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Abstract 
 

In this paper we present an approach for identifying 
the relationships between gene expression maps and 
gene functions based on the multiplex gene expression 
maps of mouse brain obtained by voxelation. To 
analyze the dataset, we choose typical genes as queries 
and aim at discovering similar gene groups. We use 
the wavelet transform for extracting features from the 
left and right hemispheres averaged gene expression 
maps, and the Euclidean distance between each pair of 
feature vectors to determine gene similarity. We also 
perform a multiple clustering approach on the gene 
expression maps, combined with hierarchical 
clustering. Among each group of similar genes and 
clusters, the gene function similarity is measured by 
calculating the average gene function distances in the 
gene ontology structure. The experimental results 
confirm the hypothesis that genes with similar gene 
expression maps might have similar gene functions. 
The voxelation data takes into account the location 
information of gene expression level in mouse brain, 
which is novel in related research. The proposed 
approach can potentially be used to predict gene 
functions and provide helpful suggestions to biologists.  
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1. Introduction 

 
Gene expression signatures in the mammalian brain 

hold the key to understanding neural development and 
neurological disease. A new approach is developed by 
combining voxelation with microarrays for acquisition 
of genome-wide atlases of expression patterns in the 
brain [1-2]. Voxelation involves dicing the brain into 

spatially registered voxels (cubes). Each voxel is then 
assayed for gene expression levels and images are 
reconstructed by compiling the expression data back 
into their original locations [3-4]. It produces multiple 
volumetric maps of gene expression analogous to the 
images reconstructed in biomedical imaging systems 
[5-7]. Related research work suggests that voxelation is 
a useful approach for understanding how genome 
constructs the brain. Gene expression patterns obtained 
by voxelation show good agreement with known 
expression patterns [1]. 

Researchers at David Geffen School of Medicine at 
UCLA used voxelation in combination with 
microarrays to analyze whole mouse brains at low 
resolution [1]. They acquired 2-dimensional images of 
gene expression for 20,847 genes, obtained by using 
microarrays in combination with voxelation for a 1mm 
slice of the mouse brain at the level of striatum (Fig.1). 
The coronal slice from a mouse brain is put on a stage 
and is cut with a matrix of blades that are spaced 1 mm 
apart thus resulting in cubes (voxels) which are 1mm3. 
There are voxels like A3, B9..., as Fig.2 shows. A1, 
A2... are in red signifying that voxels were not 
retrieved from these spots, but empty voxels were 
assigned to maintain a rectangular. So, each gene is 
represented by the 68 gene expression values 
composing a gene expression map of mice brain 
(Fig.2). In other words, the dataset is a 20847 by 68 
matrix, in which each row represents a particular gene, 
and each column is the log2 ratio expression value for 
the particular probe in a given voxel. The data was 
found to be of good quality based on multiple 
independent criteria and insights provided by others 
into the molecular architecture of the mammalian 
brain. Known and novel genes were identified with 
expression patterns localized to defined substructures 
within the brain. 
     Previous work [8-10] has been done to detect gene 
functions, without though taking into account the 
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location information of a gene's expression in a mouse 
brain to study gene functions. Based on the multiple 
volumetric maps of gene expression of mice brain, in 
this study we identify the relations between gene 
expression maps and gene functions. Our analysis 
consists of similarity queries and clustering analysis of 

 
 

Fig. 1 The mouse brain at bregma = 0 
 

 
 

Fig.2  Voxels of the coronal slice 
 
the gene expression maps. The proposed approach is 
based on the features extracted by the wavelet 
transform from the original gene expression maps. 
Among each group of similar genes, we calculate the 
average gene function distance in the gene ontology 
structure to indicate the gene function similarity. K-
means is used for clustering gene expression maps. The 
significant clusters that have both similar gene 
expression maps and similar gene functions are 
obtained by a proposed technique, which we call 
multiple clustering. 
    The experimental results from the similarity analysis 
confirm the hypothesis that genes with similar gene 
expression map might have similar gene functions. The 
clustering analysis also detects certain clusters of genes 
that have similar functions. The proposed approach and 
analysis can potentially be used to predict gene 
functions and provide suggestions to biologists. 
 
2. Methods 

 
The proposed approach includes two parts. The first 

part consists of similarity queries based on gene 
expression maps. For this part we choose typical genes 

as queries and search for similar genes based on their 
expression maps and features. The second part consists 
of clustering analysis of the gene expression maps and 
computation of the average function distance for each 
cluster. In addition to these two parts, we attempted to 
identify the relations between each gene's expression 
map and its participatory functions. The hypothesis is 
that genes with similar gene expression map have 
similar gene functions. The results in Section 4 show 
that this hypothesis holds for certain groups of genes. 

 
2.1 Finding similar genes 

 
In this part of the analysis we choose typical genes 

as queries and attempt to discover groups of genes 
similar (w.r.t. the gene expression maps) to the query 
gene.  
 
2.1.1 Reducing Noise 

 
The original dataset we analyzed consists of data for 

20847 genes. Data with no significant gene expression 
value can be viewed as noise. We eliminate this kind of 
data to improve the results. If none of the expression 
values of a gene is bigger than 1 or smaller than -1, we 
consider the gene insignificant. After normalizing 
(making sure the mean is 0 and standard deviation is 1) 
the rest of the data, we obtain a new dataset which has 
13576 significant genes. We observe that only half of 
the genes in the dataset are known genes whose 
annotation information can be found from an online 
database, including the function information. The 
genes with unknown function might confuse our 
results. So we only consider 7783 genes (from the 
13576 significant genes) whose functions are known as 
the basic dataset for our analysis. 
    We also take advantage of the inherent bilateral 
symmetry of the mouse brain by averaging the left and 
right hemispheres, which proves (as our experimental 
results demonstrate) very useful in decreasing noise. 
Mice do not have "handedness" or speech-centers of 
the brain which are known to be localized to one 
hemisphere in humans. Therefore, a voxel or two that 
stands out is probably more believable if it has 
corresponding voxel(s) located in the same general 
location in the other hemisphere. 

 
2.1.2 Wavelet Features Extraction 
 

In order to take into account spatial information 
about the 68 voxels we consider in the brain map, we 
employ wavelets in feature extraction. Working 
directly with the original 68-element vectors of gene 
expression values ignores the spatial information. 
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Intuitively, we expect to have correlation among the 
values of voxels in the same spatial neighborhood. The 
wavelet transform is a tool that cuts up data, functions 
or operators into different frequency components and 
study each component with a resolution matched to its 
scale [11]. Here, we use the discrete wavelet transform 
(DWT) with single-level two-dimensional wavelet 
decomposition employing the Daubechies wavelet 
function to extract features based on the gene 
expression matrix (Fig. 2). The outputs of the wavelet 
transformation involve approximation coefficients, 
which are the average of gene expression values in 
neighborhood voxels, and detail coefficients, which 
indicate the difference of each voxel from the average. 
By using multilevel 2-D wavelet decomposition on the 
7 by 11 matrix (Fig. 2) at level 4, we obtain 75 
coefficients including approximation and detail 
coefficients to achieve the best results. 
 
2.1.3 Gene Maps Similarity 
 

To determine the gene maps (gene expression 
matrix) similarity, the Euclidean distance between each 
pair of vectors (each with 75 wavelet features) is used. 
Let S be a set of Euclidean distances between the query 
and all the other genes in the dataset, and Dis be a 
special distance between the query and a general gene. 
Then Num is the number of distances Si, where 

SSiDisSi ∈< , . We define the p-value of Dis as
n

Num , 

where n is the number of elements in set S. So for each 
query, we can find a number of genes which are similar 
to the query with the corresponding small p-value. 
 
2.1.4 Gene Functions Similarity 
 

To identify the functions similarity, we use the 
average function distance in the gene ontology 
structure among each group of similar genes. For 
example, Fig.3 shows a part of the gene ontology 
structure. Each node corresponds to a gene function, so 
the function distance between functions B and E is 3. 
The smaller the function distance the more similar the 
two functions are. 

 

 
 

Fig.3  A part of the gene ontology structure 
 

Because each gene holds more than one gene 
function, we take all the functions of all the genes in 
the group to build a set of functions. The average gene 
function distance is obtained by averaging the 
distances between each pair of functions in the set; 
thus, it can be used to determine the function similarity 
in the group. To rank the function distance values, we 
randomly choose 1000 gene groups, each consisting of 
1000 genes. The average function distance in each 
group is calculated, resulting in a set U of 1000 values, 
called set rand_func_dis. For a given average function 
distance G_Dis, the p-value is defined as 

1000
_ funcNum , 

where Num_func is the number of Ui with DisGUi _< , 
UUi∈ . So the gene function similarity in a group of 

genes can be identified by how smaller the p-value of 
the average function distance of the group is. 
 
2.2 Clustering analysis 
 

In addition to similarity analysis we propose 
clustering analysis of the gene expression maps and 
computation of the average function distance in each 
cluster. Here, we attempt to find the significant clusters 
that have both similar gene expression maps and 
similar gene functions. After comparing different 
clustering methods [12-14], we chose the K-means 
algorithm [15] as the clustering tool. We also propose a 
clustering method which is a combination of multiple 
clustering and hierarchical clustering. 
 
2.2.1 Multiple clustering 
 

We propose a multiple clustering method to 
perform the clustering. This method consists of 
multiple steps. In each step, K-means is used on the 
current dataset producing n clusters. Among the n 
clusters, suppose there are m significant clusters (m<n) 
whose p-value of average function distance is smaller 
then 0.05. The new dataset for the next step is obtained 
by removing the m clusters, previously determined as 
significant, from the current dataset. Then K-means is 
repeated again on the newly formed dataset. The 
process is repeated many times until there are no 
significant clusters (i.e., with p-value<0.05) that can be 
found, or the size of clusters obtained is too small to be 
meaningful. 
 
2.2.2 Hierarchical clustering 
 

For the K-means clustering algorithm, the number 
of clusters is predefined. Without prior knowledge, the 
estimation of the appropriate number of clusters 
becomes a challenge in clustering analysis to 
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accurately get the most significant clusters. In this 
paper divisive hierarchical clustering is used to 
determine the number of clusters for K-means. In each 
step of multiple clustering, the number of clusters n 
starts at a minimum value and is incremented. At the 
first step, n starts at 2 and is incremented by 1 until the 
significant clusters are found. At that time, we assume 
n=K. Then the significant clusters are removed from 
the dataset and the clustering repeats on the remaining 
genes. The clustering proceeds to the next step with the 
number of clusters n in this step starting at K-1. 
 
2.2.3 Cluster Validation 
 

In this paper, we use the following strategy to judge 
the performance of clustering. The point-to-centroid 
distance is used to determine whether the clusters are 
compact. The intra-cluster distance is defined as 

 
∑ ∑
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where N is the total number of data points, Si, 
i=1,2,..,k, are the k clusters and μi is the centroid or 
mean point of all the points xj є Si. 

Another measure of cluster performance is the inter-
cluster distance, i.e., the distance between clusters. 
This is calculated by taking the minimum of the 
distances between each pair of cluster centroids as 
follows: 
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We take the minimum of the distance between clusters 
because it is the upper limit of cluster performance and 
is expected to be maximized. The ratio of intra-cluster 
distance to inter-cluster distance can serve as an 
evaluation function for cluster performance. The 
validity of a k-clustering result is defined as 

  DistClusterIntra
DistClusterInterValidity

__
__=

  
Since we want to maximize the inter-cluster 

distance and minimize the intra-cluster distance, we 
want the validity value to be maximized. 
 
3. Results 
3.1 Finding similar genes 
 

In these experiments we chose eight genes as 
queries (similarly to [1]). Fig.4 shows the gene 
expression maps of the eight queries. The eight genes 
are selected [1] as having restricted expression patterns 
based on the micro-array voxelation data. For example, 
cortically expressed genes include Clstn1, Ppp1r1b is 
with spatially restricted expression in the striatum, and 

Ndn shows expression restricted to the hypothalamic 
region. Different colors represent different levels of 
gene expression. Here, we try to find similar genes to a 
query gene based on the reduced dataset (7783 genes) 
and the wavelet features. 

 

 
 

Fig.4  Typical genes used as queries 
 
We consider increasing thresholds of the p-value 

(from 0.0005 to 0.009) and find a number of similar 
genes whose distance to the target gene is smaller than 
the threshold. Then we calculate the average function 
distance in the group of the selected similar genes. 
Tables 1 - 2 show the results of genes Clstn1, and 
PPPlrlb. We highlight p-values of function distance 
that are smaller than 0.05. We consider the function 
distance with respect to three categories: cellular 
component, molecular function and biological process.  

Examining the group of similar genes of target1 
(Clstn1), Table 1 shows that there are very small p-
values of function distance in the category of 
biological process, meaning that these similar genes 
have functions that are very close with respect to 
position in the gene ontology structure (i.e., these 
similar genes have similar functions in the category of 
biological process). The experimental results of the 
other target (Table 2) also show that genes with similar 
gene expression maps have very close function 
position in gene ontology structure, at least in one of 
the three biological categories (these results have not 
been reported in detail here due to paper size 
restrictions). 
 
3.2 Finding significant clusters 
 

In these experiments, we apply clustering iteratively 
to get the significant clusters with both low p-value 
(<0.05) of Euclidean Distance of gene expression and 
low p-value of Function Distance. The experiments are 
applied on the data set of 7883 genes that consists of 
both significant and known genes. 

 
 

26



Table 1.  Results for Gene Clstn1 

 
 

Table 2.  Results for Gene PPP1r1b 

 
Each gene is represented by the full 75 wavelet 
features extracted from the hemi-averaged gene 
expression map. The multiple clustering combined 
with hierarchical clustering is repeatedly applied until 
there are no significant clusters found, or the size of 
clusters obtained is too small. Fig.5 - Fig.7 show the 
average of gene expression maps of significant clusters 
obtained by k-means for different datasets. Each gene 
expression map corresponds to one cluster. 

Since there are three categories of gene functions in 
gene ontology, we attempted to identify significant 
clusters for each one of the three different categories 
(separately) and then with respect to all of the three 
categories together. For example, when considering the 
category "Cellular Component", we only searched for 
significant clusters with low p-value of Functions 
Distance in the category "Cellular Component". In the 
case where we considered all three categories together, 
we searched for significant clusters with low p-value of 
Functions Distance in any one of the three categories. 
 

 
Fig.5 Cellular Component, 35 significant clusters found 

 

 
Fig.6 Molecular Function, 23 significant clusters found 

 

 
Fig.7 Biological Process, 27 significant clusters found 

 
3.2 Cluster validation 
 

In order to evaluate the proposed hierarchical 
clustering approaches, we used two different clustering 
algorithms in each step of the multiple clustering to 
find out the significant clusters. One is k-means with a 
selected k number, where k is the square root of the 
size of the data set. The other algorithm is using 
hierarchical clustering to decide the most suitable k. 
We evaluated the significant clusters we obtained by 
calculating cluster distance and compared the results of 
the two kinds of clustering methods.  

Table 3 shows that the validity value of the 
hierarchical clustering (used in our experiments) is 
larger than the validity value of the selected k 
clustering in each category.  

 
 

Euclidean 
Distance 
(P-value) 

Number 
of similar 

genes 

Average Function Distance (p-value) 

Cellular 
Component 

Molecular 
Function 

Biological 
Process 

0.0005 10 0.379 0.191 0.001 

0.001 21 0.081 0.041 0.016 

0.002 42 0.557 0.041 0.001 

0.003 63 0.720 0.728 0.001 

0.004 83 0.775 0.913 0.071 

0.005 104 0.610 0.705 0.130 

0.006 125 0.729 0.899 0.111 

Euclidean 
Distance 
(P-value) 

Number 
of similar 

genes 

Average Function Distance (p-value) 

Cellular 
Component 

Molecular 
Function 

Biological 
Process 

0.0005 10 0.010 1.000 0.001

0.001 21 0.020 0.989 0.047

0.002 42 0.574 0.400 0.166

0.003 63 0.172 0.834 0.064

0.004 83 0.035 0.998 0.231

0.005 104 0.082 0.998 0.441

0.006 125 0.162 0.998 0.449
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Function 
Category 

Method Intra 
Cluster 
Distance 

Inter 
Cluster 
Distance 

Validity 

Cellular 
Component 

Selected k 4.0212 0.6355 0.1580 

Hierarchical 4.6096 0.8928 0.1937 

Molecular 
Function 

Selected k 4.0469 0.5148 0.1272 

Hierarchical 5.0396 1.1211 0.2225 

Biological 
Process 

Selected k 3.8917 0.6472 0.1663 

Hierarchical 4.7262 0.7971 0.1687 

All the three 
categories  

Selected k 4.0110 0.5543 0.1382 

Hierarchical 4.8385 0.9813 0.2028 

 
Table 3. Comparing two clustering methods: 
Intra_Cluster_Dist measures the intra distance inside a 
cluster, Inter_Cluster_Dist measures the distance between 
clusters, and Validity indicates the overall performance of the 
clustering.   

 
4. Discussion 
 

Although research work has been done to detect 
gene functions, not much effort has focused on 
identifying the relation between gene expression maps 
in mice brain and related gene functions. By using 
wavelet features to determine the similarity of gene 
expression maps, and the function distance in ontology 
structure to determine the similarity of gene functions, 
our analysis on voxelation data showed that the group 
of genes that was identified as similar to a target gene 
shares very similar gene functions in at least one gene 
function category. Moreover, clustering analysis 
detected certain clusters of genes that have both similar 
gene expression maps and gene functions. So, the 
obtained results confirm the hypothesis that genes with 
similar gene expression map might have similar gene 
functions. This paper tries to quantify this hypothesis 
presenting a way to evaluate it as well as a set of genes 
for which the hypothesis holds.  

To obtain the significant clusters, we only analyze 
the genes which are both significant and have known 
functions, i.e., genes whose annotation information can 
be found at online databases, including the function 
information. The results based on the dataset we 
considered support the following claim. By examining 
the known and unknown genes together to find groups 
of similar genes (which are obtained either by 
similarity finding or clustering), one might provide 
helpful suggestions to biologists about unknown genes 
having similar gene functions to the known genes in 
the same group. Therefore the proposed approach has 
the potential to be used in predicting gene functions. 
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