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In this paper, a new approach for centralised and
distributed learning from spatial heterogeneous
databases is proposed. The centralised algorithm
consists of a spatial clustering followed by local
regression aimed at learning relationships between
driving attributes and the target variable inside each
region identified through clustering. For distributed
learning, similar regions in multiple databases are
first discovered by applying a spatial clustering
algorithm independently on all sites, and then ident-
ifying corresponding clusters on participating sites.
Local regression models are built on identified clus-
ters and transferred among the sites for combining
the models responsible for identified regions. Exten-
sive experiments on spatial data sets with missing
and irrelevant attributes, and with different levels
of noise, resulted in a higher prediction accuracy
of both centralised and distributed methods, as com-
pared to using global models. In addition, experi-
ments performed indicate that both methods are
computationally more efficient than the global
approach, due to the smaller data sets used for
learning. Furthermore, the accuracy of the distrib-
uted method was comparable to the centralised
approach, thus providing a viable alternative to
moving all data to a central location.
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1. Introduction

Advances in spatial databases have allowed for the
collection of huge amounts of data in various Geo-
graphic Information Systems (GIS) applications,
ranging from remote sensing and satellite telemetry
systems, to computer cartography and environmental
planning. Many large-scale spatial data analysis
problems involve an investigation of relationships
among attributes in heterogeneous data sets, where
rules identified among the observed attributes in
certain regions do not apply elsewhere. Therefore,
instead of applying global recommendation models
across: entire spatial data sets, models are varied
to better match site-specific needs, thus improving
prediction capabilities [1].

An approach for analysing heterogeneous spatial
databases in both centralised and distributed environ-
ments is proposed in this study. In the centralised
approach, spatial regions having similar character-
istics are first identified using a clustering algorithm.
The local regression models are built on each of
these spatial regions, describing the relationship
between the spatial data characteristics and the target
attribute, and then applied to the corresponding
regions [2].

However, spatial data are often inherently distrib-
uted at multiple sites, and are difficult to aggregate
into a single database for a variety of practical
constraints, including dispersed data over many dif-
ferent geographic locations, security services and
reasons of competition. In such a distributed
environment, where data are dispersed, our proposed
centralised approach of building local regressors [2]
cannot be directly applied, since an efficient
implementation of the data clustering step assumes
the data are centralised to a single site. Therefore,
a new approach for distributed learning based on
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locally adapted models is also proposed. Given a
number of distributed, spatially dispersed data sets,
we first define more homogenous spatial regions in
each data set using a distributed clustering algorithm.
Distributed clustering involves applying a spatial
clustering algorithm independently on all sites, and
then identifying the corresponding clusters on partic-
ipating sites. The next step is to build local
regression models on identified clusters, to transfer
models among the sites, and to combine the corre-
sponding ones in order to improve the prediction
accuracy on discovered clusters. The proposed
methods, applied to three synthetic heterogeneous
spatial data sets, indicate that both centralised and
distributed methods are more accurate and more
efficient than the global prediction method, and they
are robust to a small amount of noise in the data.
Furthermore, the distributed method was almost as
accurate as when all data is localised at a central
machine.

2. Related Work

In contemporary data mining, there are very few
algorithms available for clustering data naturally
dispersed at multiple sites. The main purpose of
existing distributed and parallel clustering algorithms
is to speed up the clustering process by partitioning
the entire data set into multiple processors. When
the data is distributed over a very fast network with
a limited bandwidth, and when the computer hosts
are tightly coupled, several researchers have used a
parallel approach to address this problem. This is
particularly useful when the data sets are large and
data analysis is computationally intensive.

Recently, a parallel k-means clustering algorithm
on distributed memory multiprocessors was proposed
[3]. This algorithm is based on the message passing
model of parallel computing, and it also exploits
inherent data parallelism in the k-means algorithm.
A simple, but effective, parallel strategy is to par-
tition available n data points into P equal size
blocks, and to assign the blocks to each of P
processors. Each processor maintains a local copy
of centroids for all k clusters, which have to be
discovered. In a related study, Rasmussen and Willet
[4] discussed parallel implementation of the single
link (SLINK) clustering method on a Single Instruc-
tions Multiple Data (SIMD) array processor. Olson
[5] described several parallel implementations of
hierarchical clustering algorithms on an n-node
CRCW PRAM, while Pfitzner et al. [6] presented a
parallel clustering algorithm for finding halos

(luminous radiances) in N-body cosmology simula-
tions.

Unlike the algorithms described above, the paral-
lel clustering algorithm PDBSCAN [7] is primarily
designed for clustering spatial data. Based on the
DBSCAN algorithm [8], PDBSCAN uses the
‘shared-nothing’ architecture, which has the advan-
tage that it can be scaled up to hundreds of com-
puters. Experimental results show that PDBSCAN
scales up very well, and has excellent speed up and
size-up behaviour.

However, all of these parallel algorithms assume
that the cost of communication between processors
is negligible compared to the cost of actual comput-
ing and data processing, and that the time of utilising
each processor is a critical factor of the cost and
performance analysis. Nowadays, processing sites
could be distributed over wide geographic areas,
possibly across several countries or even continents.
As a consequence, the cost of actual computation
is now comparable to, and perhaps over-shadowed
by, the cost of site-to-site communication and data
transfer.

The majority of the work for learning in a distrib-
uted environment, however, considers only two
possibilities: moving all data into a centralised
location for further processing, or leaving all data
in place and producing local predictive models,
which are later moved and combined via one of the
standard methods [9]. With the emergence of new
high-cost networks and huge amounts of collected
data, the former approach may be too expensive
and insecure, while the latter is too inaccurate.

Recently, several distributed data mining systems,
without data transfer among sites, have been pro-
posed. The JAM system [10] is a distributed, scal-
able and portable agent-based data mining software
package that provides a set of learning programs
which compute models from data stored locally at
multiple sites, and a set of methods for combining
multiple computed models (meta-learning). A
knowledge probing approach [11] addresses distrib-
uted data mining problems from homogeneous data
sites, where the supervised learning process is organ-
ised into two learning phases. In the first phase, a
set of base classifiers is learned in parallel from
distributed data sets and in the second, the meta-
learning is applied to combine the base classifiers.

Unlike the previous two systems, Collective Data
Mining (CDM) [12] deals with data mining from
distributed sites with a different set of relevant
attributes (heterogeneous sites). CDM points out that
any function can be expressed in a distributed
fashion using a set of appropriate and orthonormal
basis functions, thus leading to developing a general
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framework for distributed data mining which guaran-
tees the aggregation of local data models into a
global model using minimal data communication.

None of the distributed learning methods sur-
veyed, however, provide analysis of data containing
a mixture of distributions or spatial data analysis.
Although there have been a number of spatial data
mining research activities recently, most are prim-
arily designed for learning in a centralised environ-
ment. GeoMiner [13] is such a system, representing
a spatial extension of the relational data mining
system DBMiner [14]. GeoMiner uses the Spatial
and Nonspatial Data (SAND) architecture for model-
ling spatial databases, and includes the spatial data
cube construction module, a spatial On-Line Analyti-
cal Processing (OLAP) module, and spatial data
mining modules.

Recently, a few proposed algorithms for clustering
spatial data have been shown to be promising when
dealing with spatial databases. In addition to the
already mentioned DBSCAN algorithm, CLARANS
[15] is based on randomised search, and is partially
motivated by the k-medoid clustering algorithm,
CLARA [16], which is very robust to outliers and
handles very large data sets quite efficiently. Another
example is the density-based clustering approach
called Wave Cluster [17], that is based on wavelet
transformation. The spatial data is considered as
multidimensional signals on which the signal pro-
cessing techniques (wavelet transforms) are applied
in order to convert spatial data into the frequency
domain.

3. Centralised Clustering-Regression
Approach

Given the training and test parts of a spatial data
set, the first step in the proposed approach is to
identify more homogeneous spatial regions in the
training and test data. Partitioning spatial data into
regions having similar attribute values is likely to
result in regions of a similar target value.

To eliminate irrelevant and highly correlated attri-
butes, performance feedback feature selection [18]
was used. The feature selection involved inter-class
and probabilistic selection criteria using Euclidean
and Mahalanobis distance, respectively [19]. In
addition to sequential backward and forward search
techniques applied with both criteria, the branch
and bound search was also used with Mahalanobis
distance. To test feature stability, feature selection
was applied to different data subsets, and the most
stable features were selected.

In contrast to feature selection, where a decision

is target-based, variance-based dimensionality
reduction through feature extraction is also con-
sidered. Here, linear Principal Components Analysis
[19] and nonlinear dimensionality reduction using
four-layer feedforward Neural Networks (NN) [20]
were employed. The targets used to train these NNs
were the input vectors themselves, so the network
is attempting to map each input vector onto itself.
We can view this NN as two successive functional
mappings. The first mapping, defined by the first
two layers, projects the original d-dimensional data
into an r-dimensional sub-space (r � d), defined by
the activations of the units in the second hidden
layer with r neurons. Similarly, the last two layers
of the NN define an inverse functional mapping
from the r-dimensional sub-space back into the orig-
inal d-dimensional space.

Using features derived through feature selection
and extraction procedures, the spatial clustering
algorithm DBSCAN [8] was employed to partition
the spatial data set into ‘similar’ regions. The
DBSCAN algorithm relies on a density-based notion
of clusters, and was designed to discover clusters
of an arbitrary shape. The key idea of a density-
based cluster is that, for each point of a cluster, its
Eps-neighbourhood for a given Eps � 0 has to con-
tain at least a minimum number of points (MinPts)
(i.e. the density in the Eps-neighbourhood of points
has to exceed some threshold), since the typical
density of points inside clusters is considerably
higher than the outside of clusters.

The clustering algorithm was applied to merged
training and testing spatial data sets without using
the target attribute value. These data sets need not
be adjacent since the x and y coordinates were
ignored in the clustering process. As a result of a
spatial clustering, a number of partitions (clusters),
generally spread in both training and test data sets
(Fig. 1), were obtained. Assume that partitions Pi

are split into the regions Ci for the training data set
and regions Ti for the test data set.

Finally, two-layer feedforward Neural Network
(NN) regression models, with the Levenberg–
Marquardt [21] learning algorithm, were trained on
each spatial part Ci, and were applied to the corre-
sponding parts Ti in the test spatial data set.

4. Distributed Clustering-Regression
Approach

Our distributed approach represents a combination of
distributed clustering and locally adapted regression
models. Following the basic idea of centralised clus-
tering (Section 3), and given a number of spatial
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Fig. 1. A spatial cluster P1, shown in (x, y) space, is split into
a training cluster C1 and a corresponding test cluster T1.

dispersed data sets, the DBSCAN clustering algor-
ithm is used to partition each spatial data set inde-
pendently into ‘similar’ regions. As a result, a
number of partitions (clusters) on each spatial data
set are obtained. Assuming similar data distributions
of the observed data sets, the number of clusters on
each data set is usually the same (Fig. 2). If this is
not the case, by choosing the appropriate clustering
parameters (Eps and MinPts), the discovery of an
identical number of clusters on each data set can
be easily enforced.

The next step is to match the clusters among the
distributed sites, i.e. to determine which cluster from
one data set is the most similar to which cluster in
another spatial data set. This is followed by building
local regression models on identified clusters at
sites with known target attribute values. Finally, the
learned models are transferred to the remaining sites,
where they are integrated and applied to estimate
unknown target values in the appropriate clusters.

Fig. 2. (a) Clusters in the feature space for the spatial data set D1; (b) clusters in the feature space for the spatial data set D2 and
convex hulls (H1,i) from D1 (a) transferred to D2.

4.1. Learning at a Single Site

Although the proposed method can be applied to an:
arbitrary number of spatial data sets, for simplicity,
assume first that we predict on the data set D2 by
using local models built on the set D1. Each of k
clusters C1j, j � 1, . . . k, identified at D1 (k � 5 in
Fig. 2) is used to construct a corresponding local
regression model Mj. To apply models Mj to unseen
data set D2, we need to match discovered clusters
on D1 and D2. In the following subsections, two
methods for matching clusters are investigated.

4.1.1. A Cluster Representation with a Convex
Hull. To apply local models trained on subsets of
D1 to an unseen data set D2, we construct a convex
hull for each cluster on D1, and transfer all convex
hulls to a site containing unseen data set D2 (Fig. 2).
Using the convex hulls of the clusters from D1

(shown as H1,j in Fig. 2), we identify the correspon-
dence between the clusters from two spatial data
sets. This is determined by identifying the best
matches between the clusters C1,j (from the set D1)
and the clusters C2,j (from the set D2). For example,
the convex hull H1,3 in Fig. 2 covers both the clus-
ters C2,3 and C2,4, but it covers C2,4 in a much
larger fraction than C2,3. Therefore, it can be con-
cluded that the cluster C1,3 matones the cluster C2,4,
and hence the local regression model M3 designed
on cluster C1,3 is applied to cluster C2,4.

There are also situations, however, where exact
matching cannot be determined, since there are sig-
nificant overlapping regions between the clusters
from different data sets (e.g. the convex hull H1,1

covers both the clusters C2,2 and C2,3 in Fig. 2, so
there in an overlapping region O1). To improve the
prediction, averaging the local regression models
built on neighbouring clusters is used on overlapping
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regions. For example, the prediction for the region
O1 at Fig. 2 is made using the simple averaging of
local prediction models learned on the clusters C1,1

and C1. In this way, we hope to achieve better
prediction accuracy than local predictors built on
entire clusters.

An alternative method of representing the clusters,
popular in the database community, is to construct
a Minimal Bounding Rectangle (MBR) for each
cluster, but this method results in large overlapping
of neighbouring clusters.

4.1.2. A Cluster Representation with a Neural Net-
work Classifier. In another method for determining
the correspondence between regions (clusters) and
constructed models, we treat each cluster as a separ-
ate group or class, and train a classifier on these
groups. Here, a multilayer (2-layered) feedforward
Neural Network (NN) classification model is used,
with the number of output nodes equal to the num-
ber of classes (five as the number of clusters in the
example from Fig. 2), where the predicted class is
from the output with the largest response. The
responses from the output nodes give us the possi-
bility to compute probabilities of each data point
belonging to a corresponding localised model.
Therefore, this approach can be viewed as a mixture
of experts with the NN classifier as a gating network
[22], that can weight localised models according to
computed probabilities. However, to simplify this
approach in a distributed environment, we apply the
NN classifier on an unseen spatial data set, associate
predicted classes with the local models built on
identified clusters, and then employ the models on
determined classes.

There is also a possibility of matching already
discovered clusters on unseen spatial data set D2

with regions (classes) found by the NN classifier.
For example, cluster C2,2 on data set D2 can contain
several regions (classes) found by the NN classifier
built on D1 (dashed lines in Fig. 3). For simplicity
assume there are only two such identified classes

Fig. 3. Classes (regions) identified on data set D2 by a classi-
fication program built on data set D1.

(‘class1’ and ‘class5’ in Fig. 3) on cluster C2,2.
These classes correspond respectively to clusters C1,1

and C1,5 from data set D1. By computing the percent-
age of ‘class1’ and ‘class5’ data points inside the
cluster C2,2, we determine that a region (class) with
greater ‘coverage percentage’ (‘class 1’ in Fig. 3)
matches cluster C2,2 on data set D2.

In addition, if the full correspondence between
clusters and classes is not possible (the ‘coverage
percentage’ by one region (class) is not significantly
larger than the ‘coverage percentage’ by another
class), we use simple average models built on both
corresponding clusters at site D1. For example, when
predicting on overlapping region O1 (Fig. 3) models
built in clusters C1,1 and C1,5 are averaged.

4.2. Learning from Multiple Data Sites

When data from multiple, physically distributed sites
are available for modelling, the prediction can be
further improved by integrating learned models from
those sites. Without loss of generality, assume there
are three dispersed data sites, where the prediction
is made on the third data set (D3) using the local
prediction models from the first two data sets D1

and D2.

4.2.1. Convex Hull Cluster Matching. To simplify
the presentation, we discuss the algorithm only for
the matching clusters C1,1, C2,2 and C3,2 from the
data sets D1, D2 and D3, respectively (Fig. 4). The
intersection of convex hulls H1,1, H2,2 and cluster
C3,2 (region C in Fig. 4) represents the portion of
the cluster C3,2, where clusters from all three fields
are matching. Therefore, the prediction on this
region is made by averaging the models built on
the clusters C1,1 and C2,2, whose contours are rep-
resented in Fig. 4 by convex hulls H1,1 and H2,2,
respectively. Making the predictions on the overlap-
ping portions Ol, l � 1,2,3, is similar to learning at

Fig. 4. Transferring the convex hulls H1,1 and H2,2 from the sites
D1 and D2 to a third site D3.
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a single site. For example, the prediction on the
overlapping portion O1 is made by averaging of the
models learned on the clusters C1,1, C2,2 and C2,3,
since the portion O1 corresponds to the part of the
cluster determined by the convex hull H2,3, as well
as belongs to the cluster C3,2 matched with the
clusters given with the convex hulls H1,1 and H2,2.
On the other hand, the prediction on the region O3

is performed combining the regressors built on the
following clusters: C1,1, C1,4, C2,2 and C2,5.

4.2.2. A Cluster Representation with Multiple Clas-
sifiers. Using the same basic concept as in the two-
site scenario, we independently employ classifiers to
learn discovered clusters on each distributed site
(sites D1 and D2) and to apply them to unseen data
set D3. As a result, a number of class labels, equal
to the number of data sites, are assigned to each
data point on set D3. Each class label represents a
cluster assignment for a particular data point pre-
dicted by a classifier from a specific data site. To
make a prediction on such data points, a simple
approach is to use non-weighted or weighted averag-
ing of local models constructed on corresponding
clusters from all data sites. Similar to the learning
from a single site, an alternative method considers
matching discovered clusters with regions (classes)
identified by NN classifier, where averaging of local
models is applied on potential overlapping regions.

5. Experimental Results

Our experiments were performed on synthetic data
set generated using our spatial data simulator [23]
corresponding to five homogeneous data distri-
butions, such that the distributions of generated data
resembled the distributions of real life spatial data.
The attributes (f4, f5) were simulated to form five
clusters in their attribute space (f4, f5) using the
feature agglomeration technique [23]. Instead of
using one model for generating the target attribute
on the entire data set, a different data generation
process using different relevant attributes was
applied for each cluster. Finally, the degree of rel-
evance was also different for each cluster
(distribution). The data sets had 6561 patterns with
five relevant (f1–f5) and five irrelevant attributes
(f6–f10). The histograms of a five attributes for all
five distributions are shown in Fig. 5(a), while the
target value level of the synthetic data set is shown
in Fig. 5(b).

5.1. Modelling Centralised Heterogeneous
Data

A typical way to test the generalisation capabilities
of regression models is to split the data into a
training and a test set at random. However, for
spatial domain such an approach is likely to result
in overly-optimistic estimates of prediction error [2].
Therefore, the test field was spatially separated from
the training field so that both fields were of approxi-
mately equal area, as shown in Fig. 1.

We clustered the training and test patterns as an
entire spatial data set using two relevant clustering
attributes (f4, f5), and also using attributes obtained
through the feature selection and feature extraction
procedures. By setting the parameters of the
DBSCAN algorithm, the clustering was applied so
that the number of clusters discovered was always
relatively small (5 to 10).

For local regression models, we trained two-layer
feedforward neural networks with 5, 10 and 15
hidden neurons. We chose the Levenberg–Marquardt
[21] learning algorithm, and repeated the experi-
ments starting from five random initialisations of
network parameters. For each of these models, the
prediction accuracy was measured using the coef-
ficient of determination R2 � 1 � MSE/�2, where �
is the standard deviation of the target attribute. The
R2 value is a measure of the explained variability
of the target variable, where 1 corresponds to a
perfect prediction, and 0 to a mean predictor.

In the most appropriate case, clustering is perfor-
med using only two relevant attributes (f4, f5) and
regression models are built using all five relevant
attributes (f1–f5). When clustering is performed
using the attributes obtained through feature selec-
tion or feature extraction procedures, local regression
models were built using identified attributes or all
five relevant attributes (f1–f5), since our earlier
experiments on these data sets showed that the
influence of irrelevant attributes to modelling is
insignificant. The prediction accuracies averaged
over 15 experiments for different numbers of hidden
neurons (5–15) are given in the Table 1.

It is evident from Table 1 that the method of
building local specific regression models (local
regression approach) outperformed the global model
trained on the entire training set and also the mixture
of experts model (R2 � std � 0.83 � 0.03). Due to
the overlapping cluster model assignment [23] and
highly nonlinear models used in data generation, the
R2 value achieved was not equal to 1. Results in
Table 1 also suggest that the lack of relevant attri-
butes either in spatial clustering or in the modelling
process has a harmful effect on the global prediction
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Fig. 5. (a) The histograms of all five relevant attributes for all five clusters; (b) the target value of the synthetic data set.

Table 1. R2 values for global and local regression approach when using different sets of attributes.

Methods → Global method with Local regression approach where clustering is
specified attributes applied using specified attributes and modelling
(R2 ± std) is performedSpecified attributes ↓

with all attributes with specified attributes
(R2 ± std) (R2 � std)

All 5 attributes (f1–f5) 0.73 � 0.04 0.78 � 0.03 0.78 � 0.03
2 clustering attributes (f4, f5) 0.23 � 0.05 0.87 � 0.02 0.37 � 0.03
2 FS attributes (f1, f2) 0.21 � 0.04 0.76 � 0.03 0.22 � 0.02
3 FS attributes (f1, f2, f5) 0.27 � 0.03 0.75 � 0.03 0.25 � 0.03
4 FS attributes (f1, f2, f4, f5) 0.71 � 0.03 0.80 � 0.04 0.72 � 0.03
2 PCA attributes 0.02 � 0.05 0.71 � 0.05 0.18 � 0.01
3 PCA attributes 0.08 � 0.05 0.72 � 0.04 0.31 � 0.03

accuracy. When constructing global models with
feature selection, the model is more accurate when
using the more relevant attributes. Analogously,
when building global models with attributes obtained
through feature extraction, the prediction accuracy
increases when the number of projections increases.

When using attributes obtained through PCA for
both spatial clustering and learning local regression
models, it is evident that the proposed method suf-
fers from the existence of irrelevant attributes, since
the prediction accuracy was worse than applying a
global model built with all attributes.

When comparing the distributions obtained by
applying spatial clustering with two relevant clus-
tering attributes (f4, f5) (Fig. 2) to clusters identified
using four most relevant attributes (Fig. 6(a)) or
using three attributes obtained through PCA
(Fig. 6(b)), it is apparent that the clusters discovered
in the latter cases are disrupted by the existence
of irrelevant clustering attributes. Clusters identified

shown in Fig. 6 have a fairly large overlap, and do
not characterise the existing homogeneous distri-
butions well.

The influence of noise on prediction accuracy was
tested using two noisy attributes responsible for
clustering and five relevant but noisy attributes used
for modelling. We experimented with different noise
levels, and with different numbers and types of
noisy attributes (attributes used for clustering and
modelling, or for modelling only). The 5%, 10%
and 15% of Gaussian additive noise in clustering
and modelling attributes were considered for the
total number of noisy attributes ranging from 1 to
5 (Fig. 7).

Figure 7 shows that when a small amount of noise
is present in the attributes (5%, 10%), even if some
of them are clustering attributes, the method is fairly
robust. For a small amount of noise, we can also
observe a slight improvement in prediction accuracy
due to the fact that small noise allows neural net-



346 A. Lazarevic and Z. Obradovic

Fig. 6. (a) Contours of the clusters identified using four most relevant attributes obtained through Feature selection; (b) contours of
the clusters identified using three attributes obtained through PCA.

Fig. 7. The influence of different noise levels on the prediction accuracy. We added none, 1, 2 and 3 noisy modelling attributes to
the 1 or 2 noisy clustering attribute, making it so that the total number of noisy attributes is ranging from 1 to 5. We have
experimented with 5%, 10% and 15% of noise level per attribute. The prediction accuracies (R2 values) were averaged over
15 experiments.

works to avoid local minima [24], and to find a
global minimum with greater probability. It can be
observed that, in addition to neural networks, the
DBSCAN algorithm is also robust to small noise.
However, by increasing the noise level (15%), the
prediction accuracy starts to decrease significantly.

The case when one of two attributes responsible
for clustering is missing can be treated as an extreme
case of noisy attributes considered above. In each
experiment we exchanged one of the relevant clus-
tering attributes for the most relevant one obtained
through the feature selection process, and performed
spatial clustering. As a result, one large cluster (60–
70% of the entire spatial data set) and few relatively
smaller clusters were identified. For comparison to
the global approach, local regression models were
still constructed using all relevant attributes, includ-
ing missing clustering attributes. Therefore, we
examined only the influence of the missing attributes
on the process of finding more homogeneous
regions (clusters).

Although the clustering approach still outperformed

the global approach (Table 2), the difference was
insignificant compared to the clustering approach
with all attributes. This can be explained by the fact
that clustering resulted in a poor quality of clusters
(one large and few relatively small clusters).

When clustering attributes (f4, f5) were available,
but access to other relevant attributes was incom-
plete, the method of local regression models still
outperformed the global prediction models, but the

Table 2. Comparing the global- and clustering-based
approaches when clusters are applied with incomplete
information.

Method R2 � std

Global approach 0.73 � 0.04

Clustering approach first clustering attribute 0.77 � 0.07
when missing (f4)

second clustering 0.78 � 0.07
attribute (f5)
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Table 3. The accuracy of prediction models when some relevant modeling attributes are not available.

Regression Data Set 1 Data Set 2 Data Set 4 Data Set 5 Data Set 3
Method

Available attributes for modelling f1, f2, f4, f5 f1, f3, f4, f5 f2, f3, f4, f5 f1, f4, f5 f1, f2, f3, f4, f5
Global R2 � std 0.48 � 0.10 0.48 � 0.05 0.48 � 0.07 0.54 � 0.03 0.75 � 0.12
Local R2 � std 0.63 � 0.03 0.64 � 0.05 0.65 � 0.04 0.75 � 0.02 0.91 � 0.06

generalisation capabilities of both methods consider-
ably dropped as compared to when all attributes
were available (Table 3).

5.2. Modelling Distributed Heterogeneous
Data

To test our distributed algorithm, three spatial data
sets were generated [23] analogous to the previous
spatial data set. Each set represented a mixture of
five homogeneous data distributions with five rel-
evant attributes and 6561 patterns. We measured the
prediction accuracy on an unseen spatial data set
when local models were built using data from one
or two data sets located at different sites. A spatial
clustering algorithm was applied using two clus-
tering attributes, while local regression models were
constructed using all five relevant attributes. Table 4
shows the accuracies for distributed learning from
a single site and from two sites when local models
were averaged over 15 trainings of neural networks.

The prediction accuracy for all proposed methods
of local regression models significantly outperformed
the global models (line 1), as well as the matching
cluster method using MBRs (line 3). By combining
the models on overlapping regions (lines 5, 7),
the prediction capability was further improved, and

Table 4. The prediction accuracy on data set D3 using models built on data set D1 or data sets D1 and D2.

Method R2 � std

Combine models from

a single site two sites

1 Global model 0.75 � 0.02 0.77 � 0.02
2 Mixture of experts models 0.84 � 0.03 0.86 � 0.02
3 Matching clusters using Minimal Bounding Rectangles 0.78 � 0.03 0.86 � 0.02
Matching clusters 4 Simple 0.87 � 0.02 0.89 � 0.02
using convex hulls 5 Averaging for overlapping regions 0.90 � 0.02 0.92 � 0.01
Classification based 6 Simple 0.87 � 0.02 0.90 � 0.02
cluster learning 7 Matching ‘classes’ to clusters � 0.90 � 0.03 0.92 � 0.02

averaging for overlapping regions
8 Centralised clustering (upper bound) 0.90 � 0.02 0.92 � 0.01

significantly outperformed the mixture of experts
model (line 2). This indicated that, indeed, confi-
dence in the prediction of the overlapping parts
could be increased by averaging appropriate local
predictors. When an overlapping region represented
10% or more of an entire cluster size, the experi-
ments showed that it is worthwhile to combine local
regressors in order to improve the total prediction
accuracy.

When models from two dispersed synthetic data
sets were combined to make predictions on the third
spatial data set, the prediction accuracy was slightly
improved over the models from a single site
(Table 4). It is also important to observe that the
proposed distributed methods, when applied to syn-
thetic data, successfully approached the upper bound
of a centralised model, where all spatial data sets
were merged together at a single site.

We also repeated the experiments with different
noise levels in attributes, and with different numbers
and types of noisy attributes (Fig. 8) in a distributed
environment. Similar to the experiments with noise
in the centralised scenario, Fig. 8 shows that this
approach was robust to small noise, but when the
noise level was increased (15%), the prediction
capabilities started to decay substantially.
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Fig. 8. The influence of different noise levels on the prediction accuracy in distributed learning from a single site. None, 1, 2 and 3
noisy modelling attributes were used in addition to 1 or 2 noisy cluster-defining attributes, making it so that the total number of
noisy at ributes ranged from 0 to 5. We have experimented with 5%, 10% and 15% of noise level. Matching clusters using convex
hulls were used.

5.3. Time Complexity of the Proposed
Methods

Both centralised and distributed clustering
approaches require less computational time for mak-
ing a prediction than the method of building global
models, since the local regressors are trained on
smaller data sets than the global ones, and the time
needed for clustering is negligible compared to the
time needed for training global neural network
models (Fig. 9(a)).

However, to estimate the complete performance
of the distributed approach, the extra processing
time (for constructing convex hulls or classifiers
used for cluster representation) and communication
overhead must be taken into account.

In the ‘matching clusters’ approach, the time com-
plexity for computing a convex hull of n points is
�(n log n). In classification-based cluster learning,
however, the time required for training a neural
network for classification of clusters depends upon
the number of training examples and the number of

Fig. 9. (a) �����: the computational time needed for the global and centralised clustering approaches on the spatial data sets with
6561 data examples; · · · · ·: time needed for training five local regression modes on five discovered clusters with 793, 884, 1008,
1775 and 2101 data examples: —: time needed for training Neural Networks (NN) depending on the training set size; – – –: clustering
time depending on the data set size; (b) the computational time for computing convex hulls and NN classifiers.

hidden neurons, but it also depends upon the learned
data distribution, which is not always predictable.
In general, this time is linear in the number of
training examples, but it is not apparent whether
some of the suggested approaches are compu-
tationally superior. In addition, for a fixed (small)
number of iterations needed for training a neural
network model, classification-based cluster learning
can be computationally less expensive, but not suf-
ficiently accurate. Therefore, to determine the com-
putational time needed for computing convex hulls
and for training neural network classifiers for differ-
ent numbers of data points, we measured the actual
run time averaged over 50 experiments. Experi-
mental results show that the approach of computing
convex hulls requires much less computational time
than the method of building neural network clas-
sifier (Fig. 9(b)).

Communication overhead in our distributed
approach includes data and information transfer
among distributed sites. For the ‘matching cluster’
approach, the amount of data transferred among the
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data sites depends upon the shapes of the clusters
discovered, and cannot be predicted in advance.
However, in our experiments the number of points
needed to represent a convex hull was small (10–
30 data points), and the total data transfer (including
convex hulls for all identified clusters) was 5–
15 KB. For classification-based cluster learning, it
is clear that the transferred information is only a
neural network model whose size depends upon the
number of hidden layers and the number of hidden
neurons at each hidden layer, and in practice is
relatively small. For example, our implementation
of a two-layered feed-forward neural network with
five input and five hidden nodes required about
27 KB. Therefore, the data amount needed to be
transferred is relatively small in both approaches,
but due to much less time being needed to construct
convex hulls, it is clear that this approach has
a better total computational performance than the
classification-based method, while achieving the
same or even slightly better total prediction accu-
racy.

6. Conclusions

A new method for knowledge discovery in central-
ised and distributed spatial databases is proposed. It
consists of a sequence of non-spatial and spatial
clustering steps, followed by local regression. The
new approach was successfully applied to three
synthetic heterogenous spatial data sets. Experi-
mental results indicate that both the centralised and
distributed methods can result in better prediction
compared to using a single global model.

We observed no significant difference in the pre-
diction accuracy achieved on the unseen spatial data
sets, when comparing the proposed distributed clus-
tering-regression to a centralised method with all
data available at the single data site, and when the
data distributions at distributed sites were similar.
However, when the data distributions at multiple
sites were not alike, it is possible that the distributed
approach may not be as accurate as the centralised
one, since it is more convenient for distributed
environments with comparable data distributions.

The communication overhead among the multiple
data sites in the distributed approach is fairly, small
in general. In all distributed methods, local
regression models constructed on the clusters ident-
ified were migrated to the site where prediction
is made. All this information, which needs to be
transferred, contains insignificant amounts of data,
since models do not require a lot of space for
their description.

In practice, distributed data mining very often
involves; security issues when, for a variety of
competitive or legal reasons, data cannot be trans-
ferred among multiple sites. In such situations, the
first method of matching clusters by moving convex
hulls is not quite adequate, although a very small
percentage (usually less than 1%) of the data needs
to be transferred. Therefore, when distributed sites
want to keep their data private, the classification-
based cluster learning approach is more appropriate,
since only the constructed models are transferred
among the sites, but it is also slightly less efficient.

Furthermore, all the suggested algorithms are very
robust to small amounts of noise in the input attri-
butes. In addition, when some of the appropriate
clustering attributes are missing, the prediction accu-
racy becomes only slightly better than the single
global model. Therefore, when this is the case,
some supervised techniques of finding homogeneous
regions will be more suitable.

Although the experiments performed provide evi-
dence that the proposed approaches are suitable for
distributed learning in spatial databases, further work
is needed to optimise them in larger distributed
systems, since the methods of combining models
become more complex as the number of distributed
sites increases.
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