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Abstract. The growing amount of available information and its distributed and heterogeneous nature has a
major impact on the field of data mining. In this paper, we propose a framework for parallel and distributed
boosting algorithms intended for efficient integrating specialized classifiers learned over very large, distributed
and possibly heterogeneous databases that cannot fit into main computer memory. Boosting is a popular technique
for constructing highly accurate classifier ensembles, where the classifiers are trained serially, with the weights
on the training instances adaptively set according to the performance of previous classifiers. Our parallel boosting
algorithm is designed for tightly coupled shared memory systems with a small number of processors, with an
objective of achieving the maximal prediction accuracy in fewer iterations than boosting on a single processor.
After all processors learn classifiers in parallel at each boosting round, they are combined according to the
confidence of their prediction. Our distributed boosting algorithm is proposed primarily for learning from several
disjoint data sites when the data cannot be merged together, although it can also be used for parallel learning
where a massive data set is partitioned into several disjoint subsets for a more efficient analysis. At each boosting
round, the proposed method combines classifiers from all sites and creates a classifier ensemble on each site.
The final classifier is constructed as an ensemble of all classifier ensembles built on disjoint data sets. The new
proposed methods applied to several data sets have shown that parallel boosting can achieve the same or even
better prediction accuracy considerably faster than the standard sequential boosting. Results from the experiments
also indicate that distributed boosting has comparable or slightly improved classification accuracy over standard
boosting, while requiring much less memory and computational time since it uses smaller data sets.
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1. Introduction

The recent, explosive growth of information available to business and scientific fields has
resulted in an unprecedented opportunity to develop automated data mining techniques for
extracting useful knowledge from massive data sets. Large-scale data analysis problems
very often also involve the investigation of relationships among attributes in heterogeneous
data sets where rules identified among the observed attributes in certain regions do not
apply elsewhere. This problem may be further complicated by the fact that in many cases,
the heterogeneous databases are located at multiple distributed sites. Therefore, the issues
of modern data mining include not just the size of the data to be mined but also its location
and homogeneity.
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Data may be distributed across a set of sites or computers for several reasons. For exam-
ple, several data sets concerning business information (e.g. telephone or credit card fraud)
might be owned by separate organizations that have competitive reasons for keeping the data
private. In addition, these data may be physically dispersed over many different geographic
locations. However, business organizations may be interested in enhancing their own models
by exchanging useful information about the data. Another need for learning from multiple
sources could be found when datasets have grown too large to fit into the main computer
memory. A parallel approach to building a model in such a situation is aimed at solving the
practical problem of how to learn from large data sets. For this purpose, various parallelized
machine learning algorithms were proposed, e.g. parallel decision tree [26, 28, 29], parallel
association rules [31] and parallel rule induction [23]. On the other hand, in order to solve
the problem of learning from very large and/or distributed databases, some researchers have
proposed incremental learning techniques. Usually these techniques involve direct modifi-
cations of standard learning algorithms, such as decision trees [30] and rule learner [5].

Since distributed learning usually involves several data sets from multiple sites, an alter-
native and fairly general method for distributed learning is to combine different multiple
predictors in a “black-box” manner. Different meta-learning techniques explored at the
JAM project [4, 22] were proposed in order to coalesce the predictions of classifiers trained
from different partitions of the training set. The advantage of this approach is that it is
algorithm-independent, it can be used to scale up many learning algorithms, and it ensures
the privacy of data at multiple sites.

In this paper, we propose a novel technique of combining classifiers from multiple sites
using a boosting technique [9]. Boosting uses adaptive sampling of patterns to generate
a highly accurate ensemble of many weak classifiers whose individual global accuracy is
only moderate. In boosting, the classifiers in the ensemble are trained serially, with the
weights on the training instances adjusted adaptively according to the performance of the
previous classifiers. The main idea is that the classification algorithm should concentrate
on the instances that are difficult to learn. Boosting has received extensive theoretical and
empirical study [10, 19], but most of the published work focuses on improving the accuracy
of a weak classifier over the same single, centralized data set that is small enough to fit into
the main memory. So far, there has not been much research on using the boosting technique
for distributed and parallel learning. The only exception was boosting for scalable and
distributed learning [7], where each classifier was trained using only a small fraction of
the training set. In this distributed version, the classifiers were trained either from random
samples (r-sampling) or from disjoint partitions of the data set (d-sampling). In r-sampling,
a fixed number of examples were randomly picked from the weighted training set (without
replacement), where all examples had equal chance of being selected. In d-sampling, the
weighted training set was partitioned into a number of disjoint subsets, where the data from
each site was taken as a d-sample. At each round, a different d-sample was given to the weak
learner. Both methods can be used for learning over very large data sets, but d-sampling
is more appropriate for distributed learning, where data at multiple sites cannot be pulled
together to a single site. The reported experimental results indicated that their distributed
boosting is either comparable to or better than learning single classifiers over the complete
training set, but only in some cases comparable to boosting over the complete data set.
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Our objective was to develop a boosting technique applicable to both parallel and distrib-
uted environments. The first boosting modification represents a “parallelized” version of
the boosting algorithm for a tightly coupled shared memory system with a small number
of processors (e.g. a dual processor system). This method is applicable when all the data
can fit into the main memory, with the major goal of speeding up the boosting process. At
each boosting round, all classifiers are trained on different samples drawn from the same
training data set and then assigned to one of the data instances according to the confidence
of their prediction. Empirical studies of several data sets have demonstrated that this method
can achieve the same or slightly better classification accuracy considerably faster than the
standard boosting algorithm.

The second boosting adaptation explored in our study is more suitable for distributed
learning, since it assumes that the disjoint data sets from multiple sites cannot be merged
together. However, it can also be applied to parallel learning, where the training data set
is split into several sets that reside on different processors within a parallel computer. The
data sets can be either homogeneous or heterogeneous, or can even contain different data
distributions. In the proposed method, at each boosting round the classifiers are first learned
on disjoint datasets and then exchanged amongst the sites. The exchanged classifiers are
then combined and their weighted voting ensemble is constructed on each disjoint data set.
The final ensemble represents an ensemble of ensembles built on all local distributed sites.
The performance of ensembles is used to update the probabilities of drawing data samples
in succeeding boosting iterations. Our experimental results indicate that this method is
computationally effective and comparable to or even slightly better in achieved accuracy
than when boosting is applied to the centralized data.

2. Methodology

The modifications of the boosting algorithm that we propose in this paper are variants of
the AdaBoost.M2 procedure [9], shown in figure 1. The algorithm supports multi-class

Figure 1. The AdaBoost.M2 algorithm.
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problems and proceeds in a series of T rounds. In every round, a weak learning algorithm is
called and presented with a different distribution Dt that is altered by emphasizing particular
training examples. The distribution is updated to give wrong classifications higher weights
than correct classifications. The entire weighted training set is given to the weak learner
to compute the weak hypothesis ht . At the end, all weak hypotheses are combined into a
single hypothesis hfn.

The boosting algorithm may be appropriate for distributed learning for several reasons:
it can be applied to a wide variety of algorithms, it is often superior to other combining
methods and its weighted voting ensemble can easily scale the magnitudes of classifiers
giving a large weight to a strong hypothesis thus correcting wrong classifications of many
weaker hypotheses. In addition, a natural way of learning in a distributed environment is
by combining classification predictors. Our objective, therefore, is to exploit all of these
advantages in order to apply boosting to parallel and distributed learning.

As classifiers in all boosting experiments, we trained two-layer feedforward neural net-
work (NN) models since such universal approximators were often reported to outperform the
alternatives for classification of real life non-linear phenomena [12]. The NN classification
models had the number of hidden neurons equal to the number of input attributes. To use
NNs with AdaBoost.M2 algorithm, our implementation had the number of output nodes
equal to the number of classes, where the predicted class is from the output with the largest
response. In such an implementation, the output nodes compose a set of “plausible” labels,
thus directly satisfying requirement of AdaBoost.M2 algorithm that the values of the output
nodes indicate a “degree of plausibility” and all these plausibilities do not necessarily add
up to 1. To optimize NN parameters we used resilient propagation [24] and Levenberg-
Marquardt [11] learning algorithms.

Although there are known ways of combining NNs trained on different subsets in order to
produce a single learner (e.g. Breiman’s born again trees [3]) very often they do not provide
as good accuracy as an ensemble of classifiers created using the boosting algorithm. Since
our major objective was to improve the generalization capabilities of proposed methods,
constructing a simple and more comprehensive model was not considered in this study.

2.1. Boosting for parallel learning

The idea of proposed parallel boosting is to speed up the learning process of the standard
boosting. Given a tightly coupled shared memory system with a few processors, our goal is
to train classifiers on each of the available processors, and achieve the maximal prediction
accuracy faster than when learning on a single processor. We assume there are k processors
in the system, and each of them has access to entire training data set. The proposed algorithm
is shown in figure 2.

In the proposed method, the classifiers are constructed on each of k available processors
at each boosting round. Each classifier is trained on a different sample Q j,t drawn from the
same training set S according to the same distribution Dt . Instead of a single classifier built
at each boosting iteration, in parallel boosting there are k classifiers that compete for the data
examples according to the confidence of their predictions. The classifier with the highest
prediction confidence for some data instance is responsible for making the prediction on
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Figure 2. Parallel boosting algorithm.

that data example. Therefore, there is a different classifier responsible for each data point
inside the data set, while the hypothesis ht for boosting iteration t , is a mixture of weak
hypotheses h j,t , j = 1, . . . , k. The distribution Dt is updated according to the performance
of the mixed hypothesis ht on the training set S, and it is used by each processor to draw
samples in subsequent boosting rounds. The composite hypothesis ht is also used when
making a final hypothesis hfn. It is very important to note that within the system only the
classifiers are moved, not the data examples themselves.

2.2. Boosting for distributed learning in homogeneous databases

2.2.1. The general framework of distributed boosting. The objective of a distributed
learning algorithm is to efficiently construct a prediction model using data at multiple sites
such that prediction accuracy is similar to learning when all the data are centralized at a
single site. Towards such an objective, we propose several modifications of the boosting
algorithm within the general framework presented at figure 3. All distributed sites perform
the learning procedure at the same time.

Assume there are k distributed sites, where site j contains data set Sj with m j examples,
j = 1, . . . , k. Data sets Sj contain the same attributes and do not necessarily have the
same size. During the boosting rounds, site j maintains a local distribution �j,t and the
local weights wj,t that directly reflect the prediction accuracy on that site. However, our
goal is to emulate the global distribution Dt obtained through iterations when standard
boosting is applied to a single data set obtained by merging all sets from distributed sites.
In order to create such a distribution that will result in similar sampling as when all data are
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Figure 3. The distributed boosting framework.

centralized, the weight vectors wj,t, j = 1, . . . , k from all distributed sites are merged into
a joint weight vector wt , such that the q-th interval of indices [

∑q−1
p=1 mp + 1,

∑q
p=1 mp] in

the weight vector wt corresponds to the weight vector wq,t from the q-th site. The weight
vector wt is used to update the global distribution Dt (step 5, figure 1). However, merging all
the weight vectors wj,t requires a huge amount of time for broadcasting, since they directly
depend on the size of the distributed data sets. In order to reduce this transfer time, instead
of the entire weight vectors wj,t, only the sums Vj,t of all their elements are broadcast (step 9,
figure 3). Since data site j samples only from set Sj , there is no need to know exact values
of the elements in the weight vectors wq,t (q �= j, q = 1, . . . , k) from other distributed sites.
Instead, it is sufficient to know only the number of data examples need to be sampled from
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the site q . Therefore, each site j creates a weight vector Uj,t (step 10, figure 3), where
its j-th interval [

∑ j−1
p=1 mp + 1,

∑ j
p=1 mp] represents the weight vector wj,t, while the all

other intervals that correspond to the weight vectors from other distributed sites may be set
arbitrarily such that the values inside the q-th interval of indices (q �= j) sum to the value
Vq,t . The simplest method to do this is to set all values in q-th interval to the value Vq,t/mq .
Using this method, expensive broadcasting of the huge weight vectors is avoided, while still
preserving the information which site is more difficult to learn and where more examples
need to be sampled.

As a result, each site at round t maintains its version Dj,t of the global distribution Dt ,
and its local distribution �j,t. At each site j , the samples in boosting rounds are drawn
according to the distribution Dj,t, but the sampled training set Qj,t for site j is created only
from those data points that match the indices drawn from the j-th interval in the distribution
Dj,t. It is evident that the samples Qj,t from distributed sites do not necessarily have the
same size through iterations, but the total number of examples drawn from all distributed
sites is always the same. The motive for using “unbalanced” sampling from distributed sites
is to simulate drawing the same instances as in the standard boosting. At each boosting
round t , the classifiers Lj,t are constructed on each of the samples Qj,t and then exchanged
among the distributed sites. However, if the sample Qj,t is not sufficiently large, the most
accurate classifier Lj,p, (p < t) constructed so far is used. The minimum size of the sample
that may be used for training of classifiers represents the size of random data sample for
which only a small, predefined accuracy loss is achieved when comparing to accuracy
obtained by learning from entire training set. Since all sites contain a set of classifiers Lj,t,
j = 1, . . . , k, the next steps involve creating an ensemble Ej,t by combining these classifiers
and computing a composite hypothesis hj,t. The local weight vectors wj,t are updated at
each site j in order to give wrong classifications higher weights than correct classifications
(step 8, figure 3) and then their sums Vj,t are broadcast to all distributed sites. Each site j
updates its local version Dj,t according to the created weight vector Uj,t. At the end, the
composite hypotheses hj,t from different sites and different boosting iterations are combined
into a final hypothesis hfn.

In order to simulate the boosting on centralized data, our intention was to draw more data
instances from the sites that are more difficult for learning. The weights wj,t computed in step
8, directly reflect the prediction capability for each data point, thus satisfying our goal to sam-
ple more examples from the sites that are more difficult to learn. In order to further emphasize
sampling from the sites that are difficult for learning, we consider dividing the weights wj,t

by the factor accp
j (p = 0, 1 or 2), such that the difference between the weights from two

sites is further increased. Here, acc j corresponds to the local accuracy on corresponding
site j , and the factor p indicates how much we like to increase the difference between the
weights from different sites (larger value p results in larger difference between the weights).

2.2.2. The variants of distributed boosting. We explore several variants of the proposed
distributed boosting algorithm (figure 3). The variants differ in creating an ensemble Ej,t

obtained by combining the classifiers Lj,t (step 4).
The simplest method for combining classifiers into an ensemble Ej,t is based on Simple

Majority Voting of Classifiers from All Sites. If the classifiers Ll,t , l = 1, . . . , k, from all sites
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Figure 4. The confidence-based technique for weighted combining classifiers from distributed sites.

produce hypotheses hl, j,t on site j , then the hypothesis hj,t (step 5, figure 3) is computed
as:

hj,t = 1

k

k∑
l=1

hl, j,t (1)

More sophisticated techniques for distributed boosting consider weighted combinations
of classifiers. In Weighted Majority Voting of Classifiers from All Sites, the weights ul,j,t of
the classifiers Ll,t from all sites are proportional to the accuracy they achieve on the local
site j . Therefore, if the classifiers Ll,t produce hypotheses hl,j,t on site j , then the hypothesis
hj,t can be computed as:

hj,t =
∑k

l=1 ul,j,t · hl,j,t∑k
l=1 ul,j,t

(2)

We also consider Confidence-based Weighting Classifiers from All Sites, where the clas-
sifiers from all sites are combined using the procedure similar to boosting technique. If the
classifiers Ll,t at iteration t produce hypotheses hl,j,t on data set Sj from site j that maintains
the distribution �j,t, then this technique of combining classifiers is defined at figure 4.

2.3. Boosting for distributed learning in heterogeneous databases

We consider two scenarios when learning from heterogeneous databases among the dis-
tributed sites: (1) all heterogeneous databases with a similar mixture of distributions;
(2) databases with different but homogeneous distributions. In both scenarios, all data
sites have the same set of attributes.

2.3.1. Learning from heterogeneous databases with a similar mixture of distributions.
Our previous research shows that in heterogeneous databases where several more homo-
geneous regions exist, standard boosting does not enhance the prediction capabilities as
significantly as for homogeneous databases [14]. In such cases it is more useful to have
several local experts each with expertise in a small homogeneous region of the data set
[15]. A possible approach to this problem is to cluster the data first and then to assign a
single specialized classifier to each discovered cluster. Therefore, we combine this boosting



BOOSTING ALGORITHMS FOR PARALLEL AND DISTRIBUTED LEARNING 211

Figure 5. The distributed boosting specialized experts for sites with heterogeneous distributions.

specialized experts approach with already proposed distributed boosting in order to further
improve it. The general idea for boosting specialized experts in a distributed environment
is shown in figure 5.

Similar to learning from homogeneous distributed databases (Section 2.2), all k sites
again maintain their own versions Dj,t of the distribution Dt , and the final hypothesis Hfn

represents the combination of hypotheses Hj,t from different sites and different boosting
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Figure 6. The algorithm for merging specialized hypotheses hj,t,l into a composite hypothesis Hj,t .

iterations. However, in this scenario Hj,t is not the composite hypothesis that corresponds
to a classifier ensemble created on the site j at iteration t , but it represents a compos-
ite hypothesis obtained by combining classifier ensembles Ej,t,l constructed on c j clusters
identified on site j at iteration t . Due to the similar mixture of distributions, assume that
the number of discovered clusters is the same on all sites. Ensembles Ej,t,l are constructed
by combining classifiers Lj,t,l that are learned on clusters Qj,t,l, l = 1, . . . , c j , obtained by
applying clustering algorithm on the sample Qj,t. All classifiers Lj,t,l are then exchanged
among all sites, but only learners L j,t,q , q = 1, . . . , c j , that correspond to the q-th cluster
Q j,t,q are combined to create an ensemble E j,t,q on each site j and to compute a correspond-
ing hypothesis hj,t,l. Merging the hypotheses hj,t,l that correspond to ensembles Ej,t,l into a
composite hypothesis Hj,t is performed using the algorithm described in figure 6. Therefore,
the final classifier corresponding to the final hypothesis Hfn is computed by combining the
classifiers from discovered clusters at different sites and different iterations.

In merging hypotheses hj,t,l, data points from different clusters Sj,t,l have different pseudo-
loss values εj,t,l and different parameter values β j,t,l. For each cluster Sj,t,l, l = 1, . . . , c j ,
from iteration t , defined by the convex hull CHj,t,l, there is a pseudo-loss εj,t,l and the
corresponding parameter βj,t,l (figure 6). Both the pseudo-loss value εj,t,l and parameter
βj,t,l are computed independently for each cluster Sj,t,l where a particular classifier Lj,t,l

is responsible. Before updating distribution Dj,t, a unique vector βj,t is created such that
the i-th position in the vector βj,t is equal to βj,t,l if the i-th pattern from the entire sets Sj

belongs to the cluster Sj,t,l identified at iteration t . Similar, the hypotheses hj,t,l are merged
into a single hypothesis Hj,t. Since we merge βj,t,l into βj,t and hj,t,l into hj,t, updating the
distribution Dj,t can be performed in the same way as in the distributed boosting algorithm
(Section 2.2).

Our distributed boosting algorithm for heterogeneous databases involves clustering at
step 3 (figure 5). Therefore, there is a need to find a small subset of attributes that uncover
“natural” groupings (clusters) from the data according to some criterion. For this purpose
we adopt the wrapper framework in unsupervised learning [6], where we apply the clus-
tering algorithm to attribute subsets in the search space and then evaluate the subset by a
criterion function that utilizes the clustering result. If there are d attributes, an exhaustive
search of 2d possible attribute subsets to find one that maximizes our selection criterion is
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computationally intractable. Therefore, in our experiments, fast sequential forward selec-
tion search is applied. Like in [6] we also accept the scatter separability trace for attribute
selection criterion.

This procedure, performed at step 2 of every boosting iteration, results in r relevant
attributes for clustering. Thus, for each round of boosting algorithm at each site j , there
are relevant attribute subsets that are responsible for distinguishing among homogeneous
distributions in the sample Qj,t. In order to find those homogeneous regions, clustering at
each boosting iteration is performed. Two clustering algorithms are employed: standard
k-means algorithm and density based clustering algorithm, called DBSCAN [25], designed
to discover clusters of arbitrary shape efficiently.

As a result of clustering, on each site j several distributions Dj,t,l (l = 1, . . . , c j ) are
obtained, where c j is the number of discovered clusters at site j . For each of c j clusters
discovered in the data sample Qj,t, a weak learner Lj,t,l is trained using the corresponding
data distribution Sj,t,l, and a weak hypothesis hj,t,l is computed. Furthermore, for every
cluster Qj,t,l identified at the sample Qj,t, its convex hull CHj,t,l is identified in the attribute
space used for clustering, and these convex hulls are applied to the entire training set in order
to find the corresponding clusters Sj,t,l (figure 7) [17]. All data points inside the convex hull
CHj,t,l belong to the l-th cluster Sj,t,l discovered at iteration t on site j . Data points outside
the identified convex hulls are attached to the cluster containing the closest data pattern.
Therefore, instead of a single global classifier constructed in every boosting iteration, there
are c j classifiers Lj,t,l and each of them is applied to the corresponding cluster Sj,t,l.

When performing clustering during boosting iterations, it is possible that some of the
discovered clusters have insufficient size for training a specialized classifier. Hence, instead
of training a specialized classifier on such a cluster with an insufficient amount of data,
classifiers from previous iterations that were constructed on the corresponding clusters
detected through the convex hull matching are consulted (figure 7) and one with the maximal
local prediction accuracy is employed.

Figure 7. Mapping convex hulls (CH1,1,l ) of clusters Q1,1,l discovered in data sample Q1,1 to the entire training
set S1 in order to find corresponding clusters S1,1,l . For example, all data points inside the contours of convex hull
CH1,1,1 (corresponding to cluster Q1,1,1 discovered on Q1,1) belong to cluster S1,1,1 identified on S1.
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2.3.2. Learning from different homogeneous distributions. An alternative boosting al-
gorithm for learning in a heterogeneous distributed environment is proposed, where k dis-
tributed sites contain databases with the same attributes but with different homogeneous
distributions. An unseen test data set may belong to one of these distributions or may be
a mixture of distributions from the multiple sites. Here, the method for distributed boost-
ing from Section 2.2 will not provide satisfactory prediction accuracy, since the classifiers
learned from one data distribution will have poor performance on a data set with a differ-
ent distribution. Therefore, when making prediction there is a need to identify appropriate
classifiers and to determine a measure of this appropriateness.

When the test data set contains only one distribution, only classifiers that are constructed
on data sets that stem from distributions similar to the distribution from the test set are
combined. For determining similar distributions, the difference between them is computed
using Mahalanobis distance [8], since our previous research indicated that it could be an
effective technique for distinguishing between two mixtures of distributions [21]. Given
data sets S1 and S2 from distributed sites 1 and 2, the Mahalanobis distance between them
is computed as:

dmah =
√(

µS1 − µS2

) · �−1 · (
µS1 − µS2

)T
, (3)

where µS1 and µS2 are mean vectors of the data sets S1 and S2 respectively, and � is the
sample covariance matrix [8]:

� = (m1 − 1) · �1 + (m2 − 1) · �2

(m1 + m2 − 2)
, (4)

with �1 and �2 denoting covariance matrices of S1 and S2. The Mahalanobis distance
is computed without violating data privacy, since only the number of points (m j ), mean
vectors (µSj ) and covariance matrices (� j ) are exchanged among the sites. Therefore, the
distributed boosting algorithm (figure 3) is applied only to those sites that have the most
similar distributions to the distribution from the test data set.

However, when the test data set contains a mixture of distributions from multiple sites,
for each test point it is necessary to determine the originating distribution. For this purpose,
given k data sets Sj , j = 1, . . . , k, the Mahalanobis distance is computed between a new
instance r and the distributions corresponding to each of the sets Sj :

dmah =
√(

r − µSj

) · �−1
Sj

· (
r − µSj

)T
, (5)

where µSj and �−1
Sj

represent the mean vector and the covariance matrix of the data set Sj .
The test data instances are classified into groups, such that all points inside one group are
closest to one of the distributions from the k distributed sites. An ensemble of classifiers on
each of distributed sites is constructed independently using the standard boosting approach.
The classifier ensemble E j is applied to the test subset whose instances are closest to the
distribution of the data set Sj . In addition, when two or more distributed sites have the
distributions sufficiently similar to one of the groups from the test data set, the distributed
boosting algorithm from Section 2.2 is used to learn from sites with similar distributions.
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3. Experimental results

Our experiments were performed on several data sets. When experimenting with parallel
and distributed boosting in homogeneous environments, five data collections were used.
The first one contained two synthetic spatial data sets with 6,561 instances generated using
our spatial data simulator [20] such that the distributions of generated data were approxi-
mately Gaussian but samples exhibit spatial correlation similar to the distributions of real
life spatial data. One data set was used for training and another one for out of sample testing.
Since random splitting for spatial domains is likely to result in overly optimistic estimates
of prediction error (due to spatial correlation in data [18]), the training data set was spa-
tially partitioned into three disjoint data sets used for distributed learning, each with 2,187
examples (figure 8). The obtained spatial data sets stemmed from similar homogeneous
distributions and had five continuous attributes and three equal size classes. The other four
data collections were Covertype, Pen-based digits, Waveform and LED data sets from the
UCI repository [2]. The Covertype data set, currently one of the largest databases in the
UCI Database Repository, contains 581,012 examples with 54 attributes and 7 target classes
representing the forest cover type for 30 × 30 meter cells obtained from US Forest Service
(USFS) Region 2 Resource Information System [1]. In Covertype data set, 40 attributes are
binary columns representing soil type, 4 attributes are binary columns representing wilder-
ness area, and the remaining 10 are continuous topographical attributes. Since the training
of neural network classifier would be very slow if using all 40 attributes representing a
soil type variable, we transformed them into 7 new ordered attributes. These 7 attributes
were determined by computing the relative frequencies of each of 7 classes in each of 40
soil types. Therefore, we used a 7-dimensional vector with values that could be considered
continuous and therefore more appropriate for use with neural networks. This resulted in a
transformed data set with 21 attributes. The 149,982 data instances were used for training in
parallel boosting, while the same instances but separated into 8 disjoint data sets were used
for distributed learning. The remaining 431,032 data examples were used for out of sample
testing. For the Pen-based digit data set, containing 16 attributes and 10 classes, original
training data set with 7,494 instances was randomly split into 6 disjoint subsets used for
learning, each with 1,249 examples, while the data set with 3,498 instances was used for
out of sample testing. For the Waveform set, 50,000 instances with 21 continuous attributes
and three equally sized classes were generated. The generated data were split into 5 sets of
10,000 examples each, where 4 of them were merged and used as training set for parallel
boosting, while the same 4 but separated were used for distributed learning. The fifth data

Figure 8. Partitioning the spatial training data set into three disjoint subsets.
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set was used as a test set. The LED data set was generated with 10,000 examples and 10
classes, where 4 sets with 1,500 examples were used for training in parallel and distributed
environment, and the set with 4,000 examples was used for testing.

For all proposed algorithms performed on all five data sets the reported classification
accuracies were obtained by averaging over 10 trials of the boosting algorithm. When
applying boosting techniques on neural network classifiers, the best prediction accuracies
were achieved using the Levenberq-Marquardt learning algorithm.

3.1. Results for parallel boosting

When experimenting with the parallel boosting algorithm, neural network classifiers were
constructed on two, three and four processors during boosting iterations, since our exper-
imental results indicated that no significant differences in prediction accuracy were found
when more neural networks were involved. In order to examine how the performance of
parallel boosting depends on the size of the data used for learning, the size of the training
data set was varied. The results for synthetic spatial data set and for Covertype data set are
presented respectively at figure 9(a) and (b), while the summary of the results for all five
data sets are reported in Table 1.

It is evident from the charts obtained for the synthetic spatial data sets (figure 9), that
the parallel boosting method achieved slightly better prediction accuracy than the stan-
dard boosting method in less number of boosting rounds. The reduction in the number of

Figure 9. Out of sample averaged classification accuracies for standard boosting applied on a single processor
and for parallel boosting applied on 2, 3 and 4 processors. Both algorithms are applied on (a) synthetic spatial data
set (b) Covertype data set.
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Table 1. A comparative analysis of parallel boosting speedup for different number of processors.

Number of parallel boosting iterations needed for achieving the same maximal
accuracy as standard boosting trained on a single processor

Number of
processors Synthetic spatial Covertype Pen-based digits LED Waveform

1 100 20 12 10 8

2 28 11 6 7 6

3 14 9 5 6 5

4 9 8 4 5 5

boosting rounds required for achieving the maximal prediction accuracy was especially ap-
parent when learning on larger data sets (figure 9(a1) and (b1)). However, when the size of
entire training data set decreased, the parallel boosting became less superior to the standard
boosting method (figure 9 (a2), (a3), (b2) and (b3)). This phenomenon was probably due to
the overfitting of the neural networks constructed at boosting iterations, since the composite
classifier computed through competing neural network classifiers was probably overfitted
more than a single neural network classifier. Although overfitting may be sometimes useful
when combining classifiers [27] (it increases the variance of the combined models and
therefore their diversity too), when small training data sets are available, diversity of the
classifiers could not be properly emphasized because the classifiers were constructed on
the samples drawn from the same training set but with insufficient number of points for
achieving reasonable generalizability. Therefore, when the time for constructing a clas-
sifier ensemble is an issue, the speed of achieving the maximal prediction accuracy may
be especially valuable when tightly coupled computer systems with a few processors are
available.

Since in the proposed parallel boosting there was only one accessed data set, the scaleup
properties was not considered, but instead, we determined the speedup, i.e. the decrease
in the number of iterations the parallel boosting needed for achieving the same accuracy
comparing to standard boosting applied on a single processor. However, the parallel boosting
does not provide speedup directly but indirectly, since each processor samples from the same
“global” data set and several classifiers are computed per iteration instead of one. Results
shown at Table 1 illustrate that the parallel boosting has very good speedup for synthetic
spatial data, good for covertype and pen-based digit data sets, but fairly poor for LED and
Waveform data sets probably due to their homogeneous distributions.

3.2. Results for distributed boosting in homogeneous environments

3.2.1. Time complexity analysis. We performed experiments on all five reported data sets
and compared the computational time needed for training neural network (NN) classifiers
using the standard and distributed boosting approach. The major advantage of the proposed
distributed boosting algorithm is that it requires significantly less computational time per
each boosting round since the classifiers are learned on smaller data sets. Figure 10 shows
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how the time required for constructing NNs depends of the number of examples in training
set for all three reported data sets when measured on a Pentium III processor with 768
MB of main memory. Analyzing the figure 10(a), it is evident that the time needed for
constructing a NN classifier on the three times reduced synthetic spatial training set resulted
in more than three times faster computing time. Similarly, when constructing NNs on LED
and Waveform data sets, four times smaller data set caused more than four times faster
learning (figure 10(b) and (c)). For Covertype data set, time needed for training a NN
on an eight times smaller data set was more than eight times smaller than time required
for training a NN when using the entire training set (figure 10(d)). Finally, training a NN
on a six times reduced Pen-based digit data set (figure 10(e)) resulted in 5.5 times faster
training.

In order to estimate the speedup of the proposed distributed boosting algorithm, we
need to consider a communication overhead that involves time required for broadcast-
ing the NN classifiers and the sums Vj,t of the weight vectors wj,t to all sites. The size
of the NN classifiers is directly proportional to the number of input, hidden and out-
put nodes, and is relatively small in practice. (e.g., our implementation of a two-layered
feedforward NN with 5 input and 5 hidden nodes required only a few KB of memory).
The broadcasting of such small classifiers results in very small communication overhead,
and when the number of the distributed sites grows, time needed for broadcasting in-
creases linearly. However, the true estimate of the communication overhead among the
distributed sites depends on the actual implementation of the communication amongst
them. Assuming that the communication overhead for small number of distributed sites
is negligible comparing to the time needed for training a NN classifier, the proposed dis-
tributed boosting algorithm achieves a linear speedup (figure 11). The scale up is usually
measured when increasing the number of sites and keeping the number of data examples
per site constant. It is obvious that in such situation, time needed for training NN classi-
fiers on distributed sites is always the same regardless of the number of sites. The only
variable component is the communication overhead that is negligible for small number
of sites (up to 10). Therefore it is apparent that the achieved scale up is also close to
linear.

Figure 11. The speedup of the distributed boosting algorithm for different data sets.
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3.2.2. Prediction accuracy comparison. To explore whether our distributed boosting al-
gorithm can reach similar prediction accuracy as the standard boosting algorithm on a
centralized data set, experiments were first performed using simple majority and weighted
majority algorithms for learning from homogeneous databases (figure 12). In addition to
comparison to standard boosting on centralized data, we also compared distributed boost-
ing algorithms to simpler algorithms for distributed learning. The first one was “distributed
bagging” where we used voting over classifier ensembles constructed independently on
distributed sites using bagging procedure, while the second algorithm employed voting
over classifier ensembles built separately on distributed sites using boosting method. Since
the ensembles are constructed independently on each of distributed sites, the only com-
munication includes exchanging the classifier ensembles built on each site at the end of
procedure. However, voting over ensembles built using boosting method was consistently

Figure 12. Out of sample classification accuracies of different distributed boosting algorithms. (a) Synthetic
spatial data set; (b) Covertype data set; (c) LED data set; (d) Waveform data set; (e) Pen-based digit data set.
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more accurate than “distributed bagging”, and for simplicity reasons only those results are
reported.

For each of the graphs shown at figure 12, the results were achieved for p = 0, as in
most of the cases this modification was more accurate than if using p = 1 or p = 2 for
dividing the weight vector wj,t by the factor accp. Similar to experiments with parallel
boosting, changing the size of the data sets on distributed sites was used to investigate how
the performance of the distributed boosting algorithm varied with the number of data points
used for learning (figure 12).

Results from experiments performed on the synthetic spatial data sets and Covertype
data sets indicate that the methods of simple and weighted majority voting of the classifiers
constructed on multiple sites were successful when learning from distributed sites, since
they achieved approximately the same classification accuracies as the standard boosting
algorithm on merged data (figure 12(a) and (b)). It is also noticeable that for achieving
the maximal prediction accuracy the larger number of boosting iterations was needed for
smaller data sets than for larger ones. Figure 12(a) and (b) also demonstrate that the simple
and weighted majority algorithms were more successful than the voting over boosting
ensembles built independently on distributed sites. Finally, all distributed algorithms were
more accurate than the boosting method applied to a single distributed site (figure 12(a) and
(b)), thus indicating that the data distributions on distributed sites were different enough
since learning from a single site could not achieve the same generalizability as when learning
from a centralized data set.

When performing the experiments on the LED, Waveform and Pen-based digit data sets
(figure 12(c), (d) and (e)), simple and weighted majority distributed boosting algorithms
were consistently comparable in prediction accuracy to standard boosting on the centralized
data. However, these majority algorithms also showed similar prediction accuracy to the
voting over classifier ensembles built using boosting method, and were only slightly more
accurate then the boosting method applied to a single distributed site, probably due to high
homogeneity of data.

In addition, the effect of dividing the sampling weightswj,t by the factor accp, (p = 0, 1, 2)

was investigated for all three proposed distributed boosting methods. In general, in the
presence of sites that are significantly more difficult for learning than the others, a small
increase in the sampling weights wj,t resulted in achieving the maximal prediction accuracy
in a fewer number of boosting rounds. However, a larger accp factor (p = 2) could cause
drawing insufficiently large samples from the sites that were easy to learn in later boosting
iterations. As a consequence, the factor acc2(p = 2) could possibly result in method insta-
bility and a drop in prediction accuracy. To alleviate this problem, the minimum size of
the original data set, needed to be sampled from that site in order to cause only small and
prespecified accuracy drop, is determined by empirical evaluation to be 15% of the original
data set size. Otherwise, the best classifier built so far on a particular site was used when
making a classifier ensemble. In our experiments on synthetic spatial data (figure 13(a)),
increasing the weights wj,t usually resulted in deteriorating the classification accuracy and
in instability of the proposed method for smaller data sets (figure 13(a3)), while preserving
maximal prediction accuracy for experiments with large data sets (figure 13(a1)). The per-
formed experiments on Covertype data sets showed similar behavior as the experiments on
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Figure 13. Out of sample averaged classification accuracies of the simple majority boosting algorithm with
different weight modifications for distributed learning over (a) three synthetic spatial sites; (b) four sites containing
LED data sets.

synthetic data set, while the experiments on LED (figure 13(b)), Waveform and Pen-based
digit data sets showed similar prediction accuracy for all explored factors for updating
the sampling weights wj,t (Table 2). This was probably due to homogeneous distribu-
tions in these data sets, where there were no extremely difficult examples that need to be
emphasized.

Finally, for distributed boosting in a homogeneous environment, we also performed
experiments using the confidence-based method of combining classifiers with all three
modifications for dividing the weights wj,t by the factor accp(p = 0, 1, 2) (figure 14).

Table 2. Final classification accuracies (%) for different distributed algorithms applied on four different data
collections when dividing the weights wj,t by the factor accp .

Method Data set Spatial Pen-based digit LED Waveform Covertype

Simple
majority

p = 0 82.7 96.5 73.4 87.0 72.6

p = 1 82.6 96.3 73.3 86.9 72.7

p = 2 82.2 96.1 73.1 86.8 72.5

Confidence-based
weighting

p = 0 84.3 97.1 73.4 87.2 73.1

p = 1 82.9 96.5 73.6 87.1 73.2

p = 2 82.1 96.1 73.4 87.1 73.0
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Figure 14. Out of sample averaged classification accuracies of confidence-based weighted combining classifiers
in distributed boosting over (a) three synthetic spatial sites (b) four sites containing LED data sets.

The graphs in figure 14 show that the confidence-based combining classifiers achieved
similar accuracy as the standard boosting applied on centralized data and the other meth-
ods considered for distributed boosting. In addition, for some values of parameter p,
the confidence-based distributed boosting slightly outperformed all other boosting meth-
ods. The performed experiments on Covertype data sets using the confidence-based dis-
tributed boosting showed similar effects as experiments on synthetic spatial data sets,
while on the other hand, the experiments performed on Waveform and Pen-based digit
data sets demonstrated similar behavior to experiments carried out on LED data sets.
Therefore, these results were not reported here. Unlike parallel boosting, the improve-
ment in prediction accuracy was more significant when learning from smaller data sets,
but instability was also more evident for smaller data sets (figure 14(a3) and (b3)). The
increase in prediction accuracy with the decreasing the data sets was probably due to
the fact that the data sets on multiple sites were homogeneous, and more data points
were needed in order to improve the generalizability of our models. When the number
of data instances decreased, there were not enough examples to learn data distribution on
a single site, but the variety of data instances from multiple sites still helped in achiev-
ing diversity of built classifiers. In the parallel boosting experiments (Section 3.1), the
classifiers were learned over the same training set, and therefore this diversity was not
apparent.

Due to homogeneous distributions, the experiments performed on LED, Waveform and
Covertype data sets again demonstrated the small observable difference in accuracy between
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the standard boosting and all variants of confidence-based distributed boosting algorithms
when p = 0, 1 and 2 (Table 2).

3.3. Results for distributed boosting specialized experts in heterogeneous environments

For distributed boosting with heterogeneous databases, due to difficulties finding appropriate
real life heterogeneous data sets, only synthetic spatial data sets generated through the spatial
data simulator [2] were used, where we were able to perform controlled experiments on life-
like heterogeneous data of various complexity. In our experiments for distributed learning
explained in Section 2.3.1, all distributed sites had similar heterogeneous distributions with
the same sets of attributes. Four independently generated synthetic spatial data sets were
used each corresponding to five homogeneous data distributions made using our spatial
data simulator. The attributes f 4 and f 5 were simulated to form five distributions in their
attribute space ( f 4, f 5) using the technique of feature agglomeration [20]. Furthermore,
instead of using a single model for generating the target attribute on the entire spatial data
set, a different data generation process using different relevant attributes was applied per
each distribution. The degree of relevance was also different for each distribution. All four
data sets had 6561 patterns with five relevant ( f 1, . . . , f 5) and five irrelevant attributes
( f 6, . . . , f 10), where the three data sets were used as the data from the distributed sites,
and the fourth set was used as the test data set. The experiments for distributed boosting
involving different homogeneous databases (Section 2.3.2) were performed on six synthetic
spatial data sets each with a different distribution. Five of them were used for learning, and
the sixth was a test set.

For distributed boosting specialized experts (Section 2.3.1), experiments were performed
when all data sites had similar but a heterogeneous distribution. In addition to comparison
to standard boosting and boosting specialized experts on centralized data, this distributed
algorithm was also compared to the mixture of experts [13] method, adapted for distributed
learning, where voting over mixture of experts from distributed sites is used to classify new
instances.

Figure 15 shows that both methods of boosting specialized experts in centralized and
distributed environments resulted in improved generalization (approximately 76–77% as
compared to 72–73% obtained through standard and distributed boosting). Furthermore,
both methods of boosting specialized experts outperformed the “distributed” version of
mixture of experts, which achieved 75.2% ± 0.5% classification accuracy and also the mix-
ture of experts method applied on centralized data (75.4% ± 0.4% classification accuracy).
When comparing to standard and distributed boosting, it was also evident that the methods
of boosting specialized experts required significantly fewer iterations in order to reach the
maximal prediction accuracy. After the prediction accuracy was maximized in our experi-
ments, the overall prediction accuracy on a validation set, as well as the total classification
accuracy on the test set, started to decline. The data set from one of the distributed sites used
for learning served as a validation set. The phenomenon of deteriorating the classification
accuracy was probably due to the fact that in the later iterations only data points that were
difficult for learning were drawn and therefore the size of some identified clusters during
those iterations started to decrease thus causing a deficiency in the number of drawn data
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Figure 15. Out of sample averaged classification accuracies of distributed learning over three heterogeneous
sites for synthetic spatial test data set (6561 instances) with 3-equal size classes and stemming from a similar
mixture of 5 homogeneous distributions.

examples needed for successful learning. As a consequence, the prediction accuracy on
these clusters begun to decline and hence the total prediction accuracy decreased, too. It is
interesting to observe that the effect of accuracy drop is not noticed in the standard boosting,
since the same number of examples is drawn in each iteration and only a single classifier is
constructed on these examples, thus avoiding to have insufficient number of examples for
learning.

A criterion for stopping the boosting algorithm early was to stop the procedure when the
classification accuracy on the validation set started to decline. However, after approximately
20 additional boosting iterations the prediction accuracy was stabilized (figure 15). Although
in practice the prediction accuracy on the test set does not necessarily start to drop in the
same iteration as for validation set, in our experiments this difference was usually within
two to three boosting iterations and did not significantly affect the total generalizability of
the proposed method. However, the thorough inspection of noticed phenomenon prevails
the scope of this paper and requires experiments on more data sets.

Two groups of experiments were performed when learning from sites with different ho-
mogeneous distributions and with the same set of attributes (Section 2.3.2). In the first group
of experiments, five data sets with different distributions were used for learning and a data
set with a distribution similar to the distribution from one of the existing multiple sites was
used for testing (figure 16). The second group of experiments was related to learning from
the same five data sets, but testing on the same data set with five homogeneous distributions
as in the experiments when sites had similar heterogeneous distributions (figure 17).

The experimental results for distributed boosting in heterogeneous environment demon-
strated that the method relying on computing Mahalanobis distance among the sites out-
performed both the standard and alternative distributed boosting methods (figure 17). The
result was a consequence of high heterogeneity in synthetic data sets. In such cases, the
classifiers constructed on the sites with distribution very different from the distribution on
the test data set only decreased accuracy of classifier ensembles.
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Figure 16. Testing distributed boosting methods on data stemming from a distribution similar to one of distri-
butions from 5 learning sites.

Figure 17. Testing distributed boosting methods on data stemming from a mixture of distributions from 5 learning
sites.

4. Conclusion

A framework for parallel and distributed boosting is proposed. It is intended to efficiently
learn classifiers over large, distributed and possibly heterogeneous databases that cannot fit
into the computer main memory. Experimental results on several data sets indicate that the
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proposed boosting techniques can effectively achieve the same or even slightly better level
of prediction accuracy than standard boosting when applied to centralized data, while the
cost of learning and memory requirements are considerably lower.

This paper raised several interesting questions that recently have gained a lot of attention.
First, successful learning from very large and potentially distributed databases imposes
major performance challenges for data mining, since learning a monolithic classifier can be
prohibitively slow due to the requirement that all the data need to be held in the main memory.
Second, many distributed data sets cannot be merged together due to a variety of practical
constraints including data dispersed over many geographic locations, security services and
competitive interests. Third, the prediction accuracy of employed data mining algorithms
is of fundamental impact for their successful application. Finally, the computational time
required for constructing a prediction model is becoming more important as the amount of
available data is constantly growing.

The proposed boosting algorithms successfully overcome these concerns under a variety
of consideration, thus offering a fairly general method for effective and efficient learning
in parallel and distributed environments.

A possible drawback of the proposed methods is that a large number of classifiers and
their ensembles are constructed from available data sets. In such situation, the methods of
post-pruning the classifiers [16] may be necessary to increase system throughput, while still
maintaining the achieved prediction accuracy.

Although performed experiments have provided evidence that the proposed methods can
be successful for parallel and distributed learning, future work is needed to fully characterize
them especially in distributed environment with heterogeneous databases, where new algo-
rithms for selectively combining classifiers from multiple sites with different distributions
are worth considering. It would also be interesting to examine the influence of the number
of distributed sites and their sizes to the achieved prediction accuracy and to establish a
satisfactory trade off.

Finally, the proposed methods can be adapted for on-line learning when new data become
available periodically and when it is computationally expensive to rebuild a single classifier
or an ensemble on the entire data set.
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