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Abstract

In this paper we present an approach for identifying
the relationships between gene expression maps and
gene functions based on the multiplex gene expression
maps of mouse brain obtained by voxelation. To
analyze the dataset, we choose typical genes as queries
and aim at discovering similar gene groups. We use
the wavelet transform for extracting features from the
left and right hemispheres averaged gene expression
maps, and the Euclidean distance between each pair of
feature vectors to determine gene similarity. We also
perform a multiple clustering approach on the gene
expression maps, combined with hierarchical
clustering. Among each group of similar genes and
clusters, the gene function similarity is measured by
calculating the average gene function distances in the
gene ontology structure. The experimental results
confirm the hypothesis that genes with similar gene
expression maps might have similar gene functions.
The voxelation data takes into account the location
information of gene expression level in mouse brain,
which is novel in related research. The proposed
approach can potentially be used to predict gene
functions and provide helpful suggestions to biologists.
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1. Introduction

Gene expression signatures in the mammalian brain
hold the key to understanding neural development and
neurological disease. A new approach is developed by
combining voxelation with microarrays for acquisition
of genome-wide atlases of expression patterns in the
brain [1-2]. Voxelation involves dicing the brain into
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spatially registered voxels (cubes). Each voxel is then
assayed for gene expression levels and images are
reconstructed by compiling the expression data back
into their original locations [3-4]. It produces multiple
volumetric maps of gene expression analogous to the
images reconstructed in biomedical imaging systems
[5-7]. Related research work suggests that voxelation is
a useful approach for understanding how genome
constructs the brain. Gene expression patterns obtained
by voxelation show good agreement with known
expression patterns [1].

Researchers at David Geffen School of Medicine at
UCLA used voxelation in combination with
microarrays to analyze whole mouse brains at low
resolution [1]. They acquired 2-dimensional images of
gene expression for 20,847 genes, obtained by using
microarrays in combination with voxelation for a 1mm
slice of the mouse brain at the level of striatum (Fig.1).
The coronal slice from a mouse brain is put on a stage
and is cut with a matrix of blades that are spaced 1 mm
apart thus resulting in cubes (voxels) which are 1mm”.
There are voxels like A3, B9..., as Fig.2 shows. Al,
A2... are in red signifying that voxels were not
retrieved from these spots, but empty voxels were
assigned to maintain a rectangular. So, each gene is
represented by the 68 gene expression values
composing a gene expression map of mice brain
(Fig.2). In other words, the dataset is a 20847 by 68
matrix, in which each row represents a particular gene,
and each column is the log2 ratio expression value for
the particular probe in a given voxel. The data was
found to be of good quality based on multiple
independent criteria and insights provided by others
into the molecular architecture of the mammalian
brain. Known and novel genes were identified with
expression patterns localized to defined substructures
within the brain.

Previous work [8-10] has been done to detect gene
functions, without though taking into account the
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location information of a gene's expression in a mouse
brain to study gene functions. Based on the multiple
volumetric maps of gene expression of mice brain, in
this study we identify the relations between gene
expression maps and gene functions. Our analysis
consists of similarity queries and clustering analysis of

Fig. 1 The mouse brain at bregma =0
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Fig.2 Voxels of the coronal slice

the gene expression maps. The proposed approach is
based on the features extracted by the wavelet
transform from the original gene expression maps.
Among each group of similar genes, we calculate the
average gene function distance in the gene ontology
structure to indicate the gene function similarity. K-
means is used for clustering gene expression maps. The
significant clusters that have both similar gene
expression maps and similar gene functions are
obtained by a proposed technique, which we call
multiple clustering.

The experimental results from the similarity analysis
confirm the hypothesis that genes with similar gene
expression map might have similar gene functions. The
clustering analysis also detects certain clusters of genes
that have similar functions. The proposed approach and
analysis can potentially be used to predict gene
functions and provide suggestions to biologists.

2. Methods

The proposed approach includes two parts. The first
part consists of similarity queries based on gene
expression maps. For this part we choose typical genes
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as queries and search for similar genes based on their
expression maps and features. The second part consists
of clustering analysis of the gene expression maps and
computation of the average function distance for each
cluster. In addition to these two parts, we attempted to
identify the relations between each gene's expression
map and its participatory functions. The hypothesis is
that genes with similar gene expression map have
similar gene functions. The results in Section 4 show
that this hypothesis holds for certain groups of genes.

2.1 Finding similar genes

In this part of the analysis we choose typical genes
as queries and attempt to discover groups of genes
similar (w.r.t. the gene expression maps) to the query
gene.

2.1.1 Reducing Noise

The original dataset we analyzed consists of data for
20847 genes. Data with no significant gene expression
value can be viewed as noise. We eliminate this kind of
data to improve the results. If none of the expression
values of a gene is bigger than 1 or smaller than -1, we
consider the gene insignificant. After normalizing
(making sure the mean is 0 and standard deviation is 1)
the rest of the data, we obtain a new dataset which has
13576 significant genes. We observe that only half of
the genes in the dataset are known genes whose
annotation information can be found from an online
database, including the function information. The
genes with unknown function might confuse our
results. So we only consider 7783 genes (from the
13576 significant genes) whose functions are known as
the basic dataset for our analysis.

We also take advantage of the inherent bilateral
symmetry of the mouse brain by averaging the left and
right hemispheres, which proves (as our experimental
results demonstrate) very useful in decreasing noise.
Mice do not have "handedness" or speech-centers of
the brain which are known to be localized to one
hemisphere in humans. Therefore, a voxel or two that
stands out is probably more believable if it has
corresponding voxel(s) located in the same general
location in the other hemisphere.

2.1.2 Wavelet Features Extraction

In order to take into account spatial information
about the 68 voxels we consider in the brain map, we
employ wavelets in feature extraction. Working
directly with the original 68-element vectors of gene
expression values ignores the spatial information.



Intuitively, we expect to have correlation among the
values of voxels in the same spatial neighborhood. The
wavelet transform is a tool that cuts up data, functions
or operators into different frequency components and
study each component with a resolution matched to its
scale [11]. Here, we use the discrete wavelet transform
(DWT) with single-level two-dimensional wavelet
decomposition employing the Daubechies wavelet
function to extract features based on the gene
expression matrix (Fig. 2). The outputs of the wavelet
transformation involve approximation coefficients,
which are the average of gene expression values in
neighborhood voxels, and detail coefficients, which
indicate the difference of each voxel from the average.
By using multilevel 2-D wavelet decomposition on the
7 by 11 matrix (Fig. 2) at level 4, we obtain 75
coefficients including approximation and detail
coefficients to achieve the best results.

2.1.3 Gene Maps Similarity

To determine the gene maps (gene expression
matrix) similarity, the Euclidean distance between each
pair of vectors (each with 75 wavelet features) is used.
Let S be a set of Euclidean distances between the query
and all the other genes in the dataset, and Dis be a
special distance between the query and a general gene.
Then Num is the number of distances Si, where

Si < Dis,Sie S . We define the p-value of Dis as Y4 |
n

where n is the number of elements in set S. So for each
query, we can find a number of genes which are similar
to the query with the corresponding small p-value.

2.1.4 Gene Functions Similarity

To identify the functions similarity, we use the
average function distance in the gene ontology
structure among each group of similar genes. For
example, Fig.3 shows a part of the gene ontology
structure. Each node corresponds to a gene function, so
the function distance between functions B and E is 3.
The smaller the function distance the more similar the
two functions are.

‘ Function A ‘ ‘ Function B ‘
is_a is_a
| Function C | ‘ Function E ‘ | Function D
is_a

is_a is_a

Function F

Fig.3 A part of the gene ontology structure
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Because each gene holds more than one gene
function, we take all the functions of all the genes in
the group to build a set of functions. The average gene
function distance is obtained by averaging the
distances between each pair of functions in the set;
thus, it can be used to determine the function similarity
in the group. To rank the function distance values, we
randomly choose 1000 gene groups, each consisting of
1000 genes. The average function distance in each
group is calculated, resulting in a set U of 1000 values,
called set rand func dis. For a given average function
Num_ func’

1000
where Num_func is the number of Ui withUi<G_ Dis,

UieU. So the gene function similarity in a group of
genes can be identified by how smaller the p-value of
the average function distance of the group is.

distance G Dis, the p-value is defined as

2.2 Clustering analysis

In addition to similarity analysis we propose
clustering analysis of the gene expression maps and
computation of the average function distance in each
cluster. Here, we attempt to find the significant clusters
that have both similar gene expression maps and
similar gene functions. After comparing different
clustering methods [12-14], we chose the K-means
algorithm [15] as the clustering tool. We also propose a
clustering method which is a combination of multiple
clustering and hierarchical clustering.

2.2.1 Multiple clustering

We propose a multiple clustering method to
perform the clustering. This method consists of
multiple steps. In each step, K-means is used on the
current dataset producing n clusters. Among the n
clusters, suppose there are m significant clusters (m<n)
whose p-value of average function distance is smaller
then 0.05. The new dataset for the next step is obtained
by removing the m clusters, previously determined as
significant, from the current dataset. Then K-means is
repeated again on the newly formed dataset. The
process is repeated many times until there are no
significant clusters (i.e., with p-value<0.05) that can be
found, or the size of clusters obtained is too small to be
meaningful.

2.2.2 Hierarchical clustering

For the K-means clustering algorithm, the number
of clusters is predefined. Without prior knowledge, the
estimation of the appropriate number of clusters
becomes a challenge in clustering analysis to



accurately get the most significant clusters. In this
paper divisive hierarchical clustering is used to
determine the number of clusters for K-means. In each
step of multiple clustering, the number of clusters n
starts at a minimum value and is incremented. At the
first step, n starts at 2 and is incremented by 1 until the
significant clusters are found. At that time, we assume
n=K. Then the significant clusters are removed from
the dataset and the clustering repeats on the remaining
genes. The clustering proceeds to the next step with the
number of clusters # in this step starting at K-1.

2.2.3 Cluster Validation

In this paper, we use the following strategy to judge
the performance of clustering. The point-to-centroid
distance is used to determine whether the clusters are
compact. The intra-cluster distance is defined as

Intra_Cluster _Dist =

zlxeS

where N is the total number of data points, S
i=1,2,..,k, are the k clusters and y; is the centroid or
mean point of all the points x; ¢ S;.

Another measure of cluster performance is the inter-
cluster distance, i.e., the distance between clusters.
This is calculated by taking the minimum of the
distances between each pair of cluster centroids as
follows:

Inter _Cluster Dist= minq,ui —H,; ‘ ’ li =12,..,k-1

Jj=i+l. k
We take the minimum of the distance between clusters
because it is the upper limit of cluster performance and
is expected to be maximized. The ratio of intra-cluster
distance to inter-cluster distance can serve as an
evaluation function for cluster performance. The
validity of a k-clustering result is defined as
Validity = Inter _ Cluster _ Dist
Intra _Cluster _ Dist
Since we want to maximize the inter-cluster
distance and minimize the intra-cluster distance, we
want the validity value to be maximized.

3. Results
3.1 Finding similar genes

In these experiments we chose eight genes as
queries (similarly to [1]). Fig.4 shows the gene
expression maps of the eight queries. The eight genes
are selected [1] as having restricted expression patterns
based on the micro-array voxelation data. For example,
cortically expressed genes include Clstnl, Ppplrlb is
with spatially restricted expression in the striatum, and
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Ndn shows expression restricted to the hypothalamic
region. Different colors represent different levels of
gene expression. Here, we try to find similar genes to a
query gene based on the reduced dataset (7783 genes)
and the wavelet features.

Clstnl PPPIrlb Ndn
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Fig.4 Typical genes used as queries

We consider increasing thresholds of the p-value
(from 0.0005 to 0.009) and find a number of similar
genes whose distance to the target gene is smaller than
the threshold. Then we calculate the average function
distance in the group of the selected similar genes.
Tables 1 - 2 show the results of genes Clstnl, and
PPPIrlb. We highlight p-values of function distance
that are smaller than 0.05. We consider the function
distance with respect to three categories: cellular
component, molecular function and biological process.

Examining the group of similar genes of targetl
(Clstnl), Table 1 shows that there are very small p-
values of function distance in the category of
biological process, meaning that these similar genes
have functions that are very close with respect to
position in the gene ontology structure (i.e., these
similar genes have similar functions in the category of
biological process). The experimental results of the
other target (Table 2) also show that genes with similar
gene expression maps have very close function
position in gene ontology structure, at least in one of
the three biological categories (these results have not
been reported in detail here due to paper size
restrictions).

3.2 Finding significant clusters

In these experiments, we apply clustering iteratively
to get the significant clusters with both low p-value
(<0.05) of Euclidean Distance of gene expression and
low p-value of Function Distance. The experiments are
applied on the data set of 7883 genes that consists of
both significant and known genes.



Table 1. Results for Gene Clstnl

Euclidean Number Average Function Distance (p-value)
Distance of similar

(P-value) genes Cellular Molecular | Biological
Component Function Process
0.0005 10 0.379 0.191 0.001
0.001 21 0.081 0.041 0.016
0.002 42 0.557 0.041 0.001
0.003 63 0.720 0.728 0.001
0.004 83 0.775 0.913 0.071
0.005 104 0.610 0.705 0.130
0.006 125 0.729 0.899 0.111

Table 2. Results for Gene PPP1r1b
Euclidean Number Average Function Distance (p-value)
Distance of similar

(P-value) genes Cellular Molecular | Biological
Component Function Process

0. 0005 10 0.010 1. 000 0. 001

0. 001 21 0. 020 0. 989 0. 047

0. 002 42 0.574 0. 400 0. 166

0. 003 63 0.172 0. 834 0. 064

0. 004 83 0. 035 0.998 0.231

0. 005 104 0. 082 0. 998 0. 441

0. 006 125 0. 162 0. 998 0. 449

Each gene is represented by the full 75 wavelet
features extracted from the hemi-averaged gene
expression map. The multiple clustering combined
with hierarchical clustering is repeatedly applied until
there are no significant clusters found, or the size of
clusters obtained is too small. Fig.5 - Fig.7 show the
average of gene expression maps of significant clusters
obtained by k-means for different datasets. Each gene
expression map corresponds to one cluster.

Since there are three categories of gene functions in
gene ontology, we attempted to identify significant
clusters for each one of the three different categories
(separately) and then with respect to all of the three
categories together. For example, when considering the
category "Cellular Component", we only searched for
significant clusters with low p-value of Functions
Distance in the category "Cellular Component". In the
case where we considered all three categories together,
we searched for significant clusters with low p-value of
Functions Distance in any one of the three categories.
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3.2 Cluster validation

In order to evaluate the proposed hierarchical
clustering approaches, we used two different clustering
algorithms in each step of the multiple clustering to
find out the significant clusters. One is k-means with a
selected k number, where k is the square root of the
size of the data set. The other algorithm is using
hierarchical clustering to decide the most suitable k.
We evaluated the significant clusters we obtained by
calculating cluster distance and compared the results of
the two kinds of clustering methods.

Table 3 shows that the validity value of the
hierarchical clustering (used in our experiments) is
larger than the wvalidity value of the selected k
clustering in each category.



Function Method Intra Inter Validity
Category Cluster Cluster
Distance Distance

Cellular Selected k 4.0212 0.6355 0.1580
Component I ohical | 46096 | 08928 | 0.1937
Molecular Selected k 4.0469 0.5148 0.1272
Function Hicrarchical | 5.0396 L1211 0.2225
Biological Selected k 3.8917 0.6472 0.1663
Process Hierarchical | 47262 | 0.7971 | 0.1687
All the three | Selected k 4.0110 0.5543 0.1382
CAlCEONeS I crarchical | 48385 | 09813 | 02028

Table 3. Comparing two clustering methods:

Intra_Cluster_Dist measures the intra distance inside a
cluster, Inter_Cluster_Dist measures the distance between
clusters, and Validity indicates the overall performance of the
clustering.

4. Discussion

Although research work has been done to detect
gene functions, not much effort has focused on
identifying the relation between gene expression maps
in mice brain and related gene functions. By using
wavelet features to determine the similarity of gene
expression maps, and the function distance in ontology
structure to determine the similarity of gene functions,
our analysis on voxelation data showed that the group
of genes that was identified as similar to a target gene
shares very similar gene functions in at least one gene
function category. Moreover, clustering analysis
detected certain clusters of genes that have both similar
gene expression maps and gene functions. So, the
obtained results confirm the hypothesis that genes with
similar gene expression map might have similar gene
functions. This paper tries to quantify this hypothesis
presenting a way to evaluate it as well as a set of genes
for which the hypothesis holds.

To obtain the significant clusters, we only analyze
the genes which are both significant and have known
functions, i.e., genes whose annotation information can
be found at online databases, including the function
information. The results based on the dataset we
considered support the following claim. By examining
the known and unknown genes together to find groups
of similar genes (which are obtained either by
similarity finding or clustering), one might provide
helpful suggestions to biologists about unknown genes
having similar gene functions to the known genes in
the same group. Therefore the proposed approach has
the potential to be used in predicting gene functions.
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