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Abstract. Combining multiple classifiers is an effective technique for improving classification accuracy by reducing
the variance through manipulating the training data distributions. In many large -scale data analysis problems
involving heterogeneous databases with attribute instability, however, standard boosting methods do not improve
local classifiers (e.g. knearest neighborsjlue to their low sensitivity to data perturbation Here, we propose an
adaptive attribute boosting technique to coalesce multiple local classifiers each using different relevant attribute
information. To reduce the computational costs of k -nearest neighbor (k-NN) classifiers, a novel fas t k -NN
algorithm is designed. We show that the proposed combining technique is also beneficial when boosting global
classifiers like neural networks and decision treds. addition, a modification of the boosting method is developed
for heterogeneous spatil databases with unstable driving attributes by drawing spatial blocks of data at each
boosting round. Finally, when heterogeneous data sets contain several homogeneous data distributions, we propose
a new technique of boosting specialized classifiers, whe instead of a single global classifier for each boosting
round, there are specialized classifiers responsible for each homogeneous region. The number of regions is
identified through a clustering algorithm performed at each boosting iteratiomew boosing methods applied to
synthetic spatial data and real life spatial data show improvements in prediction accuracy for both local and global
classifiers when unstable driving attributes and heterogeneity are present in the data. In addition, boosting
specidized experts significantly reduces the number of iterations needed for achieving the maximal prediction

accuracy.

Keywords: Adaptive attribute boosting, Spatial boosting, Clustering, Boosting specialized expététerogeneous

spatial databases



1. Introduction

In contemporary data mining, many real world knowledge discovery problems involve the investigation of
relationships between attributes in heterogeneous data sets where rules identified among the observed attributes in
certain subsets do not appiisewhere. A heterogeneous data set can be partitioned into homogeneous subsets such
that learning a local model separately on each of them results in improved overall prediction accuracy. In addition,
many largescale data sets very often exhibit attriigLinstability, which means that the set of relevant attributes that
describes data examples is not the same through the entire data space. This is especially true in spatial databases,
where different spatial regions may have completely different chaiatits [18].

It is well known in machine learning theory that a combination of many different predictors can be an effective
technique for improving prediction accuracy. There are many general combining algorithms such as bagging [5],
boosting [9], or Err or Correcting Output Codes (ECOC) [15] that significantly improve global classifiers like
decision trees, rule learners, and neural networks. These algorithms may manipulate the training patterns used by
individual classifiers (bagging, boosting) or the @ss labels (ECOC). In most cases, the importance of different
classifiers is the same for all of the patterns within the data set to which they are applied.

In order to improve the global accuracy of the whole, an ensemble of classifiers must be both acaate and
diverse. To make the ensemble of classifiersHeterogeneous databases more accurate, instegapfing a global
classification model across entire data sets, the models are varied to better match specificafébdsubsets thus
improving prediction capabilities [21]. In such an approach, there is a specialized classification expert responsible
for each region which strongly dominates the others from the pool of specialized experts.

On the other hand, diversity is required to ensure thatthé classifiers do not make the same errors. In order to
increase the diversity of combined classifiers forheterogeneouspatial databases with attribute instability, one
cannot assume that the same set of attributes is appropriate for each single cldssi. For each training sample,
drawn in a bagging or boosting iteration, a different set of attributes is relevant and therefore the appropriate
attribute set should be used for constructing single classifiers in every iteration. In addition, the applicabn of
different classifiers on spatial databases, where the data are highly spatially correlated, may produce spatially
correlated errors [19]. In such situations, standard combining methods might require different schemes for

manipulating the training stances in order to maintain classifier diversity.



In this paper, we extend the framework for constructing multiple classifier system using the AdaBoost algorithm
[9]. In our approach, we first try to maximize local specific information for a drawn sarbplehanging the attribute
representation using attribute selection, attribute extraction and appropriate attribute weighting methods [22] at each
boosting iteration. Second, in order to exploit the spatial data knowledge, a modification of the boosting metl
appropriate for heterogeneous spatial databases is proposed, where, at each boosting round, spatial data blocks are
drawn instead of sampling single instances like in the standard approach. Finally, the maximal gain by emphasizing
local information, especially for highly heterogeneous data sets, was achieved by allowing the weights of the
different weak classifiers to depend on the input. Rather than having constant weights of the classifiers for all data
patterns (as in standard approaches), we allogights to be functions over the input domain. In order to determine
these weights, at each boosting iteration we identify local regions having similar characteristics using a clustering
algorithm and then build specialized classification experts on eacthese regions which describe the relationship
between the data characteristics and the target class [18]. Instead of a single classifier built on a sample drawn in
each boosting iteration, there are several specialized classification experts respofwildach of the local regions
identified through the clustering processAll data points belonging to the same region and hence to the same
classification expert will have the same weights when combining the classification experts.

The influence of all of these adjustments is not the same, however, for local classifiers [4] (e.g. knearest
neighbors, radial basis function networks) and global classifiers (e.g. decision trees and artificial neural networks). It
is known that standard combining methods do ndtnprove simple local classifiers due to correlated predictions
across the outputs from multiple combined classifiers [5, 15]. We show that, by selecting different attribute
representations for each sample, prediction of combined nearest neighbor as wellsaglobal classifiers can be
considerably decorrelated. Our experimental results indicate that sampling spatial data blocks during boosting
iterations is beneficial only for local but not for global classifiers. Further significant improvements in predictio
accuracy obtained by building specialized classifiers responsible for local regions show that this method seems to be
slightly more beneficial for k-nearest neighbor algorithms than for global classifiers, although the total prediction
accuracy was sigficantly better when combining global classifiers.

The nearest neighbor classifier is often criticized for slow-time performance and large memory requirements,
and using multiple nearest neighbor classifiers could further worsen the problem. Therefoesysed a novel fast

method for knearest neighbor classification to speed up the boosting process.



In Section 2, we discuss current ensemble approaches and work related to specialized experts and changing
attribute representations of combined classifiefection 3 describes the proposed methods and investigates their
advantages and limitations. In Section 4, we evaluate the proposed methods on three synthetic and-liflecdiagal
set comparing it with standard boosting and other methods for dealirtghveiterogeneous spatial databases. Finally,

section 5 concludes the paper and suggests further directions in current research.

2. Classifier Ensembles

2.1. Ensembles of Local Learning Algorithms

One of the oldest and simplest methods for performing gaharonparametric classification that belongs to the
family of local learning algorithms [4] is a 4nearest neighbor classifier{MN) [7]. Despite its simplicity, the kNN
classifier can often provide similar accuracy to more sophisticated methods such as decision trees or neural
networks. Its advantages include the ability to learn from a small set of examples, and to incrementally add new
information at runtime.

Many general algorithms for combining multiple versions of a single classifier do not impro ve the k-NN
classifier at all. For example, when experimenting with bagging, Breiman [5] found no difference in accuracy
between the bagged-KNN classifier and the single model approach. Kong and Dietterich [15] also concluded that
ECOC would not improvelessifiers that use local information due to high error correlation.

A popular alternative to bagging is boosting, which uses adaptive sampling of patterns to generate the ensemble.
In boosting [9], the classifiers in the ensemble are trained serially, witthe weights on the training instances set
adaptively according to the performance of the previous classifiers. The main idea is that the classification algorithm
should concentrate on the difficult instances. Boosting can generate more diverse ensémhlesgging does, due
to its ability to manipulate the input distributions. However, it is not clear how one should apply boosting to the k
NN classifier for the following reasons: (1) boosting stops when a classifier obtains 100% accuracy on the training
set, but this is always true for the ¥NN classifier, (2) increasing the weight on a hard to classify instance does not
help to correctly classify that instance as each prototype can only help classify its neighbors, not itself. Freund and

Schapire [9] aplied a modified version of boosting to the kNN classifier that worked around these problems by



limiting each classifier to a small number of prototypes. However, their goal was not to improve accuracy, but to
improve speed while maintaining current parfance levels.

Although there is a large body of research on multiple model methods for classification, very little specifically
deals with combining k-NN classifiers. Ricci and Aha [31] applied ECOC to the k -NN classifier (NN-ECOC).
Normally, applying ECC to k-NN would not work since the errors would be correlated across the binary learning
problems. However, they found that applying attribute selection to the twalass problems decorrelated errors if
different attributes were selected. Unlike this apprach, Bay’s Multiple Feature Subsets (MFS) method [3] uses
random attributes when combining individual classifiers by simple voting. Each time a pattern is presented for
classification, a new random subset of attributes is selected for each classifier. Hesed two different sampling
functions: sampling with replacement, and sampling without replacement. Each of theNtN classifiers uses the
same number of attributes.

Some researchers developed techniques for reducing memory requirements for kNN classifiers by their
combining. In combining condensed nearest neighbor (CNN) classifiers [1], the size of each classifier's prototype
set is drastically reduced in order to destabilize thelkN classifier. Bootstrap or disjoint data set partitioning was
used in combi nation with CNN classifiers to edit and reduce the prototypes. In VVoting nearest neighbor
subclassifiers [16], three small groups of examples are selected such that ead¥iNk subclassifier, when used on
them, errs in a different part of the instance spaceSimple voting may then correct many failures of individual

subclassifiers.

2.2. Ensemble of Global Learning Algorithms

There has been a very significant movement during the past decade to combine the decisions of global classifiers
(e.g. decision treesneural networks), and a significant body of literature on this topic has been produced. All
combining methods are results of two parallel lines of study: (1) multiple classifier systems that attempt to find an
optimal combination of the decisions from aigen set of carefully designed global classifiers; and (2) specialized
classifier systems that buildnutually complementary classification experts, each responsible for a particular data
subsetand then merge them together. Although it is known that mulke classifier systems work well with global

classifiers like neural networks, there have been several experiments in selecting different attribute subsets as an



attempt to force the classifiers to make different and hopefully uncorrelated errors when gmig heterogeneous
databases.

FeatureBoost [26] is a recently proposed variant of boosting where attributes are boosted rather than examples.
While standard boosting algorithms alter the distribution by emphasizing particular training examples, FeagireBoo
alters the distribution by emphasizing particular attributes. The goal of FeatureBoost is to search for alternate
hypotheses amongst the attributes. A distribution over the attributes is updated at each boosting iteration by
conducting a sensitivity amgsis on the attributes used by the model learned in the current iteration. The distribution
is used to increase the emphasis on unused attributes in the next iteration in an attempt to produce different sub
hypotheses.

Only a few months earlier, a considably different algorithm exploring a similar idea for an adaptive attribute
boosting technique was published [19]. The technique coalesces multiple local classifiers each using different
relevant attribute information. The related attribute representatiochanged through attribute selection, extraction
and weighting processes performed at each boosting round. This method was mainly motivated by the fact that
standard combining methods do not improvelocal classifiers (e.g. kNN) due to their low sensiti vity to data
perturbationalthough the method was also used with global classifiers like neural networks.

In addition to the previous method, there were a few more experiments selecting different attribute subsets as an
attempt to force the neural netwodtassifiers to make different and hopefully uncorrelated errors. Although there is
no guarantee that using different attribute sets will decorrelate error, Tumer and Ghosh [35] found that with neural
networks, selectively removing attributes could decolate errors. Unfortunately, the error rates in the individual
classifiers increased, and as a result there was little or no improvement in the ensemble. Cherkauer [6] was more
successful, and was able to combine neural networks that used different harettsd attributes to achieve human
expert level performance in identifying volcanoes from images.

Motivated by the problem of how to avoid overfitting a set of training data when using decision trees for
classification, Ho [12] proposed a tecision forest, an ensemble of decision trees constructed systematically by
autonomously and pseudorandomly selecting a small number of dimensions from a given attribute space. The
decisions of individual trees are combined by averaging the conditional probability oheadass at the leaves. The
method maintains high accuracy on the training data and, compared with single tree classifiers, improves on the

generalization accuracy as it grows in complexity.



Opitz [25] has investigated the notion of an ensemble featurect@a with the goal of finding a set of attribute
subsets that will promote disagreement among the component members of the ensemble. A genetic algorithm
approach was used for searching an appropriate set of attribute subsets for ensembles. Firstadpapitilation of
classifiers is created, where each classifier is generated by randomly selecting a different subset of attributes. Then,
the new candidate classifiers are continually produced, by using the genetic operators of crossover and mutation on
the attribute subsets. The algorithm defines the overall fitness of an individual to be the combination of accuracy and
diversity.

DynaBoost [24] is an extension of the AdaBoost algorithm that allows an inpdependent combination of the
base hypotheses. Aeparate weak learner is used for determining the input dependent weights of each hypothesis.
The error function minimized by these additional weak learners is a margin cost function that is also minimized by
AdaBoost. Although the weights depend on the irtpthere is still a single hypothesis per iteration that needs to be
combined.

Several approaches belonging to specialized classifier systems have also appeared lately. Our recent approach
[21] is designed for analysis of spatially heterogeneous databaRdirst clusters the data in the space of observed
attributes, with an objective of identifying similar spatial regions. This is followed by local prediction aimed at
learning relationships between driving attributes and the target attribute insidetedaster. The method was also
extended for learning when the data are distributed at multiple sites.

A similar method is based on a combination of classifier selection and fusion by using statistical inference to
switch between these two [17]. Selectiois applied in regions of the attribute space where one classifier strongly
dominates the others from the pool (clusterirgndselection step), and fusion is applied in the remaining regions.
Decision templates (DT) are adopted for classifier fusion, wheaé classifiers are trained over the entire attribute
space and thereby considered as competitive rather than complementary.

Some researchers also have tried to combine boosting techniques with building single classifiers in order to
improve prediction in heterogeneous databases. One such approach is based on a supervised learning procedure,
where outputs of predictors are trained on different distributions followed by a dynamic classifier combination [2].
This algorithm applies principles of both boostingand Mixture of Experts [13] and shows high performance on
classification or regression problems. The proposed algorithm may be considered either as aWisestnitialized

Mixture of Experts, or as a variant of the Boosting algorithm. As a variant ofMigture of Experts, it can be made



appropriate for general classification and regression problems, by initializing the partition of the data set to different
experts in a boosting like manner. If viewed as a variant of the Boosting algorithm, it uses a dgmic model for

combining the outputs of the classifiers.

3. Methodology

3.1 Adaptive Attribute Boosting

The adaptive attribute boosting algorithm we present here is a variant of the AdaBoost.M2 procedure [9]. The
proposed algorithm, shown in Figure Irggeeds in a series dfrounds. In every round a weak learning algorithm is
called and presented with a different distributioD, altered not only by emphasizing particular training examples,
but also by emphasizing particular attributes. The distributionis updated to give wrong classifications higher
weights than correct classifications. The entire weighted training set is given to the weak learner to compute the
weak hypothesik,. At the end, the different hypotheses are combined into a final hypathgsi

Since at each boosting iteratiomve have different training samples drawn according to the distribubigat the
beginning of the “for loop” in Figure 1 we modify the standard algorithm by addingtep O, wherein we choose a
different attributerepresentation for each sample. Different attribute representations are realized through attribute
selection, attribute extraction and attribute weighting processes through boosting iterations. Therisattempt to

force individual classifiers to make digrent and hopefully uncorrelated errors.

e Given: Set S{(%, Y1), ..., Xm» Ym)} X; OX, with labds y; OY ={1, ..., k}
e LetB={(G,y):iO{1,234,.m},y#y}
» Initialize the distributionD; over the examples, such that(i) = 1/m.
e Fort=1,2,3,4,..T
Find relevant feature information for distribution;Msing supervised attribute selection
Train weak learner using distributioB,
Compute weak hypothesig X xY - [0, 1]
Compute the pseudioss of hypothesis;h

1 .
&= 20 D, Y)A-h (%, ¥) +h (%, Y)
(i,y)OB
4., Setf=&/(1- &)
5. Update Q: Dy (i, y) = (D, (i, y)/ Zt)EBI(1/2)f01—h(&,y)+n(&,yi )
whereZ; is a normalization conaht chosen such thax., is a distribution.

wh o

T
) : 1
*  Output the final hypothesidhy, = argmaxE (log F) i, (X, y)

t=1 t

Figure 1. The adaptive attribute boosting with performing attribute selection at step 0 in each boosting iteration



To eliminate irrelevant and highly correlated attributes, regresbamsed attribute selection iegormed through
performance feedback forward selection and backward elimination search techniquieag@@]on linear regression
mean square error (MSE) minimization. Ther most relevant attributes are selected according to the selection
criterion at eab round of boosting, and are used by the single classifieraaddition, attribute extraction procedure
is performed through Principal Components Analysis (PCA) [10]. Each of the single classifiers uses the same
number of new transformed attributes. Anettpossibility is to choose an appropriate number of newly transformed
attributes that will retain some predefined part of the variance.

The attribute weighting method for the proposed technique is used only for local classifiéibljland is based
on a Hayer feedforward neural network. First, we try to perform target value prediction for the drawn sample with a
defined X-layer feedforward neural network using all attributes. It turns out that this kind of neural network can
discriminate relevant from relevant attributes. Therefore, the neural networks interconnection weights are taken as
attribute weights for the-RIN classifier.

To further experiment with attribute stability properties, miscellaneous attribute selection algorithms [22] are
applied tothe entire training set and the most stable attributes are selected. These attributes are then used by the
standard boosting method. When applying adaptive attribute boosting, in order to compare the most stable selected
attributes, the attribute occurreadrequency is monitored at each boosting round. When attribute subsets selected

through boosting rounds become stable, this is an indication to stop the boosting process.

3.1.1 Adaptive Attribute Boosting for k-NN Classifier

Nearest neighbors are stahtie the data perturbation, so bagging and boosting generate podtié ensembles.
However, they are extremely sensitive to the attributes used. Our approach attempts to use this instability to generate
a diverse set of local classifiers with uncorrelatembes. At each boosting round, we perform one of the methods for
changing attribute representation, explained above, to determine a suitable attribute space for use in classification.
When determining the least distant instances cansider standard Euctidn distance and Mahalanobis distance.

To speed up the londpsting boosting process, a fastNiN classifier is proposed. Fan training examples and
attributes our approach requires preprocessing which takesdOf /Jog n) steps to sort each attributeseparately.

However, this is performed only once, and we trade off this initial time for later speedups.



Initially, we form a hyper-rectangle with boundaries defined by the extreme values of thelosest values for
each attribute (Figure 2 small dottel lines). If the number of training instances inside the identified hypetangle
is less thark, we compute the distances from the test point to alllifdata points which correspond to thelosest
values for each ofd attributes, and sort them inta non-decreasing arragx We take the nearest training example
cdpwith the distancelst,;,, and form a hypercube with boundaries defined by this minimum distaistg, (Figure
2 - larger dotted lines). If the hypercube does not contain enough dat& tr&ining points, form the hypercube of a
side 28xk+1). Although this hypercube contains more thak training examples, we need to find the one which
contains the minimal number of training examples greater thé&mTherefore, if needed, we search foa minimal
hypercube by binary halving the index in the nomecreasing arrayx This can be executed at mostog k times,
since we are reducing the size of the hypercube fr@@x(+1) to 2SX1). Therefore the total time complexity of our

algorithm isO(d4og k 48g n), under the assumption that n dwhich is always true in practical problems.
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Figure 2.The used hyperectangle, hypersphere and hypercubes in the fai\k

If the number of training instances inside the identified hypegctande (Figure 2 - small dotted lines) is larger
thank, we also search for a minimal hypercube that contains at I&astd at most & training instances inside that
hypercube. This is accomplished by binary halving or by incrementing a side of the hypercube . After each
modification of the hypercube’s side, we compute the number of enclosed training instances and modify the
hypercube accordingly. Analogously to the previous case, it can be shown that binary halving or incrementing the

hypercube’s side will nitake more thaitog ktime, and therefore the total time complexity is SB{d4iag k 1og n).



When we find a hypercube which contains the appropriate number of points, it is not necessary tha¢atest

neighbors are in the hypercube, since sometbg closer training instances to the test points could be located in a

hypersphere of identified radiugstv/d (Figure 2). Since there is no fast way to compute the number of instances
inside the sphere without computing all the distaneesembed the hypersphere in a minimal hypercube (Figure 2
dashed lines) and compute the number of training points inside this surrounding hypercube. The number of points
inside the surrounding hypercube is much less than the total number of trainiagdastand therefore speedups our

algorithm.

3.1.2 Adaptive Attribute Boosting for Global Classifiers

Although standard boosting can increase the prediction accuracy of global classifiers like neural networks [34]
and decision trees [30], we change attuite representation to see if adaptive attribute boosting can further improve
accuracy of an ensemble of global classifiers. The most stable attributes used in standard boosting of k-NN
classifiers are also used here for the same purpose.

We train multilayer (2-layered) feedforward neural network classification models with the number of hidden
neurons equal to the number of input attributes. The neural network classification models have the number of output
nodes equal to the number of classes, where thdigied class is from the output with the largest response. We used
two learning algorithms: resilient propagation [32] and Levenbekdarquardt [11]. For a decision tree model, we
used the ID3 learning algorithm [29] which employs the information gaiedoih to choose which attribute to place
at the root of each decision tree and subtree. After the trees are fully grown, a pruning phase replaces subtrees with

leaves using the same predefined pruning factor for all trees.

3.2 Spatial Boosting

Spatial data represent a collection of attributes whose dependence is strongly related to spatial location;
observations close to each other are more likely to be similar than observations widely separated in space.
Explanatory attributes, as well as the targetibttte in spatial data sets are very often highly spatially correlated. As

a consequence, applying different classification techniques on such data is likely to produce errors that are also



spatially correlated [27]. Therefore, when applied to spatial data, the boosting method may require different

partitioning schemes than simple weighted selection that does not take into account the spatial properties of the data.
The proposed spatial boosting method (Figure 3) starts with partitioning the spatial datate the spatial data

blocks (squares of size M pointsx M points). Rather than drawingn data points according to the distributiorD,

(Figure 1), the proposed method draws oniyn/M?2] data points according to the distributiorP; (Figure 3). Since

eachof drawn examples belongs exactly to one of the partitioned spatial data blocks, the proposed method defines

Ln/M?] belonging spatial data blocks and merges them into a set used for learning a weak classifier. Like in standard

boosting, the distributiof?, is also updated to give wrong classifications higher weights than correct classifications,

but due to spatial correlation of data, at the end of each boosting round simple mediar M filtering is applied

over the entire data distributionP,. Using this approach we hope to achieve more decorrelated classifiers whose

integration can further improve model generalization capabilities for spatial data. The spatial boosting technique was

applied to both local #\NN) and global (neural network, decision treeigssifiers

«  Givenset S{(X, Y1), ... , (Xm Ym)} Xi OX, with labels y OY = {1, ..., k} is split into Ln/M?] squares of size
M x M points. Let B ={(i,y): i 0 {1,2,3,4,...m},y #y;}

» Initialize the distributiorP; over the examples, such tHad(i) = 1/m.

« Fort=1,2,3,4,..T

1. According to distribution Pdrawl n/M?2] data points that uniquely determine belonging spatial data bldcks.
2. Train a weak learner on a set containingoglonging spatial data blocks.
3. Compute weak hypothedis X xY - [0, 1]
4. Compute the pseudoss of hypothesisih& = %D Z P, y)A-h (X, y;) +h (X, y)
(i,y)oB
5. Setg=&/(1-&)
6. UpdateP,: Py (i,y)= (R.(i,y)/Z,)B,Y2ENENEY) wherez, is a normalization constant chasd

such thaDy., is a distribution. Apply median M M filtering to the distributionP.

T
*  Output the final hypothesishy, = argmaxz (Iogi) . (X, y)
yDY t=1 t
Figure 3. The spatial boosting algorithm with drawing spatial data blocks at each boosting round

3.3 Boosting Specialized Classifiers

Although previous boosting modifications improve generalizability of final predictors, it seems that in
heteogeneous databases where several more homogeneous regions exist boosting does not enhance the prediction

capabilities as well as for homogeneous databases [19]. In such cases it is more useful to have several local experts



responsible for each region tife data set. A possible approach to this problem is to cluster the data first and then to
assign a single classifier to each discovered cluster. Boosting specialized classifiers, described in Figure 4, models a
scenario in which the relative significancef each expert advisor is a function of the attributes from the specific

input patterns. This extension seems to better model real life situations where particularly complex tasks are split

among experts, each with expertise in a small spatial region.

o Given: Set S ={(X, Y1), --- » (Xm, Ym)} X; OX, with labels y OY = {1, ..., k}
o LetB={(,y):i0{1,2,3,4,..m}, y£ v}
» Initialize the distributiorD; over the examples, such tHaf(i) = 1/m.
*  While (t<T) or (global accuracy on s&starts to decrease)
1. Find relevant attribute information for distribution Osing unsupervised wrapper approach around
clustering algorithm.

2. Obtainc distributionsDy, j = 1, ...cand corresponding sets (cluste8g)={(x1; Y1), ... . (Xm . Ym, j )}
xi; 0 X;, with labels y; OY; = {1, ..., k} by applying dustering with the most relevant attributeentified
instep 1. Let B-{(i’, y): ' 0{1,2,3,4,...m}, y' Z y{}

3. Forj=1...c(For each ot clusters)

3.1. Find relevant attribute representation for clus8r using supervised feature selection
3.2. Train weakearnerd_; on the set§, j=1,...c.

3.3. Compute weak hypothesig: X; x Y; - [0, 1]

3.4. Compute convex hulld;; for each ofc clustersS; from the entire set S.

3.5. Compute the pseéoloss of hypothesisy;:

&j= % Z Dy, (ijayj)(l_ht,j (%ij Yi,j) +h (Xi,pyj))
(i',y")oB;

3.6. SetB,,j = & / (1 - &J)
3.7. Determine clusters on the entire training set according to the convex hull mapping. All points inside
the convex hulH,; belong to thg-th clusterT;; from iterationt.

4. Merge allhy;, j = 1,... cinto a unique weak hypothedisand all5, j = 1,... cinto an uniques according
to convex hull belonging (example fitting in tiieh convex hull has the hypothesig and the valugs ).
5. Update D: Dus (i, ) = (Di(i,y)/ Z) 0B, (i,y) 2RO 0G0
whereZ; is a normalization constant chosen such tat is a distribution.

T ¢
. . 1 T
«  Output the final hypothesish; :argmaxz (log————)h ; (x),y)
" yDYt=1]L=J1 :Btj(ljyyj) :

Figure 4. The scheme for boosting specialized classifiers with performing attribute selection algorithm wrapped

around clustering (step 1) in each boosting iteration.

In this work as in many boosting algorithms, the final composite hypothesis is constructed as a weighted
combination of base classifiers. The coefficients of the combination in the standard boosting, however, do not
depend on the position of the point whose label is of interest. The proposed boosting algorithm achieves greater
flexibility by building classifiers that operate only in specialized regions and have local wefRjshat depend on

the pointx where they are applied.



In order to partition the spatial data set into these localized regions, two clustering algorithms are empla&yed. Th

first is the standardk-means algorithm [14]. Here, data set S = {{(}/1), .- , Xm, Ym)}, X; OX, is partitioned intok
clusters by finding points{m;}*_; such that

1 I

= (mind® (x, m))

nGx
is minimized, whera(x, m) ustally denotes the Euclidiean distance betwgeandm, although other distance

. k .
measures can be used. The pon{mgj} j-1are known agluster centroidor clustermeans

The second clustering algorithm called DBSCAN relies on agiy-basecdhotion of clusters and was designed
to discover clusters of an arbitrary shape [33]The key idea of a densitybased cluster is that for each point of a
cluster itsEpsneighborhood for a givefEps> 0 has to contain at least a minimum number of poinidiGiPts), (i.e.
the density in the Epsneighborhood of points has to exceed some threshold), since the typicalndéy of points
inside clusters is considerably higher than outside of clusteyslike the cluster centroids in th&-means, here the
centers ofthe clusters can be outside of the clusters due to their arbitrary shapes. Therefore, we define cluster
medoids, the clusterore objects closest to the cluster centroids.

Since our boosting specialized experts involves clustering at step 1, there is agukto find a small subset of
attributes that uncover “natural” groupings (clusters) from the data according to some criterion. For this purpose, we
adopt the wrapper framework in unsupervised learning [8], where we apply the clustering algorithm totebateat
subset in the search space and then evaluate the attribute subset by a criterion function that utilizes the clustering
result. If there ared attributes in a data set, an exhaustive search of th@@ssible attribute subsets for the one that
maximzes our selection criterion is computationally intractable. Therefore, in our experiments, fast sequential

forward selection search is applied.
Like in [8] we also accept the scatter separability tracé;\L1 S) for attribute selection dterion, whereS, is the

within-class scatter matrix an8, is the between scatter matrixg, measures the average covariance of each cluster
and how scattered the samples are from their cluster medoids in the case of DBSCAN clustering, or from their

cluger means in the case ofkneans clusterings, measures how the cluster means or medoids are distant from the
total mean. Larger the value of the traC(-S(n',1 S) results in larger the normalized distance between the clusters and

therefor in better cluster discrimination.



This procedure, performed at step 1 of every boosting iteration, results in  r most relevant attributes for
clustering.Thus, for each round of boosting, there are different relevant attribute subsets that are respdeddr
distinguishing among homogeneous regions existing in a drawn sapla.result of the clustering, applied to find
those homogeneous regions, several distributibgg(j = 1,...,c) are obtained, where is the number of discovered
clusters. For edcof ¢ clustersS; discovered in the data sample, we identify its most relevant attributes, train a weak
learnerl; using a distributiorD;; and compute a weak hypothesig. Furthermore, for every clusté;, we identify
its convex hullHy; in the attribute space used for clustering, and map these convex hulls to the entire training set in
order to find the corresponding clustef$; (Figure 5) [20]. Data points inside the convex hull;; belong to cluster
T;, and data points outside the cawhulls are attached to the cluster containing the closest data pattern. Therefore,
instead of a single global classifier constructed in every iteration by the standard boosting approach, there are

classifiers; and each of them is applied to the segponding cluster,;.
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Figure 5. Mapping convex hulld,  of clustersS, j discovered in the data sample to the entire training set in order to
find corresponding clusters T, ;. For example, all data points inside the cont  ours of the convex hullH

(corresponding to the clusté& ;) belong to the new clustér, ; identified on the entire training set.

In our boosting specialized classifiers, data points from different clusters have different pséastovalues and
different parameter valugs. For each clustetj, (j = 1,...,c) (Figure 5) defined with the convex hul;, there is a
pseuddlossg; and the corresponding paramef&y. Both the pseuddoss valueg,; and parametef,; are computed
independently for ach clusteiT,; where a particular classifidr;; is responsible. Before updating the distributiDg
the parameter§,; for c clusters are merged into a unique vect@ such that thei-th pattern from the data set that

belongs to th¢-th cluster speified by the convex hulH;;, corresponds to the paramef&y at thei-th position in the



vectorf3.. Analogously, the hypotheség; are merged into a single hypothesisSince we mergef, ; into ; andhy;

into h, updating the distributionD, can be performed as in standard boosting. However, the local classifiers from
each round are first applied to the corresponding clusters and integrated into a composite classifier responsible for
that round. The composite classifiers are then combined lirgdinal hypothesis using the AdaBoost.M2 algorithm.

When performing clustering during boosting iterations, it is possible that some of the discovered clusters have an
insufficient number of data points needed for training a specialized classifier. This nunber of data patterns is
defined as a function of the number of patterns in the entire training set. Several techniques for handling this
scenario are considered.

The first technique denoted asmple halts the boosting process every time a cluster withiasufficient size is
detected. When the boosting procedure is terminated, only the classifiers from the previous iterations are combined
in order to create the final hypothesig. More sophisticated techniques do not stop the boosting process, baidnste
of training the specialized classifier on an insufficiently large cluster, they employ the specialized classifiers
constructed in previous iterations. When an insufficiently large cluster is identified, its corresponding cluster from
previous iterationsis detected using the convex hull matching (Figure 5) and the model constructed on the
corresponding cluster is applied to the cluster discovered in the current iteration. To determine this model, the most
effective methodlfest_local) takes the classifieconstructed in the iteration where thecal prediction accuracy for
the corresponding cluster was maximal. In two similar techniques,ghevious method always takes the classifiers
constructed on the corresponding cluster from thepreviousiteration, while the best_global technique uses the
classification models from the iteration where the global prediction accuracy was maximal. In all of these
sophisticated techniques, the boosting procedure ceases when thepeeified number of iterations is reaad or
there is a significant drop in the prediction accuracy for the training set.

Furthermore, drawing spatial data blocks in boosting iterations, employed in the spatial boosting technique, is

also integrated in boosting specialized classifiers.

4. Experimental Results

Our experiments were first performed on three synthetic data sets generated using our spatial data simulator [28]

such that the distributions of generated data resembled the distributions of real life spatial data. All data sets had



6561 patterns with five relevant (f1,...f5) and five irrelevant attributes (f6,...,f10) atitree equal size classes. The
first data set stemmed from homogeneous distribution, while the second one was heterogeneous contaifivey
homogeneous data distritiions. In heterogeneoudata set, the attributesf4 and f5 were simulated to form five
clusters in their attribute space (f4, f5) using the technique of feature agglomeration [28]. Furthermore, instead of
using a single model for generating the target attbute on the entire spatial data set, a different data generation
procesausing different relevant attributesas applied per each clusteihe degree of relevance was also different
for each distribution. The histograms of all five attributes for homogendata set as well as for heterogeneous data
set with five distributions are shown in Figures 6a and 6b respectively. When applying boosting specialized
classifiers, we also experimented with the heterogeneous data set where the one of attributes riglechrstering

was missing only during clustering process, while all attributes were available when training specialized classifiers.
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Figure 6. Histograms of all five relevant atributes for a) homogeneous synthetic spatial data set b) heterogeneous

synthetic spatial data set with five clusters

We also performed experiments using spatial data fro228 ha field located near Pullman, WAAIl attributes
were interpolated to a 10%1m grid resulting in 24,598 patterns. The Pullman data set contained x and y coordinates
(attributes 12), 19 soil and topographic attributes (attribute213 and the corresponding crop yield.

For all performed experiments, synthetic and real life datds were split into training and test data sets. The all
reported classification accuracies were achieved on test data by averaging over 10 trials of the boosting algorithm.

For synthetic data sets, we first performed standard boosting and adaptivewd#riimosting (Figure 7) foboth

local (k-NN classifiers) and global (neural networks and decision trees) classifiers. For the k -NN classifier



experiments, the value ofk was set using cross validation performance estimates on the entire training set. For
boosting neural network classifiers, we used the model defined in section 3.1.2. tla@best prediction accuracies
were achieved usinghe LevenbergMarquardt algorithm for training neural networks. For boosting ID3 decision
trees, we used a pogiruningwith a small constant pruning factor such that the pruned trees were smaller than the

original ones for approximately 20%.
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Figure 7. Overall averaged classification accuracies (%) for the 3 equsilze class problems on (a) homogeneous

synthetic tesdata set (b) heterogeneous synthetic test data set with five clusters defined by 2 of 5 relevant attributes.

Analyzing the charts in Figure 7, it was evident that the method of adaptive attribute boosting applied to local
and global classifiers showednty minor improvements in prediction accuracy for both synthetic data sets. For the
homogeneous data set this was because there were no differences in relevant attributes through the training set,
while for the heterogeneous data set this was due to that fhat each spatial region not only had different relevant
attributes related to yield class but also a different number of relevant attributes. In such a scenario with uncertainty
regarding the number of relevant attributes for each region, we needed t@elect at least the four or five most
important attributes at each boosting round, since selecting the three most relevant attributes may be insufficient for
successful learning. Since the total number of relevant attributes in the data set was fivg aswselected the four
most relevant attributes for adaptive attribute boosting, knowing that for some drawn samples we would lose
beneficial information. Due to these facts concerning deficient attribute instability selected attributes during the
boosting iterations were not monitored.

In the standard boosting method, we used all five relevant attributes from the data set. Nevertheless, we obtained
similar classification accuracies for both the adaptive attribute boosting and the standard boostingethod, but

adaptive attribute boosting reached the “bounded” final prediction accuracy in fewer boosting iterations. This



property could be useful for reducing the total number of the boosting rounds. Instead of-pasthing the boosted

classifiers [23] wecan try to set the appropriate number of boosting iterations at the beginning of the procedure.
Applying the spatial boosting method to a kNN classifier, we achieved much better prediction than with the

adaptive attribute boosting methods on a-KkIN clasdfier (Table 1). Furthermore, when applying spatial boosting

with attribute selection at each round, the prediction accuracy was increased slightly as the size (M) of the spatial

block was increased (Table 1). No such improvements were noticed for spatiating with fixed attributes or with

the attribute weighting method, and therefore the classification accuracies for only M = 5 are given.

Applying spatial boosting on global classifiers (neural networks and decision tree) resulted in no
enhancements inclassification accuracies. Moreover, for pure spatial boosting without attribute selection we
obtained slightly worse classification accuracies than using “nepatial” boosting. This phenomenon was due to
spatial correlation of our attributes, which meatisat data points that are close in the attribute space are probably
close in real space, too. However, neural networks or decision trees do not consider spatial local information during

the training, and unlike4\N do not gain from sampling spatial détéocks.

Table 1. Overall averaged classification accuracy (%) of spatial boosting for the 3 equal size classes on both
synthetic test data sets using\IN classifiers.

Homogeneous data set Heterogeneous data set with 5 cluster
Number of Boosting Roundg 8 16 | 24 | 32 | 40 8 16 24 32 40

Fixed Attribute Set (M = 5)[[ 79.1] 79.6 80.1] 80.7 | 80.6][ 65.6 | 65.5 | 65.8 | 66.0 | 66.1
M=2 |[78.9] 79.3] 80.3| 80.2| 79.9|| 64.6 | 65.2 | 655 | 65.4 | 65.3
Backward M=3 |[80.1] 79.7] 80.7| 80.6] 80.8|| 65.3 | 65.9 | 65.9 | 66.2 | 66.4
Elimination M=4 |[80.3]80.1] 80.8| 80.5| 81.0|| 65.4 | 65.2 | 65.8 | 66.1 | 66.7
M=5 || 81.2] 80.8| 82.3| 82.4| 82.5|| 66.0 | 66.7 | 67.0 | 67.6 | 68.1
Attribute Weighting (M = 5)|| 79.4] 78.8| 80.1| 80.7 | 80.3]| 64.2 | 64.7 | 65.4 | 66.3 | 659

U7

When performingboosting specialized experts (Table 2, Figures 8 ar@) on heterogeneous data set with all
attributes, instead of performing unsupervised feature selection around a clustering algorithm at each boosting
iteration, we always applied clustering using the attributes f4 and f5, since we knew that these atisidetermine
homogeneous distributions. When one of two attributes responsible for clustering was missingve performed
clustering using available clustering attribute atite most relevant attribute obtained through the feature selection
processln addition, we always used all five relevant attributes for training specialized classifiers. The experiments
performed on homogeneous data set showed similar performance like in heterogeneous data with missing clustering

attribute and they are not reported here.



Table 2. Final averaged classification accuracies (%) for the 3 equal size classes. Different boosting algorithms are
applied on both synthetic heterogeneous test data sets.

Heterogeneous data setss Set with all relevant attributes Set with missing clusteng attribute
Method k-NN |Neural Network 1D3 k-NN  |Neural Networ ID3
Single Classifier 57.3 61.0+ 2.2 63.3 57.3 61.0+2.2 63.3

DBSCAN Clustering with single
specialized Clsssiﬁers 9€ 621 | 71.3+09 67.7 58.2 63.1+ 1.4 64.2
Standard Boosting 58.2+0.7] 69.8+1.1 |69.2+0.6/58.2+0.7| 69.8+1.1 |69.2+0.6
Adaptive Attribute Boosting [59.1+0.6] 69.4+1.1 |69.8+0.6/59.1+0.6] 69.4+1.1 |69.8+0.6
Spatial Boosting (M=5) [68.1+0.9] 69.1+1.2 [68.2+0.07/68.1+0.9| 69.1+1.2 [68.2+0.07
k-means clustering|66.4+1.1| 72.6+1.1 |71.2+0.8|61.8+1.3] 70.4+15 |69.9+1.1
Boosting simple |66.9+1.4 73.9+1.7 [72.1+1.0(62.1+1.4] 71.1+18 |70.4+1.3
SpecializedpgscAN previous |67.4+ 1.3 74.4+15 |728+1.2|633+15/ 71.3+1.9 |705+13
Experts withciysterindbest_globdl67.9+ 1.3, 74.9+ 1.4 | 73.4+1.1|62.4+1.4] 71.6+15 |708+1.1

Clustering best locall68.6+ 1.1 76.6+1.2 |745+09|62.7+1.3] 71.9+14 |71.1+12

Spatial Boosting Specialized
Experts (DBSCAN best_bcal) 71.9+1.0 76.4+1.3 |74.4+1.0|68.6+1.1| 71.4+15 |70.8+1.3
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All methods of boosting specialized experts resulted in improved generalizations for all synthetic spatial data
sets. However, improvements for heterogeneous data set with allilatiies (approximately 68- 77%) were much
more significant than for heterogeneous data set with missing clustering attribute (approximately 6372%) as
compared to 57— 63% obtained by single classifiers, specialized classifiers built on identified clustegtandard
boosting and adaptive attribute boosting as shown at Table 2, Figures 8 and 9. Therefore, it is apparent that the
prediction accuracy of all methods for boosting specialized experts directly depends on the quality of identified
clusters during bosting iterations.

Boosting specialized experts is slightly more beneficial when boosting\N classifiers than global prediction
models (Table 2), since the discovered clusters emphasize the local information, which is more helpful for local
learning algrithms than for the global ones. Compared to the pure boosting specialized experts, the spatial boosting
of global specialized classifiers again did not significantly affect the overall classification accuracy, while the
influence of drawing spatial blocls when boosting specialized ®NN classifiers was reduced as compared to the
improvements of pure spatial boosting over the standard and adaptive attribute boosting. This is due to the observed
phenomenon that the smaller discovered clusters are not totakpatial, i.e. they contain scattered points in the
spatial domain, and, in such cases, drawing spatial blocks does not help in reducing the total classification error.

It was also evident that the boosting of specialized experts required significantly fewiterations in order to
reach the maximal prediction accuracy. After prediction accuracy was maximized, the overall prediction accuracy
on the training set, as well as the total classification accuracy on the test set, started to decline due to tiat fiact
the later iterations only data points that were difficult for learning were drawn. Therefore, there was not sufficient
number of data examples in identified clusters needed for successful learning, and the prediction accuracy on these
clusters beguoi to deteriorate thus causing the drop of the total prediction accuracy too.

The data distribution of clusters discovered by applying DBSCAN clustering algorithm to heterogeneous data set
with all attributes was monitored at each boosting iteration (Figue 10). Unlike the previous adaptive attribute
boosting method when around 30 boosting iterations were needed to achieve good generalization results, here
typically only a few iterations (5 8 for global classification models and-8.2 for k-NN classifies) were sufficient.

As observed in Figure 10, data samples drawn in initial iterations (iteration 1) clearly included data points from all
five clusters while samples drawn in later iterations (iterations 4, 5) contained a very small number of data points

from the clusters where the prediction accuracy was good in previous iterations. As one of the criteria for stopping



boosting early, we stop the boosting procedure when the size of any of the discovered clusters is less than some
predefined number (usuallgss than 40). An additional stopping criterion is to observe the classification accuracy

on the entire training set and to stop the procedure when it starts to decline. Figures 8 and 9 show the iterations when
we stopped the boosting procedure. Althouglpractice the prediction accuracy on the test set does not necessarily

start to drop in the same iteration, this difference is usually within two boosting iterations and does not significantly

affect the total generalizability of the proposed method.
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When using the kmeans clustering algorithm during the boosting procedure, we did not notice the phenomenon
of reducing the size of discovered clusters and therefore we did not perform the modifications of the proposed
algorithm. In addition, it wa evident that boosting specialized experts when using tiedans clustering algorithm
was not as successful as boosting localized experts with the DBSCAN algorithm, due to the better quality of the
clusters identified by DBSCAN which was designed to diger spatial clusters of arbitrary shape.

Nevertheless, when using the DBSCAN algorithm at each boosting roundiedieocal technique provided the
best prediction accuracy (Table 2), while the simpleand previous methods were not significantly better than
boosting localized experts with kmeans clustering. Thesimple technique failed to achieve improved prediction
results, because it did not reach enough boosting iterations to develop the most appropriate classifiers for each
cluster that needed to be oobined, while theprevious method had a boosting cycle that was long enough, but did
not combine appropriate models. Finally, thebest_global and best_local methods combined the most accurate

models for each cluster taken in some of the earlier iteratiamd hence achieved the best generalizability.



Experiments with all proposed boosting modifications were repeated for real life spatial data. The goal was to
predict 3 equal size classes of wheat yield as a function of soil and topographic attributesaHde data (Pullman
data set) 16 miscellaneous attribute selection methods (Table 3) were applied on the training data set in order to
identify the four most relevant attributes that were used in the standard boosting method. Histograms for these most

stable attributes (4, 7, 9, 20) are shown in Figure 11.

Table 3. Attribute selection methods used to identify the 4 most stable attributes on train data set.

Attribute Selection Methods Selected attributes

Branch & Probabilistic Mahalanobis distance 7,9,11, 20
Bound distance _|Bhatacharya distance 4,7,10, 14
methods PatrickFisher distance 13,17, 20, 21

Minkowski (order = 1) 7,9,10,11
Inter-class |Minkowski (order = 3) 3,457
Forward distance |Eyclidean distance 3,457
Chebychev distance 3,4,5,7
Selection . |Bhatacharya distance 3,4,8,9
Probabilistic [\1anhalanobis distance 7,9, 11,20
methods |  distance Divergence distance metric 3,4,8,9
PatrickFisher distance 13,16, 20, 21
Minimal Error Probability, kNN with substitution 4,7,11,19
Linear regression performance feedback 5 9,7,18
Backward | Probabilistic Mahalanobis d.istance 7,9,11, 20
Elimination distance Bhatacharya distance 4,7,9,14
methods PatrickFisher distance 13,17, 20,21
Linear regresion performance feedback 7,9,11, 20

When performing attribute selection duringboosting on real life data set, the four and five attributes were
selected and monitored and their frequency was compuide frequency of selected attributes during theosting
rounds, when boosting was applied to-kIN classifiers, neural network and decision tree classification models, is
presented in Figures 12, 13 and 14 respectively. WRE&A was used with boosting-KIN classifiers, projections to
four dimensions exfained most of the variance and there was little improvement from additional dimensions. For
the attribute weighting method in boosting-KN predictors, we used the attribute synaptic weights between input
nodes and the output node of a tlayer neural network constructed for each drawn sample. When boosting was
applied to global classifiers (neural network classifiers and decision trees), only attribute selection procedures for
changing attribute representation were considered. The achieved classificatmmacies for both local and global

classifiers are given in Table 4.
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Table 4.Comparative analysisf overall classification accuracies (%) for the 3 egagle class problemsn real life
test data wih 19 soil and topographic attributes.

Number k-NN classifier LevenbergMarquardl |p3 Decision Trees
of |Standar¢ Adaptive Attribute Boosting with neural networks

Boosting Boosting Forward| Backward Attribute | Standard Backward| Standard Backward

Rounds gSelectiorEIimination PCA Weighting| Boosting Elimination| Boosting| Elimination
8 38.2 40.9 38.5 42.4 43.0 43.6 47.5 43.3 46.9
16 39.5 41.3 38.8 42.4 43.9 441 47.8 43.7 47.3
24 38.8 41.9 42.1 44.5 44.8 44.8 48.3 44.3 47.8
32 38.5 41.8 43.5 45.1 46.1 45.5 48.8 45.0 48.2
40 39.3 42.1 42.8 43.4 44.3 449 48.5 45.2 48.4

Results from Table 4 show that the methods of adaptive attribute boosting outperformed the standard boosting

technique for both local and global classifiers.

The results indicate thBb86ting rounds were usually sufficient to

maximize prediction accuracy and to somewhat stabilize the selected attributes although attribute selection during

boosting was less stable forN (Figure 12) than for neural networks (Figure 13) or decisi@es (Figure 14). For



k-NN after approximately 30 boosting rounds the attributes became fairly stable with attributes 7, 11 and 20
obviously more stable than attributes 3 and 9, which also appeared in later iterations. The prediction accuracies
when using kNN classifier with Mahalanobis distance were worse than those using Euclidean distance, and are not
reported here.

When boosting neural network classifiers we used models defined in section 3.1.2, and the best results were
obtained using the applied bagkrd elimination attribute selection and thevenbergMarquardt learning algorithm
(Table 4). On the other hand, decision trees used all selected attributes for computing the splitting criterion, and after
constructing they are pruned such thiia numbeiof nodes in pruned trees was reduced for 20%.

Classification accuracies of spatial boosting folN classifiers on the real life data set were again much better
than without using spatial information and comparable to boosting neural networks and demisirees (Table 5).
Here, the classification accuracy improvements from increasing the size (M) of the spatial blocks were less apparent

than for synthetic spatial data probably due to the higher spatial correlation of the synthetic data sets.

Table 5.Overall classification accuracy (%) of spatial boosting for the 3 equséte class problems for real life test

data using KNN classifiers.

Spatial Boosting for KNN with
Number of ] m
Boosting Attril;ﬁ?e Set Backward Elimination Attribute Selectig V'\A/\girglghliitr?g
Rounds
M=5 M=2 M=3 M=4 M=5 M=5
8 46.4 45.8 47.7 48.1 47.8 45.2
16 46.6 46.2 47.6 48.1 47.7 45.6
24 46.7 46.7 47.9 48.2 48.2 45.8
32 46.9 46.9 48.3 48.4 47.9 46.3
40 47.0 47.2 48.3 47.9 47.8 45.9

When boosting specializetlassifiers, all experiments were performed with the unsupervised wrapper procedure
for identifying the most germane attributes for clustering and also with the supervised feature selection procedure
for finding the most important attributes for each oftie discovered clusters. In order to reduce the computational
cost of the unsupervised wrapper approach, we did not identify more than three most appropriate attributes for
clustering, since our previous experiments with clustering on the entire trainingraticate that the best quality of
clusters was obtained when using only two or three attributes [21]. The same experiments pointed out that modeling
with four attributes results in the best prediction capability and therefore we were selecting only &bnibutes for

constructing classifiers on discovered clusters. Figure 15 shows the overall classification accuracy when beosting k



NN classifiers, while the results in Figure 16 were obtained using the

LevenbergMarquardt algorithmfor

optimizing neural etwork parameters and using the pruned ID3 trees with a relatively small pruning factor.
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Figure 15.0verall classification accuracies ofdN classifiers for the &lass problems on real life test data.
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Figure 16.0verall classificatioraccuracies of global predictors for theclass problems on real life test data.

Boosting specialized experts on a real life data set is not as superior to the adaptive attribute and spatial boosting
methods as for the synthetic heterogeneous data dhtaliattributes. However, similar improvements in prediction
accuracy were achieved for synthetic heterogeneous data set with missing clustering atffibistendicates that in
real life data, it is possible there is a laalf appropriate driving varibles for explaining the variability of the target
attribute. The discovered spatial clusters in real life data are not as distinct as the spatial clusters in synthetic
heterogeneous data with all attributes, but the higher attribute instability was appariynbeneficial for adaptive
attribute boosting. Unlike synthetic heterogeneous data sets, for real life data the additional diversity of constructed
classifiers is achieved by performing unsupervised attribute selection and by discovering clusters ediiffetient
attributes. Similar to experiments on synthetic data, thest_|ocal technique of boosting localized experts was the

most successful among all the proposed methods.



5. Conclusions and Future Work

Results from several spatial data sets indi¢hsg the proposed techniques for combining multiple classifiers can
result in significantly better predictions over existing classifier ensembles, especially for heterogeneous spatial data
sets with attribute instabilities. First, this study provides ewdce that by manipulating the attribute representation
used by individual classifiers at each boosting round, classifiers could be more decorrelated thus leading to higher
prediction accuracy. Second, our adaptive attribute boosting technique is more eféint than standard boosting,
since a smaller number of iterations was sufficient to achieve the same final prediction accuracy. In addition, the
attribute stability test served as a good indicator for properly stopping further boosting iterations. Thirdetnew
boosting method proposed for spatial data showed promising resultsNiN klassifiers making it competitive with
powerful global classification models like neural networks and decision trees. Finally, boosting specialized experts
with clustering performed at each boosting round further significantly improved both the prediction accuracy on
highly heterogeneous databases and the efficiency of the algorithm by additional reducing the number of boosting
iterations needed for achieving maximal predicton accuracy. However, for homogeneous data as well as for
heterogeneous data sets with missing relevant attributes, the proposed method of boosting specialized classifiers
showed only small improvements in achieved prediction accuracy.

Although boosting spcialized experts required order of magnitude less boosting rounds to achieve the maximum
prediction accuracy than the standard, adaptive attribute or spatial boosting, the number of constructed prediction
models increases drastically through the iteragohis number depends on the number of discovered clusters and
on the number of boosting rounds needed for making the final classifier. In our case, this drawback was alleviated
by the fact that we were experimenting with small numbers of clusters and ¢indy a few boosting iterations were
sufficient to maximize prediction accuracy. Therefore, the memory needed for storing all prediction models is
comparable or even less than for the standard boosting technique.

In addition to the prediction accuracy tife boosted specialized experts, the time required for building the model
is also an important issue when developing a novel algorithm. Albeit the number of learned classifiers per iteration
for the proposed method was much larger than for the standard boosting, the cluster data sets on which the
classification models were built were smaller. The computation time for learning specialize experts was therefore

comparable to learning the models on the entire training data. Hence, the total computation temeédeply on the



number of iterations, and is much smaller for the proposed boosting localized experts than for standard boosting or
adaptive attribute boosting.

Despite the fact that the new fastkN classifier significantly reduces the computational tegements, an open
research question is to further increase the speed of ensembles of NN classifiers for high -dimensional data.
Although the performed experiments provide evidence that the proposed approach can improve predictions by
ensembles of both al and global classifiers, further work is needed to examine the adaptation of global classifiers
when boosting spatial data. In order to use the advantages from both local antinean prediction models, we are
currently experimenting with a method difoosting radial basis functions. In addition, we are working to extend the

method to regressiehased problems.
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