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Abstract. Combining multiple classifiers is an effective technique for improving classification accuracy by reducing 

the variance through manipulating the training data distributions. In many large-scale data analysis problems 

involving heterogeneous databases with attribute instability, however, standard boosting methods do not improve 

local classifiers (e.g. k-nearest neighbors) due to their low sensitivity to data perturbation. Here, we propose an 

adaptive attribute boosting technique to coalesce multiple local classifiers each using different relevant attribute 

information. To reduce the computational costs of k -nearest neighbor (k-NN) classifiers, a novel fas t k -NN 

algorithm is designed. We show that the proposed combining technique is also beneficial when boosting global 

classifiers like neural networks and decision trees. In addition, a modification of the boosting method is developed 

for heterogeneous spatial databases with unstable driving attributes by drawing spatial blocks of data at each 

boosting round. Finally, when heterogeneous data sets contain several homogeneous data distributions, we propose 

a new technique of boosting specialized classifiers, where instead of a single global classifier for each boosting 

round, there are specialized classifiers responsible for each homogeneous region. The number of regions is 

identified through a clustering algorithm performed at each boosting iteration. New boosting methods applied to 

synthetic spatial data and real life spatial data show improvements in prediction accuracy for both local and global 

classifiers when unstable driving attributes and heterogeneity are present in the data. In addition, boosting 

specialized experts significantly reduces the number of iterations needed for achieving the maximal prediction 

accuracy. 
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1. Intro duction 

 

In contemporary data mining, many real world knowledge discovery problems involve the investigation of 

relationships between attributes in heterogeneous data sets where rules identified among the observed attributes in 

certain subsets do not apply elsewhere. A heterogeneous data set can be partitioned into homogeneous subsets such 

that learning a local model separately on each of them results in improved overall prediction accuracy. In addition, 

many large-scale data sets very often exhibit attribute instability, which means that the set of relevant attributes that 

describes data examples is not the same through the entire data space. This is especially true in spatial databases, 

where different spatial regions may have completely different characteristics [18]. 

It is well known in machine learning theory that a combination of many different predictors can be an effective 

technique for improving prediction accuracy. There are many general combining algorithms such as bagging [5], 

boosting [9], or Err or Correcting Output Codes (ECOC) [15] that significantly improve global classifiers like 

decision trees, rule learners, and neural networks. These algorithms may manipulate the training patterns used by 

individual classifiers (bagging, boosting) or the class labels (ECOC).  In most cases, the importance of different 

classifiers is the same for all of the patterns within the data set to which they are applied. 

In order to improve the global accuracy of the whole, an ensemble of classifiers must be both accurate and 

diverse. To make the ensemble of classifiers for heterogeneous databases more accurate, instead of applying a global 

classification model across entire data sets, the models are varied to better match specific needs of the subsets thus 

improving prediction capabilities [21]. In such an approach, there is a specialized classification expert responsible 

for each region which strongly dominates the others from the pool of specialized experts. 

On the other hand, diversity is required to ensure that all the classifiers do not make the same errors. In order to 

increase the diversity of combined classifiers for heterogeneous spatial databases with attribute instability, one 

cannot assume that the same set of attributes is appropriate for each single classifier. For each training sample, 

drawn in a bagging or boosting iteration, a different set of attributes is relevant and therefore the appropriate 

attribute set should be used for constructing single classifiers in every iteration. In addition, the application of 

different classifiers on spatial databases, where the data are highly spatially correlated, may produce spatially 

correlated errors [19]. In such situations, standard combining methods might require different schemes for 

manipulating the training instances in order to maintain classifier diversity. 



In this paper, we extend the framework for constructing multiple classifier system using the AdaBoost algorithm 

[9]. In our approach, we first try to maximize local specific information for a drawn sample by changing the attribute 

representation using attribute selection, attribute extraction and appropriate attribute weighting methods [22] at each 

boosting iteration. Second, in order to exploit the spatial data knowledge, a modification of the boosting method 

appropriate for heterogeneous spatial databases is proposed, where, at each boosting round, spatial data blocks are 

drawn instead of sampling single instances like in the standard approach. Finally, the maximal gain by emphasizing 

local information, especially for highly heterogeneous data sets, was achieved by allowing the weights of the 

different weak classifiers to depend on the input. Rather than having constant weights of the classifiers for all data 

patterns (as in standard approaches), we allow weights to be functions over the input domain. In order to determine 

these weights, at each boosting iteration we identify local regions having similar characteristics using a clustering 

algorithm and then build specialized classification experts on each of these regions which describe the relationship 

between the data characteristics and the target class [18].  Instead of a single classifier built on a sample drawn in 

each boosting iteration, there are several specialized classification experts responsible for each of the local regions 

identified through the clustering process. All data points belonging to the same region and hence to the same 

classification expert will have the same weights when combining the classification experts. 

The influence of all of these adjustments is not the same, however, for local classifiers [4] (e.g. k–nearest 

neighbors, radial basis function networks) and global classifiers (e.g. decision trees and artificial neural networks). It 

is known that standard combining methods do not improve simple local classifiers due to correlated predictions 

across the outputs from multiple combined classifiers [5, 15]. We show that, by selecting different attribute 

representations for each sample, prediction of combined nearest neighbor as well as global classifiers can be 

considerably decorrelated. Our experimental results indicate that sampling spatial data blocks during boosting 

iterations is beneficial only for local but not for global classifiers. Further significant improvements in prediction 

accuracy obtained by building specialized classifiers responsible for local regions show that this method seems to be 

slightly more beneficial for k-nearest neighbor algorithms than for global classifiers, although the total prediction 

accuracy was significantly better when combining global classifiers. 

The nearest neighbor classifier is often criticized for slow run-time performance and large memory requirements, 

and using multiple nearest neighbor classifiers could further worsen the problem. Therefore, we used a novel fast 

method for k-nearest neighbor classification to speed up the boosting process. 



In Section 2, we discuss current ensemble approaches and work related to specialized experts and changing 

attribute representations of combined classifiers. Section 3 describes the proposed methods and investigates their 

advantages and limitations. In Section 4, we evaluate the proposed methods on three synthetic and one real-life data 

set comparing it with standard boosting and other methods for dealing with heterogeneous spatial databases. Finally, 

section 5 concludes the paper and suggests further directions in current research. 

 

2. Classifier Ensembles 

2.1. Ensembles of Local Learning Algorithms 

 

One of the oldest and simplest methods for performing general, non-parametric classification that belongs to the 

family of local learning algorithms [4] is a k-nearest neighbor classifier (k-NN) [7]. Despite its simplicity, the k-NN 

classifier can often provide similar accuracy to more sophisticated methods such as decision trees or neural 

networks. Its advantages include the ability to learn from a small set of examples, and to incrementally add new 

information at runtime.  

Many general algorithms for combining multiple versions of a single classifier do not impro ve the k -NN 

classifier at all. For example, when experimenting with bagging, Breiman [5] found no difference in accuracy 

between the bagged k-NN classifier and the single model approach. Kong and Dietterich [15] also concluded that 

ECOC would not improve classifiers that use local information due to high error correlation. 

A popular alternative to bagging is boosting, which uses adaptive sampling of patterns to generate the ensemble. 

In boosting [9], the classifiers in the ensemble are trained serially, with the weights on the training instances set 

adaptively according to the performance of the previous classifiers. The main idea is that the classification algorithm 

should concentrate on the difficult instances. Boosting can generate more diverse ensembles than bagging does, due 

to its ability to manipulate the input distributions. However, it is not clear how one should apply boosting to the k-

NN classifier for the following reasons: (1) boosting stops when a classifier obtains 100% accuracy on the training 

set, but this is always true for the k-NN classifier, (2) increasing the weight on a hard to classify instance does not 

help to correctly classify that instance as each prototype can only help classify its neighbors, not itself. Freund and 

Schapire [9] applied a modified version of boosting to the k-NN classifier that worked around these problems by 



limiting each classifier to a small number of prototypes. However, their goal was not to improve accuracy, but to 

improve speed while maintaining current performance levels.  

Although there is a large body of research on multiple model methods for classification, very little specifically 

deals with combining k-NN classifiers. Ricci and Aha [31] applied ECOC to the k -NN classifier (NN-ECOC). 

Normally, applying ECOC to k-NN would not work since the errors would be correlated across the binary learning 

problems. However, they found that applying attribute selection to the two-class problems decorrelated errors if 

different attributes were selected. Unlike this approach, Bay’s Multiple Feature Subsets (MFS) method [3] uses 

random attributes when combining individual classifiers by simple voting. Each time a pattern is presented for 

classification, a new random subset of attributes is selected for each classifier. He used two different sampling 

functions: sampling with replacement, and sampling without replacement. Each of the k-NN classifiers uses the 

same number of attributes. 

Some researchers developed techniques for reducing memory requirements for k-NN classifiers by their 

combining. In combining condensed nearest neighbor (CNN) classifiers [1], the size of each classifier’s prototype 

set is drastically reduced in order to destabilize the k-NN classifier. Bootstrap or disjoint data set partitioning was 

used in combi nation with CNN classifiers to edit and reduce the prototypes. In Voting nearest neighbor 

subclassifiers [16], three small groups of examples are selected such that each k-NN subclassifier, when used on 

them, errs in a different part of the instance space. Simple voting may then correct many failures of individual 

subclassifiers. 

 

2.2. Ensemble of Global Learning Algorithms 

 

There has been a very significant movement during the past decade to combine the decisions of global classifiers 

(e.g. decision trees, neural networks), and a significant body of literature on this topic has been produced. All 

combining methods are results of two parallel lines of study: (1) multiple classifier systems that attempt to find an 

optimal combination of the decisions from a given set of carefully designed global classifiers; and (2) specialized 

classifier systems that build mutually complementary classification experts, each responsible for a particular data 

subset, and then merge them together. Although it is known that multiple classifier systems work well with global 

classifiers like neural networks, there have been several experiments in selecting different attribute subsets as an 



attempt to force the classifiers to make different and hopefully uncorrelated errors when analyzing heterogeneous 

databases. 

FeatureBoost [26] is a recently proposed variant of boosting where attributes are boosted rather than examples. 

While standard boosting algorithms alter the distribution by emphasizing particular training examples, FeatureBoost 

alters the distribution by emphasizing particular attributes. The goal of FeatureBoost is to search for alternate 

hypotheses amongst the attributes. A distribution over the attributes is updated at each boosting iteration by 

conducting a sensitivity analysis on the attributes used by the model learned in the current iteration. The distribution 

is used to increase the emphasis on unused attributes in the next iteration in an attempt to produce different sub-

hypotheses. 

Only a few months earlier, a considerably different algorithm exploring a similar idea for an adaptive attribute 

boosting technique was published [19]. The technique coalesces multiple local classifiers each using different 

relevant attribute information. The related attribute representation is changed through attribute selection, extraction 

and weighting processes performed at each boosting round. This method was mainly motivated by the fact that 

standard combining methods do not improve local classifiers (e.g. k-NN) due to their low sensiti vity to data 

perturbation, although the method was also used with global classifiers like neural networks. 

In addition to the previous method, there were a few more experiments selecting different attribute subsets as an 

attempt to force the neural network classifiers to make different and hopefully uncorrelated errors. Although there is 

no guarantee that using different attribute sets will decorrelate error, Tumer and Ghosh [35] found that with neural 

networks, selectively removing attributes could decorrelate errors. Unfortunately, the error rates in the individual 

classifiers increased, and as a result there was little or no improvement in the ensemble. Cherkauer [6] was more 

successful, and was able to combine neural networks that used different hand selected attributes to achieve human 

expert level performance in identifying volcanoes from images. 

Motivated by the problem of how to avoid overfitting a set of training data when using decision trees for 

classification, Ho [12] proposed a “decision forest”,  an ensemble of decision trees constructed systematically by 

autonomously and pseudorandomly selecting a small number of dimensions from a given attribute space. The 

decisions of individual trees are combined by averaging the conditional probability of each class at the leaves. The 

method maintains high accuracy on the training data and, compared with single tree classifiers, improves on the 

generalization accuracy as it grows in complexity. 



Opitz [25] has investigated the notion of an ensemble feature selection with the goal of finding a set of attribute 

subsets that will promote disagreement among the component members of the ensemble. A genetic algorithm 

approach was used for searching an appropriate set of attribute subsets for ensembles. First, an initial population of 

classifiers is created, where each classifier is generated by randomly selecting a different subset of attributes. Then, 

the new candidate classifiers are continually produced, by using the genetic operators of crossover and mutation on 

the attribute subsets. The algorithm defines the overall fitness of an individual to be the combination of accuracy and 

diversity. 

DynaBoost [24] is an extension of the AdaBoost algorithm that allows an input-dependent combination of the 

base hypotheses. A separate weak learner is used for determining the input dependent weights of each hypothesis. 

The error function minimized by these additional weak learners is a margin cost function that is also minimized by 

AdaBoost. Although the weights depend on the input, there is still a single hypothesis per iteration that needs to be 

combined.  

Several approaches belonging to specialized classifier systems have also appeared lately. Our recent approach 

[21] is designed for analysis of spatially heterogeneous databases. It first clusters the data in the space of observed 

attributes, with an objective of identifying similar spatial regions. This is followed by local prediction aimed at 

learning relationships between driving attributes and the target attribute inside each cluster. The method was also 

extended for learning when the data are distributed at multiple sites.  

A similar method is based on a combination of classifier selection and fusion by using statistical inference to 

switch between these two [17]. Selection is applied in regions of the attribute space where one classifier strongly 

dominates the others from the pool (clustering-and-selection step), and fusion is applied in the remaining regions. 

Decision templates (DT) are adopted for classifier fusion, where all classifiers are trained over the entire attribute 

space and thereby considered as competitive rather than complementary. 

Some researchers also have tried to combine boosting techniques with building single classifiers in order to 

improve prediction in heterogeneous databases. One such approach is based on a supervised learning procedure, 

where outputs of predictors are trained on different distributions followed by a dynamic classifier combination [2]. 

This algorithm applies principles of both boosting and Mixture of Experts [13] and shows high performance on 

classification or regression problems. The proposed algorithm may be considered either as a boost-wise initialized 

Mixture of Experts, or as a variant of the Boosting algorithm. As a variant of the Mixture of Experts, it can be made 



appropriate for general classification and regression problems, by initializing the partition of the data set to different 

experts in a boosting like manner. If viewed as a variant of the Boosting algorithm, it uses a dynamic model for 

combining the outputs of the classifiers.  

 

3. Methodology 

3.1 Adaptive Attribute Boosting 

 

The adaptive attribute boosting algorithm we present here is a variant of the AdaBoost.M2 procedure [9]. The 

proposed algorithm, shown in Figure 1, proceeds in a series of T rounds. In every round a weak learning algorithm is 

called and presented with a different distribution Dt altered not only by emphasizing particular training examples, 

but also by emphasizing particular attributes. The distribution is updated to give wrong classifications higher 

weights than correct classifications. The entire weighted training set is given to the weak learner to compute the 

weak hypothesis ht. At the end, the different hypotheses are combined into a final hypothesis hfn. 

Since at each boosting iteration t we have different training samples drawn according to the distribution Dt, at the 

beginning of the “for loop” in Figure 1 we modify the standard algorithm by adding step 0, wherein we choose a 

different attribute representation for each sample. Different attribute representations are realized through attribute 

selection, attribute extraction and attribute weighting processes through boosting iterations. This is an attempt to 

force individual classifiers to make different and hopefully uncorrelated errors. 

Figure 1. The adaptive attribute boosting with performing attribute selection at step 0 in each boosting iteration 

• Given: Set S {(x1, y1), … , (xm, ym)} x i ∈X, with labels yi ∈Y = {1, …, k}  
• Let B = {(i, y): i ∈ {1,2,3,4,…m}, y ≠ yi}  
• Initialize the distribution D1 over the examples, such that D1(i) = 1/m. 

• For t = 1, 2, 3, 4, … T 
0. Find relevant feature information for distribution Dt using supervised attribute selection 
1. Train weak learner using distribution Dt  
2. Compute weak hypothesis ht: X × Y → [0, 1] 
3. Compute the pseudo-loss of hypothesis ht:   

εt = )),(),(1)(,(
2

1

),(

yxhyxhyiD itiit
Byi

t +−⋅
∈

 

4. Set βt = εt / (1 - εt) 

5. Update Dt :  Dt+1 (i, y) = )),(),(1()2/1()/),(( iitit yxhyxh
ttt ZyiD +−⋅⋅ β  

where Zt is a normalization constant chosen such that Dt+1 is a distribution. 

• Output the final hypothesis: ),()
1

(logmaxarg
1

yxhh t

T

t tYy
fn ⋅=

=∈ β
 



To eliminate irrelevant and highly correlated attributes, regression-based attribute selection is performed through 

performance feedback forward selection and backward elimination search techniques [22] based on linear regression 

mean square error (MSE) minimization. The r most relevant attributes are selected according to the selection 

criterion at each round of boosting, and are used by the single classifiers. In addition, attribute extraction procedure 

is performed through Principal Components Analysis (PCA) [10]. Each of the single classifiers uses the same 

number of new transformed attributes. Another possibility is to choose an appropriate number of newly transformed 

attributes that will retain some predefined part of the variance. 

The attribute weighting method for the proposed technique is used only for local classifiers (k-NN) and is based 

on a 1-layer feedforward neural network. First, we try to perform target value prediction for the drawn sample with a 

defined 1-layer feedforward neural network using all attributes. It turns out that this kind of neural network can 

discriminate relevant from irrelevant attributes. Therefore, the neural networks interconnection weights are taken as 

attribute weights for the k-NN classifier. 

To further experiment with attribute stability properties, miscellaneous attribute selection algorithms [22] are 

applied to the entire training set and the most stable attributes are selected. These attributes are then used by the 

standard boosting method. When applying adaptive attribute boosting, in order to compare the most stable selected 

attributes, the attribute occurrence frequency is monitored at each boosting round. When attribute subsets selected 

through boosting rounds become stable, this is an indication to stop the boosting process. 

 

3.1.1 Adaptive Attribute Boosting for k-NN Classifier 

 

Nearest neighbors are stable to the data perturbation, so bagging and boosting generate poor k-NN ensembles. 

However, they are extremely sensitive to the attributes used. Our approach attempts to use this instability to generate 

a diverse set of local classifiers with uncorrelated errors. At each boosting round, we perform one of the methods for 

changing attribute representation, explained above, to determine a suitable attribute space for use in classification. 

When determining the least distant instances, we consider standard Euclidean distance and Mahalanobis distance.  

To speed up the long-lasting boosting process, a fast k-NN classifier is proposed. For n training examples and d 

attributes our approach requires preprocessing which takes O(d⋅ n ⋅ log n ) steps to sort each attribute separately. 

However, this is performed only once, and we trade off this initial time for later speedups.  



Initially, we form a hyper-rectangle with boundaries defined by the extreme values of the k closest values for 

each attribute (Figure 2 – small dotted lines). If the number of training instances inside the identified hyper-rectangle 

is less than k, we compute the distances from the test point to all of d⋅k data points which correspond to the k closest 

values for each of d attributes, and sort them into a non-decreasing array sx. We take the nearest training example 

cdp with the distance dstmin, and form a hypercube with boundaries defined by this minimum distance dstmin (Figure 

2 - larger dotted lines). If the hypercube does not contain enough data, i.e. k training points, form the hypercube of a 

side 2⋅sx(k+1). Although this hypercube contains more than k training examples, we need to find the one which 

contains the minimal number of training examples greater than k. Therefore, if needed, we search for a minimal 

hypercube by binary halving the index in the non-decreasing array sx. This can be executed at most log k times, 

since we are reducing the size of the hypercube from 2⋅sx(k+1) to 2⋅sx(1). Therefore the total time complexity of our 

algorithm is O(d⋅log k ⋅log n), under the assumption that n > d⋅k, which is always true in practical problems. 

 

 

 

 

 

 

 

 

 

Figure 2. The used hyper-rectangle, hypersphere and hypercubes in the fast k-NN 

 

If the number of training instances inside the identified hyper-rectangle (Figure 2 - small dotted lines) is larger 

than k, we also search for a minimal hypercube that contains at least k and at most 2⋅k training instances inside that 

hypercube. This is accomplished by binary halving or by incrementing a side of the hypercube . After each 

modification of the hypercube’s side, we compute the number of enclosed training instances and modify the 

hypercube accordingly. Analogously to the previous case, it can be shown that binary halving or incrementing the 

hypercube’s side will not take more than log k time, and therefore the total time complexity is still O(d⋅log k ⋅log n). 
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When we find a hypercube which contains the appropriate number of points, it is not necessary that all k nearest 

neighbors are in the hypercube, since some of the closer training instances to the test points could be located in a 

hypersphere of identified radius dst d (Figure 2). Since there is no fast way to compute the number of instances 

inside the sphere without computing all the distances, we embed the hypersphere in a minimal hypercube (Figure 2 – 

dashed lines) and compute the number of training points inside this surrounding hypercube. The number of points 

inside the surrounding hypercube is much less than the total number of training instances and therefore speedups our 

algorithm. 

 

3.1.2 Adaptive Attribute Boosting for Global Classifiers 

 

Although standard boosting can increase the prediction accuracy of global classifiers like neural networks [34] 

and decision trees [30], we change attribute representation to see if adaptive attribute boosting can further improve 

accuracy of an ensemble of global classifiers. The most stable attributes used in standard boosting of k-NN 

classifiers are also used here for the same purpose.  

We train multilayer (2-layered) feedforward neural network classification models with the number of hidden 

neurons equal to the number of input attributes. The neural network classification models have the number of output 

nodes equal to the number of classes, where the predicted class is from the output with the largest response. We used 

two learning algorithms: resilient propagation [32] and Levenberg-Marquardt [11]. For a decision tree model, we 

used the ID3 learning algorithm [29] which employs the information gain criterion to choose which attribute to place 

at the root of each decision tree and subtree. After the trees are fully grown, a pruning phase replaces subtrees with 

leaves using the same predefined pruning factor for all trees. 

 

3.2 Spatial Boosting 

 

Spatial data represent a collection of attributes whose dependence is strongly related to spatial location; 

observations close to each other are more likely to be similar than observations widely separated in space. 

Explanatory attributes, as well as the target attribute in spatial data sets are very often highly spatially correlated. As 

a consequence, applying different classification techniques on such data is likely to produce errors that are also 



spatially correlated [27]. Therefore, when applied to spatial data, the boosting method may require different 

partitioning schemes than simple weighted selection that does not take into account the spatial properties of the data.  

The proposed spatial boosting method (Figure 3) starts with partitioning the spatial data set into the spatial data 

blocks (squares of size M points × M points). Rather than drawing n data points according to the distribution Dt 

(Figure 1), the proposed method draws only 
�
n/M2�  data points according to the distribution Pt (Figure 3). Since 

each of drawn examples belongs exactly to one of the partitioned spatial data blocks, the proposed method defines 

�
n/M2�  belonging spatial data blocks and merges them into a set used for learning a weak classifier. Like in standard 

boosting, the distribution Pt is also updated to give wrong classifications higher weights than correct classifications, 

but due to spatial correlation of data, at the end of each boosting round simple median M × M filtering is applied 

over the entire data distribution Pt. Using this approach we hope to achieve more decorrelated classifiers whose 

integration can further improve model generalization capabilities for spatial data. The spatial boosting technique was 

applied to both local (k-NN) and global (neural network, decision trees) classifiers 

Figure 3. The spatial boosting algorithm with drawing spatial data blocks at each boosting round 

 

3.3 Boosting Specialized Classifiers 

 

Although previous boosting modifications improve generalizability of final predictors, it seems that in 

heterogeneous databases where several more homogeneous regions exist boosting does not enhance the prediction 

capabilities as well as for homogeneous databases [19].  In such cases it is more useful to have several local experts 

• Given set S {(x1, y1), … , (xm, ym)} x i ∈X, with labels yi ∈Y = {1, …, k} is split into 
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M x M points. Let B = {(i, y): i ∈ {1,2,3,4,…m}, y ≠ yi}  
• Initialize the distribution P1 over the examples, such that P1(i) = 1/m. 
• For t = 1, 2, 3, 4, … T 

1. According to distribution Pt draw 
�
n/M2�  data points that uniquely determine belonging spatial data blocks. 

2. Train a weak learner on a set containing all belonging spatial data blocks. 
3. Compute weak hypothesis ht: X × Y → [0, 1] 
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responsible for each region of the data set. A possible approach to this problem is to cluster the data first and then to 

assign a single classifier to each discovered cluster. Boosting specialized classifiers, described in Figure 4, models a 

scenario in which the relative significance of each expert advisor is a function of the attributes from the specific 

input patterns. This extension seems to better model real life situations where particularly complex tasks are split 

among experts, each with expertise in a small spatial region. 

Figure 4. The scheme for boosting specialized classifiers with performing attribute selection algorithm wrapped 

around clustering (step 1) in each boosting iteration. 

 

In this work as in many boosting algorithms, the final composite hypothesis is constructed as a weighted 

combination of base classifiers. The coefficients of the combination in the standard boosting, however, do not 

depend on the position of the point x whose label is of interest. The proposed boosting algorithm achieves greater 

flexibility by building classifiers that operate only in specialized regions and have local weights βt(x) that depend on 

the point x where they are applied. 

• Given: Set S = {(x1, y1), … , (xm, ym)} x i ∈X, with labels yi ∈Y = {1, …, k}  
• Let B = {(i, y): i ∈ {1,2,3,4,…m}, y ≠ yi}  
• Initialize the distribution D1 over the examples, such that D1(i) = 1/m. 
• While (t < T ) or (global accuracy on set S starts to decrease) 

1. Find relevant attribute information for distribution Dt using unsupervised wrapper approach around 
clustering algorithm. 

2. Obtain c distributions Dt,j, j = 1, …c and corresponding sets (clusters) St,j = {(x 1,j, y1,j), … , ( j,mj,m jj
y,x )} 

xi,j
 ∈ X j, with labels yi,j

 ∈Y j = {1, …, k} by applying clustering with the most relevant attributes identified 
in step 1. Let Bj = {(i

j, yj): i j ∈ {1,2,3,4,…mj}, y j ≠ yi
j}  

3. For j = 1 … c (For each of c clusters) 

3.1. Find relevant attribute representation for clusters St,j  using supervised feature selection 
3.2. Train weak learners Lt,j on the sets St,j,  j = 1,…c. 
3.3. Compute weak hypothesis ht,j: X j × Y j → [0, 1] 
3.4. Compute convex hulls Ht,j for each of c clusters St,j from the entire set S. 
3.5. Compute the pseudo-loss of hypothesis ht,j: 
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3.6. Set βt,j = εt,j / (1 - εt,j) 
3.7. Determine clusters on the entire training set according to the convex hull mapping. All points inside 

the convex hull Ht,j belong to the j-th cluster Tt,j from iteration t. 

4. Merge all ht,j, j = 1,… c into a unique weak hypothesis ht and all βt,j, j = 1,… c into an unique βt according 
to convex hull belonging (example fitting in the j-th convex hull has the hypothesis ht,j and the value βt,j). 
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In order to partition the spatial data set into these localized regions, two clustering algorithms are employed. The 

first is the standard k-means algorithm [14]. Here, data set S = {(x1, y1), … , (x m, ym)}, x i ∈X, is partitioned into k 

clusters by finding k points k
jjm 1}{ =  such that  

∈Xx
j

i
n

min(
1

d2 (xi, mj)) 

is minimized, where d2(xi, mj) usually denotes the Euclidiean distance between xi and mj, although other distance 

measures can be used. The points k
jjm 1}{ = are known as cluster centroids or cluster means. 

The second clustering algorithm called DBSCAN relies on a density-based notion of clusters and was designed 

to discover clusters of an arbitrary shape [33]. The key idea of a density-based cluster is that for each point of a 

cluster its Eps-neighborhood for a given Eps > 0 has to contain at least a minimum number of points (MinPts), (i.e. 

the density in the Eps-neighborhood of points has to exceed some threshold), since the typical density of points 

inside clusters is considerably higher than outside of clusters. Unlike the cluster centroids in the k-means, here the 

centers of the clusters can be outside of the clusters due to their arbitrary shapes. Therefore, we define cluster 

medoids, the cluster core objects closest to the cluster centroids. 

Since our boosting specialized experts involves clustering at step 1, there is a need to find a small subset of 

attributes that uncover “natural” groupings (clusters) from the data according to some criterion. For this purpose, we 

adopt the wrapper framework in unsupervised learning [8], where we apply the clustering algorithm to each attribute 

subset in the search space and then evaluate the attribute subset by a criterion function that utilizes the clustering 

result. If there are d attributes in a data set, an exhaustive search of the 2d possible attribute subsets for the one that 

maximizes our selection criterion is computationally intractable. Therefore, in our experiments, fast sequential 

forward selection search is applied. 

Like in [8] we also accept the scatter separability trace (1−
wS Sb) for attribute selection criterion, where Sw is the 

within-class scatter matrix and Sb is the between scatter matrix. Sw measures the average covariance of each cluster 

and how scattered the samples are from their cluster medoids in the case of DBSCAN clustering, or from their 

cluster means in the case of k-means clustering. Sb measures how the cluster means or medoids are distant from the 

total mean. Larger the value of the trace ( 1−
wS Sb) results in larger the normalized distance between the clusters and 

therefore in better cluster discrimination. 



H1,1 H1,3 

H1,5 

H1,4 

H1,2 

H1,1 

This procedure, performed at step 1 of every boosting iteration, results in r most relevant attributes for 

clustering. Thus, for each round of boosting, there are different relevant attribute subsets that are responsible for 

distinguishing among homogeneous regions existing in a drawn sample. As a result of the clustering, applied to find 

those homogeneous regions, several distributions Dt,j (j = 1,…,c) are obtained, where c is the number of discovered 

clusters. For each of c clusters St,j discovered in the data sample, we identify its most relevant attributes, train a weak 

learner Lt,j using a distribution Dt,j and compute a weak hypothesis ht,j. Furthermore, for every cluster St,j, we identify 

its convex hull Ht,j in the attribute space used for clustering, and map these convex hulls to the entire training set in 

order to find the corresponding clusters Tt,j (Figure 5) [20]. Data points inside the convex hull Ht,j belong to cluster 

Tt,j, and data points outside the convex hulls are attached to the cluster containing the closest data pattern. Therefore, 

instead of a single global classifier constructed in every iteration by the standard boosting approach, there are c 

classifiers Lt,j and each of them is applied to the corresponding cluster Tt,j. 

 

 

 

 

 

 

 

 

Figure 5. Mapping convex hulls H1,j of clusters S1,j discovered in the data sample  to the entire training set in order to 

find corresponding clusters T1,j. For example, all data points inside the cont ours of the convex hull H 1,1 

(corresponding to the cluster S1,1) belong to the new cluster T1,1 identified on the entire training set. 

 

In our boosting specialized classifiers, data points from different clusters have different pseudo-loss values and 

different parameter values βt. For each cluster Tt,j, (j = 1,…,c) (Figure 5) defined with the convex hull Ht,j, there is a 

pseudo-loss εt,j and the corresponding parameter βt,j. Both the pseudo-loss value εt,j and parameter βt,j are computed 

independently for each cluster Tt,j where a particular classifier Lt,j is responsible. Before updating the distribution Dt, 

the parameters βt,j for c clusters are merged into a unique vector βt such that the i-th pattern from the data set that 

belongs to the j-th cluster specified by the convex hull Ht,j, corresponds to the parameter βt,j at the i-th position in the 

(b) 

S1,1 

S1,2 

S1,4 

S1,5 S1,3 

T1,1 

(a) 

DATA SAMPLE ENTIRE TRAINING SET 



vector βt. Analogously, the hypotheses ht,j are merged into a single hypothesis ht. Since we merged βt,j into βt and ht,j 

into ht, updating the distribution Dt can be performed as in standard boosting. However, the local classifiers from 

each round are first applied to the corresponding clusters and integrated into a composite classifier responsible for 

that round. The composite classifiers are then combined into the final hypothesis using the AdaBoost.M2 algorithm. 

When performing clustering during boosting iterations, it is possible that some of the discovered clusters have an 

insufficient number of data points needed for training a specialized classifier. This number of data patterns is 

defined as a function of the number of patterns in the entire training set. Several techniques for handling this 

scenario are considered. 

The first technique denoted as simple halts the boosting process every time a cluster with an insufficient size is 

detected. When the boosting procedure is terminated, only the classifiers from the previous iterations are combined 

in order to create the final hypothesis hfn. More sophisticated techniques do not stop the boosting process, but instead 

of training the specialized classifier on an insufficiently large cluster, they employ the specialized classifiers 

constructed in previous iterations. When an insufficiently large cluster is identified, its corresponding cluster from 

previous iterations is detected using the convex hull matching (Figure 5) and the model constructed on the 

corresponding cluster is applied to the cluster discovered in the current iteration. To determine this model, the most 

effective method (best_local) takes the classifier constructed in the iteration where the local prediction accuracy for 

the corresponding cluster was maximal. In two similar techniques, the previous method always takes the classifiers 

constructed on the corresponding cluster from the previous iteration, while the best_global technique uses the 

classification models from the iteration where the global prediction accuracy was maximal. In all of these 

sophisticated techniques, the boosting procedure ceases when the pre-specified number of iterations is reached or 

there is a significant drop in the prediction accuracy for the training set.  

Furthermore, drawing spatial data blocks in boosting iterations, employed in the spatial boosting technique, is 

also integrated in boosting specialized classifiers. 

 

4. Experimental Results 

 

Our experiments were first performed on three synthetic data sets generated using our spatial data simulator [28] 

such that the distributions of generated data resembled the distributions of real life spatial data. All data sets had had 
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6561 patterns with five relevant (f1,...f5) and five irrelevant attributes (f6,...,f10) and three equal size classes. The 

first data set stemmed from homogeneous distribution, while the second one was heterogeneous containing five 

homogeneous data distributions. In heterogeneous data set, the attributes f4 and f5 were simulated to form five 

clusters in their attribute space (f4, f5) using the technique of feature agglomeration [28]. Furthermore, instead of 

using a single model for generating the target attribute on the entire spatial data set, a different data generation 

process using different relevant attributes was applied per each cluster. The degree of relevance was also different 

for each distribution. The histograms of all five attributes for homogenous data set as well as for heterogeneous data 

set with five distributions are shown in Figures 6a and 6b respectively. When applying boosting specialized 

classifiers, we also experimented with the heterogeneous data set where the one of attributes relevant for clustering 

was missing only during clustering process, while all attributes were available when training specialized classifiers. 

  

 

 

 

 

 

 

(a)                                                            (b) 

Figure 6. Histograms of all five relevant attributes for a) homogeneous synthetic spatial data set b) heterogeneous 

synthetic spatial data set with five clusters 

 

We also performed experiments using spatial data from a 220 ha field located near Pullman, WA. All attributes 

were interpolated to a 10x10 m grid resulting in 24,598 patterns. The Pullman data set contained x and y coordinates 

(attributes 1-2), 19 soil and topographic attributes (attributes 3-21) and the corresponding crop yield.  

For all performed experiments, synthetic and real life data sets were split into training and test data sets. The all 

reported classification accuracies were achieved on test data by averaging over 10 trials of the boosting algorithm. 

For synthetic data sets, we first performed standard boosting and adaptive attribute boosting (Figure 7) for both 

local (k -NN classifiers) and global (neural networks and decision trees) classifiers. For the k -NN classifier 



experiments, the value of k was set using cross validation performance estimates on the entire training set. For 

boosting neural network classifiers, we used the model defined in section 3.1.2., and the best prediction accuracies 

were achieved using the Levenberq-Marquardt algorithm for training neural networks. For boosting ID3 decision 

trees, we used a post-pruning with a small constant pruning factor such that the pruned trees were smaller than the 

original ones for approximately 20%. 

 

 

 

 

 

 

Figure 7. Overall averaged classification accuracies (%) for the 3 equal-size class problems on (a) homogeneous 

synthetic test data set (b) heterogeneous synthetic test data set with five clusters defined by 2 of 5 relevant attributes. 

 

Analyzing the charts in Figure 7, it was evident that the method of adaptive attribute boosting applied to local 

and global classifiers showed only minor improvements in prediction accuracy for both synthetic data sets. For the 

homogeneous data set this was because there were no differences in relevant attributes through the training set, 

while for the heterogeneous data set this was due to the fact that each spatial region not only had different relevant 

attributes related to yield class but also a different number of relevant attributes. In such a scenario with uncertainty 

regarding the number of relevant attributes for each region, we needed to select at least the four or five most 

important attributes at each boosting round, since selecting the three most relevant attributes may be insufficient for 

successful learning. Since the total number of relevant attributes in the data set was five as well, we selected the four 

most relevant attributes for adaptive attribute boosting, knowing that for some drawn samples we would lose 

beneficial information. Due to these facts concerning deficient attribute instability, the selected attributes during the 

boosting iterations were not monitored.  

In the standard boosting method, we used all five relevant attributes from the data set. Nevertheless, we obtained 

similar classification accuracies for both the adaptive attribute boosting and the standard boosting method, but 

adaptive attribute boosting reached the “bounded” final prediction accuracy in fewer boosting iterations. This 
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property could be useful for reducing the total number of the boosting rounds. Instead of post-pruning the boosted 

classifiers [23] we can try to set the appropriate number of boosting iterations at the beginning of the procedure. 

Applying the spatial boosting method to a k-NN classifier, we achieved much better prediction than with the 

adaptive attribute boosting methods on a k-NN classifier (Table 1). Furthermore, when applying spatial boosting 

with attribute selection at each round, the prediction accuracy was increased slightly as the size (M) of the spatial 

block was increased (Table 1). No such improvements were noticed for spatial boosting with fixed attributes or with 

the attribute weighting method, and therefore the classification accuracies for only M = 5 are given. 

Applying spatial boosting on global classifiers (neural networks and decision tree) resulted in no 

enhancements in classification accuracies. Moreover, for pure spatial boosting without attribute selection we 

obtained slightly worse classification accuracies than using “non-spatial” boosting. This phenomenon was due to 

spatial correlation of our attributes, which means that data points that are close in the attribute space are probably 

close in real space, too. However, neural networks or decision trees do not consider spatial local information during 

the training, and unlike k-NN do not gain from sampling spatial data blocks. 

 

Table 1. Overall averaged classification accuracy (%) of spatial boosting for the 3 equal size classes on both 

synthetic test data sets using k-NN classifiers. 

 Homogeneous data set Heterogeneous data set with 5 clusters 
Number of Boosting Rounds 8 16 24 32 40 8 16 24 32 40 

Fixed Attribute Set (M = 5) 79.1 79.6 80.1 80.7 80.6 65.6 65.5 65.8 66.0 66.1 
M = 2 78.9 79.3 80.3 80.2 79.9 64.6 65.2 65.5 65.4 65.3 
M = 3 80.1 79.7 80.7 80.6 80.8 65.3 65.9 65.9 66.2 66.4 
M = 4 80.3 80.1 80.8 80.5 81.0 65.4 65.2 65.8 66.1 66.7 

Backward   
Elimination 

M = 5 81.2 80.8 82.3 82.4 82.5 66.0 66.7 67.0 67.6 68.1 
Attribute Weighting (M = 5) 79.4 78.8 80.1 80.7 80.3 64.2 64.7 65.4 66.3 65.9 
 

When performing boosting specialized experts (Table 2, Figures 8 and 9) on heterogeneous data set with all 

attributes, instead of performing unsupervised feature selection around a clustering algorithm at each boosting 

iteration, we always applied clustering using the attributes f4 and f5, since we knew that these attributes determine 

homogeneous distributions. When one of two attributes responsible for clustering was missing, we performed 

clustering using available clustering attribute and the most relevant attribute obtained through the feature selection 

process. In addition, we always used all five relevant attributes for training specialized classifiers. The experiments 

performed on homogeneous data set showed similar performance like in heterogeneous data with missing clustering 

attribute and they are not reported here. 
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Table 2. Final averaged classification accuracies (%) for the 3 equal size classes. Different boosting algorithms are 

applied on both synthetic heterogeneous test data sets. 

Heterogeneous data sets →→→→ Set with all relevant attributes Set with missing clustering attribute  
Method k-NN  Neural Network ID3 k-NN Neural Network ID3 

Single Classifier 57.3 61.0 ± 2.2 63.3 57.3 61.0 ± 2.2 63.3 
DBSCAN Clustering with single 

specialized classifiers 
62.1  71.3 ± 0.9 67.7 58.2 63.1 ± 1.4 64.2 

Standard Boosting 58.2 ± 0.7 69.8 ± 1.1 69.2 ± 0.6 58.2 ± 0.7 69.8 ± 1.1 69.2 ± 0.6 
Adaptive Attribute Boosting 59.1 ± 0.6 69.4 ± 1.1 69.8 ± 0.6 59.1 ± 0.6 69.4 ± 1.1 69.8 ± 0.6 

Spatial Boosting (M = 5) 68.1 ± 0.9 69.1 ± 1.2 68.2 ± 0.07 68.1 ±±±± 0.9 69.1 ± 1.2 68.2 ± 0.07 
k-means clustering 66.4 ± 1.1 72.6 ± 1.1 71.2 ± 0.8 61.8 ± 1.3 70.4 ± 1.5 69.9 ± 1.1 

simple 66.9 ± 1.4 73.9 ± 1.7 72.1 ± 1.0 62.1 ± 1.4 71.1 ± 1.8 70.4 ± 1.3 
previous 67.4 ± 1.3 74.4 ± 1.5 72.8 ± 1.2 63.3 ± 1.5 71.3 ± 1.9 70.5 ± 1.3 

best_global 67.9 ± 1.3 74.9 ± 1.4 73.4 ± 1.1 62.4 ± 1.4 71.6 ± 1.5 70.8 ± 1.1 

Boosting 
Specialized 
Experts with 
Clustering 

 
DBSCAN 
clustering 

 best_local 68.6 ± 1.1 76.6 ± 1.2 74.5 ± 0.9 62.7 ±±±± 1.3 71.9 ±±±± 1.4 71.1 ±±±± 1.2 
Spatial Boosting Specialized 

Experts (DBSCAN + best_local) 71.9 ±±±± 1.0 76.4 ± 1.3 74.4 ± 1.0 68.6 ±±±± 1.1 71.4 ± 1.5 70.8 ± 1.3 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Overall classification accuracies (%) of k-NN for the 3 equal -size class problems on heterogeneous 
synthetic test data sets with 5 relevant and 5 irrelevant attributes. 

 
 

 

 

 

 

 

 
Figure 9. Overall classification accuracies (%) for the 3 equal size classes for global predictors applied on (a) 
heterogeneous synthetic test data set with all available attributes, (b) heterogeneous synthetic test data set with 
missing one clustering attribute. (*  - Adaptive Attribute Boosting with neural networks, Boosting specialized neural 
networks with ×××× - k-means clustering, ∆∆∆∆ - DBSCAN clustering (best_local), �� ��  - Adaptive Attribute Boosting with 
ID3s, Boosting specialized ID3 classifiers with o - k-means clustering, �� ��  -DBSCAN clustering (best_local)) 

Boosting applied to heterogeneous data set  
* - Adaptive Attribute Boosting  

�� ��  - Drawing spatial blocks 
o - Boosting specialized experts with 
DBSCAN clustering (best_local technique) 

�  - Spatial Boosting specialized experts with 
DBSCAN clustering (best_local) 

Boosting applied to heterogeneous data set 
with missing clustering attribute 
∆∆∆∆ - Boosting specialized experts with 
DBSCAN clustering (best_local technique) �

- Spatial Boosting specialized experts with 
DBSCAN clustering (best_local) 
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All methods of boosting specialized experts resulted in improved generalizations for all synthetic spatial data 

sets. However, improvements for heterogeneous data set with all attributes (approximately 68 – 77%) were much 

more significant than for heterogeneous data set with missing clustering attribute (approximately 63-72%) as 

compared to 57 – 63% obtained by single classifiers, specialized classifiers built on identified clusters, standard 

boosting and adaptive attribute boosting as shown at Table 2, Figures 8 and 9. Therefore, it is apparent that the 

prediction accuracy of all methods for boosting specialized experts directly depends on the quality of identified 

clusters during boosting iterations. 

Boosting specialized experts is slightly more beneficial when boosting k-NN classifiers than global prediction 

models (Table 2), since the discovered clusters emphasize the local information, which is more helpful for local 

learning algorithms than for the global ones. Compared to the pure boosting specialized experts, the spatial boosting 

of global specialized classifiers again did not significantly affect the overall classification accuracy, while the 

influence of drawing spatial blocks when boosting specialized k-NN classifiers was reduced as compared to the 

improvements of pure spatial boosting over the standard and adaptive attribute boosting. This is due to the observed 

phenomenon that the smaller discovered clusters are not totally spatial, i.e. they contain scattered points in the 

spatial domain, and, in such cases, drawing spatial blocks does not help in reducing the total classification error. 

It was also evident that the boosting of specialized experts required significantly fewer iterations in order to 

reach the maximal prediction accuracy. After prediction accuracy was maximized, the overall prediction accuracy 

on the training set, as well as the total classification accuracy on the test set, started to decline due to the fact that in 

the later iterations only data points that were difficult for learning were drawn. Therefore, there was not sufficient 

number of data examples in identified clusters needed for successful learning, and the prediction accuracy on these 

clusters begun to deteriorate thus causing the drop of the total prediction accuracy too.  

The data distribution of clusters discovered by applying DBSCAN clustering algorithm to heterogeneous data set 

with all attributes was monitored at each boosting iteration (Figure 10). Unlike the previous adaptive attribute 

boosting method when around 30 boosting iterations were needed to achieve good generalization results, here 

typically only a few iterations (5 - 8 for global classification models and 8 - 12 for k-NN classifiers) were sufficient. 

As observed in Figure 10, data samples drawn in initial iterations (iteration 1) clearly included data points from all 

five clusters while samples drawn in later iterations (iterations 4, 5) contained a very small number of data points 

from the clusters where the prediction accuracy was good in previous iterations. As one of the criteria for stopping 



Figure 10. Changing the 
distributions of drawn samples 
during boosting on the neural 
network classifier. Samples from 
initial iterations contain points from 
all clusters, while samples from later 
iterations contain a small number of 
points from the central clusters where 
the accuracy was good. 

boosting early, we stop the boosting procedure when the size of any of the discovered clusters is less than some 

predefined number (usually less than 40). An additional stopping criterion is to observe the classification accuracy 

on the entire training set and to stop the procedure when it starts to decline. Figures 8 and 9 show the iterations when 

we stopped the boosting procedure. Although in practice the prediction accuracy on the test set does not necessarily 

start to drop in the same iteration, this difference is usually within two boosting iterations and does not significantly 

affect the total generalizability of the proposed method. 

 

 

 

 

 

 

 

 

 

 

When using the k-means clustering algorithm during the boosting procedure, we did not notice the phenomenon 

of reducing the size of discovered clusters and therefore we did not perform the modifications of the proposed 

algorithm. In addition, it was evident that boosting specialized experts when using the k-means clustering algorithm 

was not as successful as boosting localized experts with the DBSCAN algorithm, due to the better quality of the 

clusters identified by DBSCAN which was designed to discover spatial clusters of arbitrary shape. 

Nevertheless, when using the DBSCAN algorithm at each boosting round, the best_local technique provided the 

best prediction accuracy (Table 2), while the simple and previous methods were not significantly better th an 

boosting localized experts with k-means clustering. The simple technique failed to achieve improved prediction 

results, because it did not reach enough boosting iterations to develop the most appropriate classifiers for each 

cluster that needed to be combined, while the previous method had a boosting cycle that was long enough, but did 

not combine appropriate models. Finally, the best_global and best_local methods combined the most accurate 

models for each cluster taken in some of the earlier iterations, and hence achieved the best generalizability.  



Experiments with all proposed boosting modifications were repeated for real life spatial data. The goal was to 

predict 3 equal size classes of wheat yield as a function of soil and topographic attributes. For real life data (Pullman 

data set) 16 miscellaneous attribute selection methods (Table 3) were applied on the training data set in order to 

identify the four most relevant attributes that were used in the standard boosting method. Histograms for these most 

stable attributes (4, 7, 9, 20) are shown in Figure 11. 

 

Table 3. Attribute selection methods used to identify the 4 most stable attributes on train data set. 
Attribute Selection Methods Selected attributes 

Mahalanobis distance 7, 9, 11, 20 
Bhatacharya distance 4, 7, 10, 14 

Branch & 
Bound 

methods 

Probabilistic 
distance 

Patrick-Fisher distance 13,17, 20, 21 
Minkowski (order = 1) 7, 9, 10, 11 
Minkowski (order = 3) 3, 4, 5, 7 
Euclidean distance 3, 4, 5, 7 

Inter-class 
distance 

Chebychev distance 3, 4, 5, 7 
Bhatacharya distance 3, 4, 8, 9 
Mahalanobis distance 7, 9, 11, 20 
Divergence distance metric 3, 4, 8, 9 

Probabilistic 
distance 

Patrick-Fisher distance 13,16, 20, 21 
Minimal Error Probability, k-NN with substitution 4, 7, 11, 19 

Forward 

Selection 

methods 

Linear regression performance feedback 5,  9, 7, 18 
Mahalanobis distance 7, 9, 11, 20 
Bhatacharya distance 4, 7, 9, 14 

Probabilistic 
distance 

Patrick-Fisher distance 13,17, 20,21 

Backward 
Elimination 

methods 
Linear regression performance feedback 7, 9, 11, 20 

 

When performing attribute selection during boosting on real life data set, the four and five attributes were 

selected and monitored and their frequency was computed. The frequency of selected attributes during the boosting 

rounds, when boosting was applied to k-NN classifiers, neural network and decision tree classification models, is 

presented in Figures 12, 13 and 14 respectively. When PCA was used with boosting k-NN classifiers, projections to 

four dimensions explained most of the variance and there was little improvement from additional dimensions. For 

the attribute weighting method in boosting k-NN predictors, we used the attribute synaptic weights between input 

nodes and the output node of a 1-layer neural network constructed for each drawn sample. When boosting was 

applied to global classifiers (neural network classifiers and decision trees), only attribute selection procedures for 

changing attribute representation were considered. The achieved classification accuracies for both local and global 

classifiers are given in Table 4. 
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Figure 11. Histograms of 4 most relevant                 Figure 12. Attribute stability during boosting on k-NN 
attributes of real life data set                               classifiers (* denotes that attribute is selected in boost- 
                                                              ing  round, - denotes that attribute is not selected) 

 

 

 

 

 

 
 
 

Figure 13. Attribute stability during boosting on           Figure 14. Attribute stability during boosting on ID3 
neural network with Levenberq-Marquardt algorithm       decision tree algorithm 
 

Table 4. Comparative analysis of overall classification accuracies (%) for the 3 equal-size class problems on real life 
test data with 19 soil and topographic attributes. 

k-NN classifier Levenberg-Marquardt 
Adaptive Attribute Boosting with neural networks 

ID3 Decision Trees Number 
of 

Boosting 
Rounds 

Standard 

Boosting Forward 
Selection 

Backward 
Elimination PCA 

Attribute 
Weighting 

Standard 
Boosting 

Backward 
Elimination 

Standard 
Boosting  

Backward 
Elimination 

8 38.2 40.9 38.5 42.4 43.0 43.6 47.5 43.3 46.9 
16 39.5 41.3 38.8 42.4 43.9 44.1 47.8 43.7 47.3 
24 38.8 41.9 42.1 44.5 44.8 44.8 48.3 44.3 47.8 
32 38.5 41.8 43.5 45.1 46.1 45.5 48.8 45.0 48.2 
40 39.3 42.1 42.8 43.4 44.3 44.9 48.5 45.2 48.4 
 

Results from Table 4 show that the methods of adaptive attribute boosting outperformed the standard boosting 

technique for both local and global classifiers. The results indicate that 30 boosting rounds were usually sufficient to 

maximize prediction accuracy and to somewhat stabilize the selected attributes although attribute selection during 

boosting was less stable for k-NN (Figure 12) than for neural networks (Figure 13) or decision trees (Figure 14). For 
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k-NN after approximately 30 boosting rounds the attributes became fairly stable with attributes 7, 11 and 20 

obviously more stable than attributes 3 and 9, which also appeared in later iterations. The prediction accuracies 

when using k-NN classifier with Mahalanobis distance were worse than those using Euclidean distance, and are not 

reported here.  

When boosting neural network classifiers we used models defined in section 3.1.2, and the best results were 

obtained using the applied backward elimination attribute selection and the Levenberq-Marquardt learning algorithm 

(Table 4). On the other hand, decision trees used all selected attributes for computing the splitting criterion, and after 

constructing they are pruned such that the number of nodes in pruned trees was reduced for 20%.  

Classification accuracies of spatial boosting for k-NN classifiers on the real life data set were again much better 

than without using spatial information and comparable to boosting neural networks and decision trees (Table 5). 

Here, the classification accuracy improvements from increasing the size (M) of the spatial blocks were less apparent 

than for synthetic spatial data probably due to the higher spatial correlation of the synthetic data sets. 

 

Table 5. Overall classification accuracy (%) of spatial boosting for the 3 equal-size class problems for real life test 

data using k-NN classifiers. 

Spatial Boosting for k-NN with 

Fixed 
Attribute Set Backward Elimination Attribute Selection Attribute 

Weighting 

Number of 
Boosting 
Rounds 

M = 5 M = 2 M = 3 M = 4 M = 5 M = 5 
8 46.4 45.8 47.7 48.1 47.8 45.2 

16 46.6 46.2 47.6 48.1 47.7 45.6 
24 46.7 46.7 47.9 48.2 48.2 45.8 
32 46.9 46.9 48.3 48.4 47.9 46.3 
40 47.0 47.2 48.3 47.9 47.8 45.9 

 

When boosting specialized classifiers, all experiments were performed with the unsupervised wrapper procedure 

for identifying the most germane attributes for clustering and also with the supervised feature selection procedure 

for finding the most important attributes for each of the discovered clusters. In order to reduce the computational 

cost of the unsupervised wrapper approach, we did not identify more than three most appropriate attributes for 

clustering, since our previous experiments with clustering on the entire training set indicate that the best quality of 

clusters was obtained when using only two or three attributes [21]. The same experiments pointed out that modeling 

with four attributes results in the best prediction capability and therefore we were selecting only four attributes for 

constructing classifiers on discovered clusters. Figure 15 shows the overall classification accuracy when boosting k-
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NN classifiers, while the results in Figure 16 were obtained using the Levenberq-Marquardt algorithm for 

optimizing neural network parameters and using the pruned ID3 trees with a relatively small pruning factor. 

  

  

 

 

 

 

Figure 15. Overall classification accuracies of k-NN classifiers for the 3-class problems on real life test data. 

  

 

 

 

 

 

 

Figure 16. Overall classification accuracies of global predictors for the 3-class problems on real life test data. 

 

Boosting specialized experts on a real life data set is not as superior to the adaptive attribute and spatial boosting 

methods as for the synthetic heterogeneous data set with all attributes. However, similar improvements in prediction 

accuracy were achieved for synthetic heterogeneous data set with missing clustering attribute. This indicates that in 

real life data, it is possible there is a lack of appropriate driving variables for explaining the variability of the target 

attribute. The discovered spatial clusters in real life data are not as distinct as the spatial clusters in synthetic 

heterogeneous data with all attributes, but the higher attribute instability was apparently beneficial for adaptive 

attribute boosting. Unlike synthetic heterogeneous data sets, for real life data the additional diversity of constructed 

classifiers is achieved by performing unsupervised attribute selection and by discovering clusters using the different 

attributes. Similar to experiments on synthetic data, the best_local technique of boosting localized experts was the 

most successful among all the proposed methods. 
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5. Conclusions and Future Work 

 

Results from several spatial data sets indicate that the proposed techniques for combining multiple classifiers can 

result in significantly better predictions over existing classifier ensembles, especially for heterogeneous spatial data 

sets with attribute instabilities. First, this study provides evidence that by manipulating the attribute representation 

used by individual classifiers at each boosting round, classifiers could be more decorrelated thus leading to higher 

prediction accuracy. Second, our adaptive attribute boosting technique is more efficient than standard boosting, 

since a smaller number of iterations was sufficient to achieve the same final prediction accuracy. In addition, the 

attribute stability test served as a good indicator for properly stopping further boosting iterations. Third, the new 

boosting method proposed for spatial data showed promising results for k-NN classifiers making it competitive with 

powerful global classification models like neural networks and decision trees. Finally, boosting specialized experts 

with clustering performed at each boosting round further significantly improved both the prediction accuracy on 

highly heterogeneous databases and the efficiency of the algorithm by additional reducing the number of boosting 

iterations needed for achieving maximal prediction accuracy. However, for homogeneous data as well as for 

heterogeneous data sets with missing relevant attributes, the proposed method of boosting specialized classifiers 

showed only small improvements in achieved prediction accuracy. 

Although boosting specialized experts required order of magnitude less boosting rounds to achieve the maximum 

prediction accuracy than the standard, adaptive attribute or spatial boosting, the number of constructed prediction 

models increases drastically through the iterations. This number depends on the number of discovered clusters and 

on the number of boosting rounds needed for making the final classifier. In our case, this drawback was alleviated 

by the fact that we were experimenting with small numbers of clusters and that only a few boosting iterations were 

sufficient to maximize prediction accuracy. Therefore, the memory needed for storing all prediction models is 

comparable or even less than for the standard boosting technique. 

In addition to the prediction accuracy of the boosted specialized experts, the time required for building the model 

is also an important issue when developing a novel algorithm. Albeit the number of learned classifiers per iteration 

for the proposed method was much larger than for the standard boosting, the cluster data sets on which the 

classification models were built were smaller. The computation time for learning specialize experts was therefore 

comparable to learning the models on the entire training data. Hence, the total computation time depends only on the 



number of iterations, and is much smaller for the proposed boosting localized experts than for standard boosting or 

adaptive attribute boosting. 

Despite the fact that the new fast k-NN classifier significantly reduces the computational requirements, an open 

research question is to further increase the speed of ensembles of k-NN classifiers for high -dimensional data. 

Although the performed experiments provide evidence that the proposed approach can improve predictions by 

ensembles of both local and global classifiers, further work is needed to examine the adaptation of global classifiers 

when boosting spatial data. In order to use the advantages from both local and non-linear prediction models, we are 

currently experimenting with a method of boosting radial basis functions. In addition, we are working to extend the 

method to regression-based problems. 
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