT? and functional
/physiological (e.g., PET’, fMRI') information about the
human brain. Traditionally, two approaches have been used in
functional brain mapping. The first approach seeks
associations between lesioned structures and neurological or
neuropsychological deficits. The second approach seeks
associations between brain activations patterns and tasks
performed. Independent of the approach used, a current
obstacle in human brain mapping is the lack of methods to
automatically classify ROIs (i.e., lesions, brain activations, etc)
and quantitatively measure their levels of similarity.

In this paper, in order to assist the process of discovering brain
structure-function associations from image and clinical data
and to make retrieval of similar brain scans possible, we have
developed statistical and neural network methods for

' MRI: Magnetic Resonance Imaging

2 CT: Computed Tomography

3 PET: Positron Emission Tomography
* fMRI: Functional MRI

classification of brain image data based on measures of
dissimilarity between 3-D probability distributions. Although
the proposed methods can be used in classifying any type of
ROIs here we apply them to lesion-deficit analysis and MR
data sets. Given a clinical image of a new subject that contains
a number of lesioned voxels, the goal is to determine whether it
belongs to a group of subjects who did or did not develop
attention-deficit hyperactivity disorder (ADHD) after closed
head injury.

In brain mapping, behavioral and image data are collected from
patients and analyzed in order to detect associations among
spatial regions of the brain and their functions. The image data
resulting from scanning of the patient are multiple layers of
images that are combined into a voxel-based 3-D
representation. The first step in the process is to make data
comparable across subjects. In particular for image data, the
ROIs are identified (segmented) and image registration is
performed to bring the patient’s image data into register, i.e.,
spatial coincidence, with a common spatial standard (i.e., a
reference brain or anatomical atlas). The methods that we
present are applied after these pre-processing steps are
performed.

BACKGROUND AND RELATED WORK

Let x be a multivariate random variable that can assume any of
the values from a multidimensional domain D. We denote by
P(x) the probability that x falls into a subdomain V < D. More
precisely,

Plx e V]= _[p(x}dx
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where p(x) is a probability density function satisfying non-
negativity (p(x) = 0) and normalization (J. px)dx = 1)
14

conditions. The probability density function p(x) uniquely
determines a distribution of vectors x, drawn from the
distribution. Each distribution can be characterized by its
histogram [5] and a parametric one can also be specified by its
parameters [5, 6].

The problem stated in the introduction can be formulated as
follows. Let r,,. denote the value of a voxe/ (volume element)
of a 3-D brain image (volume). In our study, a voxel has a
value r,. = 1 if it belongs to a lesion (such voxels are referred
to as “lesioned voxels”). Otherwise, the voxel has a zero value
(ry- = 0). Given two sets Sy and Sy that contain coordinates of
lesioned voxels for N subjects who did or did not develop
ADHD respectively, the task is to identify whether a data set
s,, that corresponds to lesioned voxels of a new subject, comes
from the same distribution as the set Sy or the set Sy.
Therefore, the objective is to characterize the distribution of
the new data set s, and to compare it to two given distributions
corresponding to subjects who did or did not develop ADHD.
Methods for distinguishing among distributions can in general
be categorized into:

e distance based methods
e maximum likelihood methods

Distance based methods rely on an appropriately defined
distance measure between distributions in order to determine to
which existing distribution a new distribution is closer to.
Frequently wused distances include Euclidean distance,
Mabhalanobis distance [7], Bayesian distance [6], Patrick-Fisher
distance [8], Bhattacharyya distance [9] and Kullback-Leibler
distance [10].

The Euclidean distance between two vectors depends on the
sum of squared diffrences of their components. Therefore,
given two vectors x and y, the Euclidean distance between

them is computed as dg = 4/(x — y)T -(x—y) . Multivariate data

with normal distribution tend to cluster about the mean vector
M, falling in an ellipsoidally shaped cloud whose principal axes
are eigenvectors of the covariance matrix [10]. When
computing Mahalanobis distance, this fact is considered by
including a covariance matrix X into calculation. Therefore,
Mahalanobis distance between two vectors x and y, is

measured as dy = \/ (x—y)" -27".(x—y) . The Mahalanobis

distance equals to Euclidean distance only when the covariance
matrix X is an identity matrix. The Bayesian distance [6]
differs from the Mahalanobis distance by incorporating
information regarding the size of the distribution, as well as the
a priori probability of the class. The former accommodates the
normalization requirement, while the latter merely offsets the
distance according to the relative frequency that one class
occurs compared to another. Due to the offsets, the Bayesian
“distance” does not satisfy the non-negativity requirement for
metrics [6].

The Patrick-Fisher distance [8] between two vectors x and y is

_ Bty
measured as dpp = (———)~ (x — p), where Z, and I, are
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the corresponding covariance matrices.

The Bhattacharyya distance between two vectors x and y i
defined as dp =

3 43 (S, 4% )/2
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and Xy have again the same meaning [9].

Unlike the previously mentioned distances, the Kullback-
Leibler (KL) distance dg.(p(*), q(-) is defined as a measure of
similarity between two distributions and is equivalent to
relative entropy. Although nonnegative, and equal to zero only
between the same vectors, the Kullback-Leibler distance is not
a true metric, since it is not necessarily symmetric (dg.(p(-),
q()) # dgi(q(), p())) and does not satisfy the triangle
inequality.

In maximum likelihood methods, given a new distribution
(new subject in our application) and estimated probability
densities of existing distributions, a likelihood that a new
distribution is same as one of existing distributions is
computed. To perform a maximum likelihood technique,
probability densities of the distributions should be estimated,
which can be performed using parametric, non-parametric or
semi-parametric techniques [6].

Various statistical and neural network techniques have been
applied to different problems in brain image data analysis from
image segmentation and registration [11] to detection of
electromagnetic field sources [12,13,15] and analysis of fMRI
activations. The divergence between probability distributions
based on the Kullback-Leibler distance has been used in the
analysis of the fMRI signal in order to construct a brain
activation map [15]. In other studies, using statistical tests, the
likelihood for particular voxels to exhibit significant changes
between conditions is estimated [16]. Statistical methods such
as SPM (statistical parametric mapping) [17,18,19] are of great
value in the analysis of fMRI activations but they do not
automatically classify or compare activations. Data mining
methods have been recently applied to brain images in order to
discover associations between lesions and deficits [20] (the
interested reader can see [21] for a complete treatment).
However, little work has been done in brain image data
classification and efficient discovery of associations between
structures and functions.

METHODOLOGY

In this paper, we present statistical and neural network
methods for classifying three-dimensional probability
distributions of regions of interest (ROIs) in brain images. The
statistical methods are based on computing the Mahalanobis
and Kullback-Leibler distances. The distances are computed
between a new sample (subject) and data sets related to each
considered class (distribution). In the neural network method,
the brain images are partitioned into three-dimensional hyper-
rectangles and the neural networks are then applied on the
obtained hyper-rectangles.

Statistical Distance Based Methods

Given two data sets Sy and Sy containing lesioned voxels
respectively from two classes with subjects who did and did
not develop ADHD, the task is to classify a new subject to one
of these two classes. The new subject is specified through a



data set s, containing a number of lesioned voxels. Therefore,
the new sample s, is predicted to belong to the class that
corresponds to one of the datasets Sy or Sy, which has the
smaller distance from the given subject.

The Mahalanobis distance and the Kullback-Leibler (KL)
distance are considered in this paper. Given a new data set s,,
the Mahalanobis distance between the new subject s, and an
existing data set S (Sy or Sy) is computed as:

dy = \/(usz —us)" 27 (uy, - )

where u, and pgare mean vectors of the data sets s, and S

respectively, and X is the pooled sample covariance matrix [5]
given as:
(m,-1)-Z, +(m -1)-Zg
Y= :

(m,+m -2)

with X, and Xg denoting covariance matrices of data sets s,

and S, respectively.

The Kullback-Leibler distance for distinguishing between the
new subject s, and an existing data set S (Sy or Sy) is defined
as:

p=(x)

px)

where p.(x) and p(x) are probability densities corresponding to
the distributions from which data sets s, and S are drawn
respectively. Although dg; (s, S) + dg.(S, s.) is a true distance
metric, we consider only dg; (5., S) thus consistently measuring
the divergence between s, and S. However, in order to compute
this Kullback-Leibler divergence, these distributions need to be
estimated beforehand. In the following text, we present the
algorithm for this estimation.

dx

des(s., S) = j 2.(¢) In
D

Since the data sets Sy, Sy and s, obtained from medical
imaging or simulation contain discrete values for lesioned
voxels, here Kullback-Leibler divergence is computed using
the following discrete approximation;
_ p(x)
da(Sz §) =) p(x) In :
D p(x)
where p.(x) and p(x) are estimated discrete probability
densities, and Ax is the product of discretization intervals in
each dimension.

The estimation of distribution histograms is performed using
the following procedure.

1. Discretization. The brain image data set is given with
lesioned voxels inside the domain that is discretized into a
N,* Ny * N, three-dimensional grid. For each of the three
dimensions, the interval [1,N;] (i = x, y, z) is divided into k&
equal intervals thus resulting in &’ equal three-dimensional
hyper-rectangles. The initial histogram is obtained by
approximating the distribution in each 3-D hyper-rectangle
by the ratio of lesioned voxels that fall inside the hyper-
rectangle and the total number of lesioned voxels inside
the brain volume [6].

2. Histogram padding. After performing the discretization
step, the number of histogram hyper-rectangles is smaller
than the number of possible discrete location of voxels. In
order to match the resolution of original data, the
histogram resolution is increased such that the

representative value for each 3-D cube is repeated k times.
The histogram is then scaled such that the sum of all
values still equals to one (Figure 1). After performing this
operation, the number of histogram values is equal to the
number of hyper-rectangles in an original N,* N, * N,
three-dimensional grid.

(a) Original histogram
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(b) Histogram after padding

Figure 1. Illustration of histogram padding for 1-D histograms.
Each of the values (represented as arrows) is converted into » =
5 equal values that correspond to new smaller bins.

3. Histogram smoothing. To avoid the problem of
discontinuity between histogram values at boundaries of
initial &’ bins [6], padded histograms are smoothed using a
3-D low-pass filter with a specified window of size w’
discretization intervals. A simple filter whose output is the
average of the inputs within the window with size w
(Figure 2) is applied.
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Figure 2. Smoothed histogram after applying filtering with
w=2 to padded histogram from Fig 1b.

4. Histogram modification. Due to the presence of the finite
number of voxels in the brain image data set, it is possible
that some 3-D bins in the estimated histogram do not
contain any examples [6], even after the histogram
smoothing performed in Step 3. Hence, in that case, the
estimated density corresponding to empty 3-D cube would
be zero although the true density might be not. This may
cause problems in computing the Kullback-Leibler
distance, since some of the values p;(x)-log(pi(x)/ p.(x))
from a sum will be computed as infinity. To avoid this
problem, a small positive value is added to estimated
densities, such that the normalization condition (sum of
densities = 1) remains satisfied.

By estimating the histograms using the procedure explained
above, we avoid averaging of histograms for a comparatively
small number of samples that could occur if the histogram is
directly estimated on 3-D hyper-rectangles corresponding to
the original discretization intervals.

Neural Network Method

An optional method for classifying new subjects based on neu-
ral networks is proposed, since such universal approximators



were often reported to outperform the alternatives for
classification of real life non-linear phenomena [14].

In order to apply a neural network model to the problem of
classification between classes of subjects who did and did not
develop ADHD, the value of each voxel can be treated as an
attribute. However, the number of voxels in a brain image is
usually in the order of 107 and training a neural network model
with such large number of input attributes is infeasible in many
realistic applications, due to the curse of dimensionality effect
as well as computational issues of non-linear optimization.
Therefore, there is a need to reduce the number of attributes
that are used for constructing a neural network model.

For attribute reduction, our proposed method first partitions the
brain volume into a number of 3-D hyper-rectangles. In order
to be able to compare the obtained classification results to the
results achieved by statistical methods, as a partitioning
algorithm we use the same discretization procedure explained
at Step 1 in the previous section. The voxels inside the small 3-
D hyper-rectangles are averaged over the total number of
voxels inside 3-D hyper-rectangles and these averaged values
of voxels are treated as new attributes for training with the
neural network classification model. For determining the
minimal number of hyper-rectangles sufficient for successful
classification using the neural network, discretization is
incrementally increased until satisfactory classification
accuracy is achieved.

We trained multilayer (2-layered) feedforward neural network
classification models with the number of hidden neurons equal
to the number of input attributes, although experiments with a
fixed number of hidden neurons were also performed. The
neural network classification models had the number of output
nodes equal to the number of classes, where the predicted class
was from the output with the largest response. We used two
learning algorithms: resilient propagation [22] and Levenberg-
Marquardt [23].

EXPERIMENTAL RESULTS

Our experiments were tested on synthetic data and on realistic
brain lesion distributions generated using a lesion-deficit
simulator [24].

Experiments on synthetic data

Synthetic data used in our experiments contained samples from
two mixtures of nine normal distributions. We were varying
the parameters (means and variances) of mixture components,
thus constructing different mixtures of distributions (see Figure
3).

Figure 3. Two mixtures of distributions that differ only in the
variance of the distribution components

In the first series of experiments, the distribution components
had the same variances but different means for each class. We
have repeated the experiments through 200 rounds, and each

round consisted of random drawing of a new subject from one
of the classes. The classification performance was monitored
by measuring accuracy rate as the ratio of the number of
rounds when a new subject was correctly classified and the
total number of rounds. The subjects contained the number of
lesioned voxels that varied from 50 to 500.

When using the Mahalanobis distance, we were able to
adequately classify a new set of samples that belonged to one
of two mixtures in 90% to 99% of cases, depending on the size
of sets Sy, Sy and the number of lesioned voxels in a new
subject (Figure 4). Analyzing the charts from Figure 4, it can
be noticed that the prediction error of our classification
methods decreased when the size of sets Sy, Sy increased and
when the number of lesioned voxels increased too.

0.1 - -
Il 100
- Il 200
L [ 500 ||
0.08 ] ] 1000
[ 2000
5 I 5000
£ 0.06 I 10000 |
'5 Size of set SY
o
B 0.04f g
o
0.02+ 4
0 I 1] s -

Number of lesioned voxels in a new subject

a) Subjects who belong to the first distribution

0.1

100
200
1 500

0.08 21 1000
1 2000
Il 5000
0.06] | I 10000 |

Size of set SN

0.04 ¢ R

a1l

sd 10 158 2000 256 5006
Number of lesioned voxels in a new subject

b) Subjects who belong to the second distribution

Prediction error

Figure 4. The prediction error when classifying new subjects
from two distributions with different means using Mahalanobis
distance. Mean difference was 0.6.

Unlike the method with Mahalanobis distance, statistical
method based on computing Kullback-Leibler (KL) distance
and neural network classification method, achieved almost
perfect classification, for all considered sizes of data sets and
numbers of lesioned voxels in a new subject (the prediction
error was less then 1%).

Another group of experiments on synthetic data involved
mixtures that had the same component means but different
component variances for each one of the classes. In this case,
classification was typically more challenging since the mixture
of distributions with smaller variances is overshadowed by the
mixture with larger variances. When using Mahalanobis
distance in this scenario, the achieved classification accuracy
was very low when predicting the mixture with smaller



variances (from 0% to 50%), and significantly higher when
predicting the mixture with larger variances (from 50% to
99%) (Figure 5).
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Figure 5. The prediction error when classifying new subjects
from two distributions with different component variances
using Mahalanobis distance. The variance of distributions was
0.01 and 0.1.

The method based on computing the KL distance was more
successful in predicting new subjects when they belonged to
one of the distributions. When predicting the mixture of
distributions with smaller variance, the accuracy varied from
14% for the small size of the set Sy to 99% for the larger size
of set Sy (Figure 6), which is much better than using
Mahalanobis distance. When predicting the mixture of
distributions with larger variances, the method with KL
distance was able to perform almost perfect classification in all
cases (error less than 1%).
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Figure 6. The prediction error when classifying new subjects
from the distribution with smaller component variances using
KL distance. The variance of one distributions was 0.01 and 0.1.

By applying the proposed neural networks method to the
mixture of distributions when they differ only in variance
components, we failed to achieve good classification when
using only 2° 3-D hyper-rectangles (accuracy was around
50%). However, when we used 3° 3-D hyper-rectangles, the
classification accuracy drastically improved (from 55% for
small number of lesioned voxels and small sizes of set Sy to
99% for large size Sy and large number of lesioned voxels in a
new subject). The achieved accuracy for both distributions was
similar, and only the accuracy for the distribution with smaller
variance is reported in Figure 7. The reason for poor
performance of neural network classification models when
using only 8 3-D hyper-rectangles was in totally overlapping
distributions in obtained hyper-rectangles, and similar
averaged number of lesioned voxels in those hyper-rectangles,
such that the discriminative attributes were not relevant.
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Figure 7. The prediction error when classifying new subjects by
partitioning into 3* 3-D hyper-rectangles and then applying
neural networks

Analyzing the Figures 5-7, it is evident that the method with
Mabhalanobis distance was inferior to the method of computing
KL distance and to the neural network model. The more
detailed comparison of all proposed methods for chosen size of
set Sy and the number of lesioned voxels is shown in Table 1,
which also indicates the poor quality of method with
Mahalonobis distance. This was probably due to the fact that
the Mahalanobis distance is based on the assumption that
compared distributions are normal ones.

Table 1. The comparison of prediction errors among proposed
methods for classifying a new subject (The number of subjects
was 5, and the number of lesioned voxels per subject was 200)

Distribution components differ in
Method Mean (0.6) | Variance (1. 0.01, 2. 0.1)
Mahalanobis 1.9 64.0
Kullback-Leibler 0 57.0
Neural | 2° rectangles 3.0 50.0
Network| 3° rectangles 0.3 443

Experiments on realistic data

The segmentation of ROIs in the study was performed
manually by a neuroradiologist using thresholding. A nonlinear
method based on a 3-D elastically deformable model [24] was
used to register the ROIs to the Tailarach anatomical atlas [25].
After a normalization of image data to a common coordinate
system, we applied the proposed methods to lesion-deficit
analysis and magnetic resonance imaging data sets. We



performed classification of realistic brain lesion distributions
that were generated using a lesion-deficit simulator [26] with
the spatial statistical model conforming to the Frontal Lobe
Injury in Childhood (FLIC) study [27]. The subjects were
classified into two classes according to subsequent
development of ADHD after closed head injury. Therefore,
there were two distributions corresponding to subjects who
developed ADHD (“yes ADHD” class) and did not develop
ADHD (“no ADHD” class) (Figure 8). Given a new subject
with a set of lesioned voxels, the goal was to determine the
more plausible class. The subjects contained the number of
lesioned voxels that varied from 50 to 500, although in the
specific FLIC study [26] approximately 200 lesioned voxels is
present on average per 3-D brain image (i.e., per subject).

In experiments, we varied both the size of data sets for the
classes and the number of lesioned voxels belonging to a new
subject. For each combination of these parameters, we
performed the experiments through a specified number of
rounds (200 in our experiments). Each round consisted of
random drawing of a new subject from one of the classes. The
classification performance was again monitored by measuring
accuracy rate computed as for synthetic data.

"es' ADHD class re
e

50 100 150 200 250 500 1000
No'ADHD class

Figure 8. Distributions for “yes ADHD” and “no ADHD” class

Experiments on realistic brain lesion distributions showed that
the proposed method based on Mahalanobis distance could
provide more reliable and more accurate classification between
the subjects regarding the development of ADHD than when
classifying the subjects from synthetic data. Figure 9
demonstrates that the classification with error less than 10%
was possible both for the subjects who did and who did not
develop ADHD, when a sufficient knowledge of the
distribution corresponding to the subject was available. This
was apparent especially when 150 or more lesioned voxels are
available for a new subject. The prediction was perfect (0%
error) when the number of lesioned voxels in a new subject
was larger than 1000. It is interesting to notice that the
classification accuracy was slightly better when predicting
subjects in “yes” ADHD class than in “no ADHD class”
(Figure 9).

The method based on Kullback-Leibler (KL) distance was
even more successful in classification of new subjects,
especially when classifying subjects with a small number of
lesioned voxels comparable to the size of data sets for the
classes (Figure 10). When the number of lesioned voxels per a
subject was 50 or 100, the prediction error was less than 2%
and when more than 200, the prediction was always perfect
(0% prediction error).
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Figure 9. The prediction error when classifying new subjects
using Mahalanobis distance

When performing the proposed method of partitioning the
brain image into 3-D hyper-rectangles and applying neural
network models, the prediction results were again comparable
to KL method. For small number of lesioned voxels in a new
subject (10, 50, 100), prediction accuracy achieved by neural
network was better that using statistical methods. However,
when this number of lesioned voxels increased, there was no
significant increase in prediction accuracy achieved by neural
networks. Our experiments have shown that the number of 3-D
hyper-rectangles sufficient for satisfactory prediction was
fairly small (only 2° and 3° 3-D hyper-rectangles).
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Figure 11. The prediction error when classifying new subjects
by partitioning into 3® hyper-rectangles and then applying
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The more comprehensive evaluation of all proposed methods
applied on realistic data is shown in Table 2. It is evident again
that the method with Mahalanobis distance is inferior when
comparing to the method with KL distance. On the other side,
neural network models were not so successful as for synthetic
data, but they are still able of achieving comparable accuracy
to the method with computing KL distance.

Table 2. The comparison of prediction errors among proposed
methods for classifying a new subject (The number of subjects
was 20 and 50, while the number of lesioned voxels per subject
was fixed to average number of voxels per brain volume —
200)

Prediction Error (%) | (# of subjects, # of lesioned voxels )
Method (20, 200) (50, 200)
Mabhalanobis 10.0 10.0
Kullback-Leibler 0 0
Neural | 2° rectangles 3.8 1.3
Network| 3° rectangles 4.0 2.0
DISCUSSION

We proposed several methods for distinguishing between the
distributions of lesioned voxels on MRI images for subjects
who did and did not develop ADHD. There are several
assumptions on which our methods are based. The proposed
techniques operate within the accuracy of the segmentation of
registration procedures used. Finally, the experiments are
performed under the assumption that all the subjects in training
and test sets have the same number of lesioned voxels (equal to
the average number obtained from FLIC study). However,
more realistic results could be obtained using data sets where

the number of lesions per subject and their size follow
corresponding distributions observed on real-life data [26].

In this paper, we propose non-parametric methods for
modeling densities of data distributions. While more versatile,
such methods typically require a higher number of data
examples (total number of lesioned voxels) compared to
parametric ones. Work in progress includes the examination of
parametric methods for learning distributions, such as
expectation-maximization algorithm [10] and clustering
algorithms for partitioning distributions into distinct regions
[28,29].

The proposed technique for the histogram computation
involved the initial estimation on a coarse grid, followed by
interpolation and smoothing in order to obtain histograms on
the same grid as the underlying data. Since the voxel density is
uniform in all three dimensions, during the estimation of initial
histograms, we maintained the same number of discretization
intervals in each direction. However, it is possible to avoid the
interpolation phase by direct estimation of histograms on the
original grid (where the number of discretization intervals for
histogram estimation is equal to the data resolution) followed
by three-dimensional filtering to smooth estimated values.
Therefore, future work is necessary to determine the real
necessity for this interpolation. However, the smoothing phase
seems to be necessary to ensure statistically significant
estimation, since the number of data points (lesioned voxels) is
typically much smaller than the number of bins that correspond
to the original grid.

The proposed neural network methods use attributes generated
by averaging the lesioned voxels in closed spatial subregions.
These methods are successful in classification if the number of
lesioned voxels in these subregions differs significantly for two
considered distributions. If the distributions have sufficiently
different means, this condition is satisfied for a small number
of subdomains. However, when distinguishing distributions
with the same means and similar variances, results comparable
to those obtained using statistical methods can be achieved
only for a sufficiently large number of subdomains (hyper-
rectangles), which was evident from the results on synthetic
data.

In this paper, the subregions are of equal size to the hyper-
rectangles used for histogram estimation and we did not
attempt to optimize the number and the shape of these
subregions. Work in progress includes the development of an
adaptive procedure for determining appropriate partitioning of
the three-dimensional domain into subdomains for optimal
attribute generation.

Results on synthetic data suggest that all proposed methods
provide almost perfect -classification if the underlying
distributions differ significantly in their means. However,
when distributions differ slightly in variances of mixture
components, the method based on Mahalanobis distance
gradually ceased to provide useful classification, since these
methods implicitly assume the normality of data distribution.
In contrast, the method based on Kullback-Leibler distance
provided good results, assuming that the size of training sets
were large enough so that histograms of underlying
distributions could be properly estimated.



Results on realistic data generated using a lesion-deficit
simulator suggest that the proposed techniques are applicable
for classification on subjects that have the number of lesioned
voxels close to real-life cases (the average of 200 per 3-D brain
image in the specific FLIC study [26]). Higher number of
available subjects for model training usually resulted in higher
accuracy. Correct classification in 95% cases was achieved
when the number of lesioned voxels in a new subject was 100-
150 or more. Among all examined methods, the Kullback-
Leibler method was the least sensitive on the size of training
set and the number of lesion voxels. The obtained results
suggest that the proposed statistical methods provide
comparable classification accuracy to neural networks with
appropriately generated attributes, while requiring less
computational time.

In general, all proposed methods have been shown capable of
providing accurate classification of the subjects regarding the
development of ADHD. In addition to lesion-deficit analysis,
the proposed techniques are applicable not only to the
discussed domain but also to a much wider class of problems
involving task-activation analysis and classification of 3D-
probabilistic activation maps, such as those generated by
statistical parametric maps (SPM).
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