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ABSTRACT

Categories and Subject Descriptors

G.4 [Programming Languages]: H.2.8 Database Applications,
Data mining, Image databases; 1.5 PATTERN RECOGNITION;
1.5.3 Clustering; 1.5.4 Applications; J.3 LIFE AND MEDICAL
SCIENCES, Biology and genetics.

Gene expression profiles have been widely used in functional
genomic studies. However, not much work in traditional gene
expression profiling takes into account the location information
of a gene's expressions in the brain. Gene expression maps,
which contain spatial information regarding the expression of
genes in mice"s brain, are obtained by combining voxelation and

microarrays. Based on the idea that genes with similar gene General Terms

expression maps may have similar gene functions, we propose an Algorithms, Management, Experimentation.
approach to identify gene functions. A gene function can

potentially be associated with a specific gene expression profile. Keywo rds

We name this specific gene expression profile, Functional
Expression Profile (FEP). A functional expression profile can be
obtained either by directly finding genes with a certain function,
or by analyzing clusters of genes that have similar expression
maps and similar functions. By taking advantage of the identified 1. INTRODUCTION

Gene function annotation, voxelation, gene expression maps, and
functional expression profile.

FEPs, we can annotate gene functions with high accuracy. The use of microarrays for gene expression profiling has been
Compared to the traditional K-nearest neighbor method, our widely used in recent functional genomic studies. Gene
approach shows higher accuracy in predicting functions. The expression signatures in the mammalian brain hold the key to
images of FEPs are in good agreement with anatomical understanding neural development and neurological disease.
components of mices brain, and provide valuable insight in While research [1-4] has been done to detect gene functions,
terms of function prediction to biological scientists. most of the time it has not taken into account the locations of a

gene's expressions in the brain to identify gene functions.
Voxelation is a new approach that involves dicing the brain into
spatially registered voxels (cubes). It produces multiple
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made or distributed for profit or commercial advantage and that copies bear research suggests that voxelation is a useful approach for
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atlases of expression patterns in the brain [10-11], gene function
identification can be greatly improved in terms of accuracy.

Researchers at the David Geffen School of Medicine at UCLA
used voxelation in combination with microarrays for acquisition
of genome-wide atlases of expression patterns in the brain [10].
They acquired 2-dimensional images of gene expression for
20,847 genes. The procedure of obtaining the raw data is
described here briefly. A fresh brain is removed from a sacrificed
mouse, and then a Imm slice of the brain at the level of striatum
is obtained (Figure 1). The coronal slice is put on a stage and is
cut by a matrix of blades that are spaced 1 mm apart, thus
resulting in cubes (voxels) that are 1mm3. There are voxels like
A3, B9..., as Figure 2 shows. Al, A2, Bl... are in red, signifying
that voxels were not retrieved from these spots, and are empty
cubes that were assigned to maintain a rectangular. So, each gene
is presented by the 68 gene expression values in 68 voxels to
compose a gene expression map of a mouse“s brain. This data
has been found to be of good quality based on multiple
independent criteria and insights provided by others [8-10] into
the molecular architecture of the mammalian brain.
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Figure 2 Voxels of the coronal slice

Our previous analysis of the gene expression maps [11] focused
on the identification of the relationship between the gene
functions and gene expression maps. We used wavelet features to
determine the similarity of gene expression maps and a function
distance in the gene ontology structure to determine the
similarity of gene functions. In certain cases, the group of genes
that was identified as similar to a target gene shared very similar
gene functions in at least one gene function category. Moreover,
clustering analysis detected a number of clusters of genes that
have both similar gene expression maps and similar gene
functions. These clusters were denoted as significant clusters.
That work confirmed that the hypothesis that genes with similar
gene expression maps have similar gene functions holds for a
certain set of genes. Therefore, genes with currently unknown
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gene functions may have functions similar to those of known
genes with which they have similar expression maps.

In this study, our goal is to identify gene functions based on the
multiple volumetric maps of gene expression in mice brains. We
take advantage of the relationship between gene expression maps
and gene functions to predict gene functions. For a given gene
function, there might be a specific gene expression map (profile)
that is associated with the given function. The genes that have
similar gene expression maps to the specific profile are supposed
to hold similar gene functions. We name this specific gene
expression profile, Functional Expression Profile (FEP). An FEP
can be obtained directly by studying each gene function related to
the dataset and identifying if the function has a specific gene
expression profile, or it can be obtained through the average
profiles of significant clusters of gene expression maps obtained
by our previous analysis. We propose a gene function annotation
method that takes advantage of the results of identified FEP. We
compare the method with the traditional K-nearest neighbor
(KNN) method that has been used in identifying gene functions
[15, 16], which simply annotates a given gene with the functions
of the top k genes in the training set with the highest correlation
coefficient to that gene. The experimental results show that the
accuracy of the identifying gene functions is high, in some cases
reaching 99 percent, and the proposed approach compares
favorably to the K-nearest neighbor method. Moreover, the FEPs
obtained directly from gene functions have better performance in
function prediction than the FEPs obtained by significant
clusters.

2. DATA AND METHODS

2.1 Gene expression maps

The data set we consider in this study is a 20,847 by 68 matrix,
in which each row represents the 68 expression values of a
particular gene, and each column represents the log2 ratio
expression values for all the probes (genes) in a given voxel. The
68 voxels are located in mice's brain, as Figure 2 shows. By
using different colors to show different values of gene
expression, the expression map for a certain gene can be
visualized as in Figure 3.
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Figure 3 A visualized gene expression map

From the analysis we discard genes whose 68 expression values
are all between -1 and 1. The remaining 13,576 genes* IDs are
imported into the SOURCE [12] database [13] to retrieve their
Gene Ontology (GO) annotation information. Out of the 13576
genes, 7883 genes are known genes and are annotated with at
least one GO term. There are 2416 unique GO terms in total.
Among those 2416 GO terms, 1065 are biological processes



where 693 of them are associated with at least two genes. 1103
GO terms belong to molecular functions where 707 of them are
associated with at least two genes. 248 GO terms belong to
cellular components where 207 of them are associated with at
least two genes.

2.2 Averaging hemispheres

Since there is a large amount of noise in microarray experiments,
we average the data over both hemispheres to improve the signal.
Additionally, the averaging of hemispheres takes advantage of
the inherent bilateral symmetry of mices brain. Mice do not
have "handedness" or speech-centers in the brain, which are
known to be localized to one hemisphere in humans. Therefore,
a voxel or two that stands out is probably more reliable if it has a
corresponding voxel located in the same general location in the
other hemisphere. In the process of averaging, for each row of the
map, we average the framed cells, as shown in Figure 4. Then,
we replace B1 with B11, A2 with A10, and the averaged gene
expression map is obtained as in Figure 5.
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Figure 5 Averaged gene expression map

2.3 Wavelet transformation

Here we describe how we use the wavelet transform to extract
new features from the original 68 expression values of each gene
expression map. In the data set that we study, each row
represents the gene expression values corresponding to the 68
voxels in the selected slice of mices brain. Intuitively, if an
expression value is similar to other values in its spatial
neighborhood, it is more reliable. However the original vectors of
gene expression values ignore the spatial information. In order to
measure the spatial consistency of expression values with others
in their spatial neighborhood and to take into account the spatial
factors of voxels in the brain map, we employ the wavelet
transform to extract new features.

The wavelet transform is a tool that cuts up data, functions or
operators into different frequency components and studies each
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component with a resolution matched to its scale [14]. Here, we
use the discrete wavelet transform (DWT) with single-level two-
dimensional wavelet decomposition employing the Daubechies
wavelet function to extract features based on the gene expression
matrix (see Figure 2). The output of the wavelet transformation
consists of approximation coefficients, which are the average of
gene expression values in neighborhood voxels, and detail
coefficients, which indicate the difference of each voxel from the
average. For the averaged map of 6 by 7 cells, by employing
multilevel 2-D wavelet decomposition at level 3, we obtain 42
coefficients (combining approximation and detail coefficients to
approach the best results).

2.4 Functional expression profiles

2.4.1 Identifying FEPs by non-cluster-based method
One method to obtain FEPs is to explore each GO term (gene
function) and identify all the genes that contain this GO term.
Since not all genes with similar gene expression map have
similar gene functions, we need to rank the group of gene
expression patterns to determine if the genes with identical
function have similar expression profiles. We study GO terms
associated with at least two genes and use a statistical procedure
to identify GO terms with average pair-wise gene profile
correlation significantly higher than the correlation expected to
be present at random. The random model assumes that genes
corresponding to a given GO term are selected at random from
the available pool of genes. The algorithm we use to test the null
hypothesis assuming the random model is shown below.

Algorithm for identifying FEPs

1. Calculate the average pairwise correlation coefficient
between n gene expression profiles associated with a given
GO term;

2. Select n genes randomly from the dataset. Compute the
average pairwise correlation coefficient in the random set of
genes;

3. Repeat Step 2 M times, and report as p-value the
proportion of the random sets with average pairwise
correlation larger than that of the original gene set.

4. If the p-value obtained from Step 3 is less than a given
threshold r, average the gene expression profiles, where
genes are associated with the given function to create the
Functional Expression Profile (FEP).

The remaining GO terms with p-values larger than the threshold
are discarded since there is no sufficient evidence to demonstrate
that the corresponding genes are correlated. We call this method
non-cluster-based FEP method. The number of iterations M has
been set to 10,000 and the threshold r has been set to 0.05 in our
experiments, as discussed in Section 3.

2.4.2 ldentifying FEPs by cluster-based method
During our previous analysis of this gene expression dataset [11],
a number of significant gene clusters were identified with both
similar gene expression maps and similar gene functions. Based
on the 7883 known genes, the significant clusters were detected
for the three categories of gene ontology (Cellular Component,
Molecular Function, and Biological Process) separately.
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Figure 6 The 38 significant clusters found with respect to Cellular Component.

Table 1 shows the number of significant clusters we detected and
the total number of genes in these clusters. Figure 6 shows the
average of gene expression maps of significant clusters with
respect to the category "Cellular Component”. Each small image
in this figure shows an average map of the 68 gene expression
values for all genes in a cluster. This image can be viewed as
FEP. We call this method cluster-based FEP method.

Table 1. Number of significant clusters

GO Categor Number of Number of genes in all
gory Significant Clusters significant clusters
Cellular
Component 38 3631
Molecular
Function 30 6112
Biological 43 5520
Process

For each significant cluster, we examined all unique GO terms
shown in the genes of the cluster. Suppose that there are N genes
that include a certain GO term in the cluster, and that the size of
the cluster is S. The GO terms with ratio N/S larger than a given
threshold are reported. Those GO terms are associated with the
average gene expression maps of the corresponding cluster,
which are viewed as FEPs. Because the same GO term can
appear frequently in different significant clusters, a GO term can
be associated with several FEPs. Moreover, there can be several
frequent GO terms within a significant cluster, or there can be no
frequent GO terms within a cluster. The strategies to deal with
the above cases are presented in Section 2.5.

2.5 Annotating unknown gene functions using
identified FEP

In this study, our objective is to identify gene function by using
gene expression maps. Traditional approaches for identifying
unknown gene functions have numerous difficulties, e.g., the
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naive KNN method in which the neighborhood of a given point
becomes very sparse in a high dimensional space [15]. Here we
propose a gene function annotation method which takes
advantage of the identified FEPs. We show the benefit of our
approach by comparing it to the traditional K-nearest neighbor
method.

The voxelation dataset is randomly split into two disjoint subsets:
a training set and a test set. The training set contains 3/4 of the
data. The remaining data forms the test set. For those 3126 gene
ontology terms associated with the known and significant 7883
genes, we evaluate our approach for each function separately.
That is, for each given function GO; {1<j<3126}, our target label
set is a 7883 by 1 vector. The value of the entry i {1<i<7883} of
this vector is a binary variable where ,,1* indicates that gene G; is
annotated with function GOj, and ,0* otherwise. We first build
the prediction model using the training set. Then we use the
obtained model to label the test set and compare the assigned
binary labels to the real labels. The accuracy is measured as the
average of specificity and sensitivity. We repeat our approach for
all functions and for each function we report the accuracy of the
prediction.

For the functional expression profile approach, the training set is
used to obtain the biological process and molecular function FEPs
using the algorithm described earlier. For a given test set of
genes, if its gene expression profile (map) is significantly
correlated with a given FEP of GO term GOj, the gene will be
identified as annotated with function GO;. We consider a gene
expression map as significantly correlated with a FEP if the
correlation coefficient of the gene expression map and FEP is
higher than 95% of the 10,000 randomly selected pairs of gene
expression maps. For the K-NN approach, we set K to 1. For a
given function GOj and a given gene in the test set, we compute
the correlation coefficients between the given gene and all genes
in the training set and rank the correlations. The function label (0
or 1) of the gene with the highest correlation coefficient in the
training set is used as the predicted label for the given gene in the
test set.



For the FEPs obtained by the cluster-based method, a GO term
might be connected to several FEPs. In this case, a given gene
will be annotated with this GO term if its gene expression profile
is significantly correlated with any one of these FEPs associated
with the GO term. In the case that a number of GO terms are
shown in one cluster, i.e., several GO terms are associated with
one FEP, the same FEP (average gene expression profile of the
cluster) is assigned to these GO terms.

3. RESULTS
3.1 ldentifying functional expression profiles

The training set is used to identify functional expression profiles
using the algorithm described earlier in Section 2.4.1. A sample
set of gene expression profiles and its corresponding functional
expression profile (“thyroid hormone generation; GO: 0006590”)
is shown in Figure 7. The two gene expression maps are much
correlated to each other. The FEP preserves the characters of the
expression maps fairly well.

For these experiments, we set the threshold r of the p-value of
step 3 of the algorithm to 0.05, and set M to 10,000. The method
identifies 48, 12 and 52 FEPs for biological processes, molecular
functions, and cellular components respectively. These FEPs are
visualized in Figures 8-10. Each small image in the figures
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denotes an FEP for a certain GO term. The GO ID of the GO
term is given above each small image. The FEPs are sorted in
descending order of the prediction accuracies of gene functions.
The top 10 GO terms and their accuracies are presented later in
Tables 2-4 for biological process, molecular function, and cellular
component respectively.
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Figure 7 a) Gene Expression Profiles of genes with the
function “thyroid hormone generation; GO: 0006590”.
b) Functional Expression Profile (FEP) of the function.
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Figure 8 The 48 FEPs for biological processes
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Figure 9 The 52 FEPs for molecular functions
GO5961 GO5T19 GO5833 6043234 GO5335 GO5330 GO5956 GO16469
2 2 2 | | 2
4 4 4 4
5 N I 5
2 4 6 810 2 4 6 810 2 4 6 810 2 4 6 810 2 46 810
05840 GO5786 6030529 GO5739
2 2 2 2
4 4 4 4
6 6 6 6
2 4 6 810 2 4 6 810 2 4 6 810 2 4 6 810

Figure 10 The 12 FEP

3.2 Function prediction using the KNN

approach

The KNN approach results are summarized in Tables 2-4. We see
that the KNN method fails to perform better than an arbitrary
classification model (accuracy ~ 50%) for almost all functions.
This is due to the extremely unbalanced data distribution for the
given function annotation. Only a very small fraction of genes are
annotated with the given functions. Although the specificities are
very high, the sensitivities are almost close to 0 (Tables 2-4). As
shown in Figure 11, over 90 percent of the functions are
annotated with less than 10 genes out of 7883 genes. This makes
it extremely hard for the KNN method to correctly identify gene
functions based on its nearest neighbor.

s for cellular components

Number of genes

with a given function
80— o

1000 1500 2000 2500 3000 3500

Function Index

Figure 11 Number of genes annotated with a given
function. The function index is sorted by the number
of genes with the function
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3.3 Function prediction using non-cluster-
based FEPs

Using Functional Expression Profiles improves the accuracy for a
large fraction of functions. We compare the results of the non-
cluster-based FEP method to those obtained by the KNN method.
Here the FEPs are obtained directly by finding genes with a given
GO term. We show the top 10 results for biological processes,

molecular functions and cellular components in Tables 2, 3 and 4
respectively. From these tables we see that the prediction
accuracy is up to 99%, and a large number of functions show
significant improvement compared to the traditional KNN
method. Some of the functions such as “snRNA export from
nucleus” have more than 40% improvement as shown in Table 2.

Table 2 Top 10 GO terms of Biological Process

Accuracy Specificity Sensitivity
Gene Ontology Term Non-cluster- KNN Non-cluster- KNN Non-cluster- KNN
based FEP based FEP based FEP
cellular morphogenesis during differentiation 0.99 0.75 0.97 1 1 0.5
thyroid hormone generation 0.98 0.71 0.96 1 1 0.43
DNA damage checkpoint 0.97 0.69 0.94 1 1 0.39
ER overload response 0.97 0.63 0.94 1 1 0.25
wax biosynthetic process 0.96 0.58 0.93 1 1 0.16
acetylcholine receptor signaling, muscarinic 0.95 0.57 0.91 1 1 0.13
pathway
cysteine hiosynthetic process from serine 0.94 0.55 0. 88 0.98 1 0.12
regulation of immunoglobulin secretion 0.93 0.5 0.85 1 1 0
snRNA export from nucleus 0.92 0.5 0.85 1 1 0
mitotic cell cycle spindle assembly checkpoint 0.87 0.5 0.94 1 0.8 0
Table 3 Top 10 GO terms of Molecular Function
Accuracy Specificity Sensitivity
Gene Ontology Term Non-cluster- KNN Non-cluster- KNN Non-cluster- KNN
based FEP based FEP based FEP
lysosphingolipid and lysophosphatidic acid 0.99 0.71 0.98 1 1 0. 43
receptor activity
insulin-like growth factor receptor binding 0.98 0.69 0.97 1 1 0.39
glycine dehydrogenase (decarboxylating) activity 0.97 0.67 0.95 1 1 0.34
ribosome binding 0.97 0.67 0.94 1 1 0. 34
long-chain-fatty-acyl-CoA reductase activity 0.96 0.63 0.93 1 1 0.25
prolactin receptor binding 0.96 0.55 0.91 1 1 0.12
cystathionine beta-synthase activity 0.94 0.5 0. 88 1 1 0
acyl-CoA binding 0.93 0.5 0. 86 1 1 0
inhibition of cell differentiation 0.93 0.5 0. 86 1 1 0
5'-nucleotidase activity 0.92 0.5 0. 85 0.98 1 0
Table 4 Top 10 GO terms of Cellular Component
Accuracy Specificity Sensitivity
Gene Ontology Term Non-cluster- KNN Non-cluster- KNN Non-cluster- KNN
based FEP based FEP based FEP
glycine cleavage complex 0.97 0.75 0.95 1 1 0.5
nuclear euchromatin 0.97 0.69 0.94 1 1 0. 38
hemoglobin complex 0.84 0.58 0.88 1 0.81 0.16
protein complex 0.83 0.58 0.99 0.99 0.67 0.16
Arp2/3 protein complex 0.79 0.56 0.86 0.95 0.71 0.16
A ribosome that is found in the cytosol of the cell 0.75 0.57 0.87 1 0.63 0.13
protein kinase CK2 complex 0.73 0.54 0.87 0.98 0.6 0.1
proton-transporting two-sector ATPase complex 0.71 0.5 0.93 1 0.5 0
ribosome 0.71 0.5 0.87 1 0.55 0
signal recognition particle, endoplasmic reticulum 0.68 0.5 0.85 1 0.5 0
targeting
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3.4 Function prediction using cluster-based
FEPs

Here the FEPs are obtained from the average gene expression
maps of the significant clusters with respect to biological
process, molecular function and cellular component. For each
significant cluster, we find out the most frequent GO terms, i.e.,
those terms for which the ratio of genes with the GO term to the
size of the cluster is bigger than 0.2. So there might be several
frequent GO terms for some clusters, but also there could be no
frequent GO terms for a cluster. We find 17 frequent GO terms
of the clusters with respect to biological process, 21 GO terms
with respect to molecular function, and 24 GO terms with respect
to cellular component. Table 5 shows the top 10 GO terms and
their accuracies of gene function prediction based on the
corresponding FEPs obtained from the clusters with respect to
biological process. Tables 6 and 7 show the top 10 results with
respect to the other two ontologies.

Table 5 Top 10 GO terms with respect to significant clusters
of Biological Process by cluster-based FEPs

Gene Ontology Term Accuracy  Specificity  Sensitivity
hemoglobin complex 0.83 0.81 0.85
oxygen transporter activity 0.83 0.81 0.85
oxygen binding 0.8 0.81 0.8
oxygen transport 0.8 0.81 0.79
Binding 0.62 0.81 0.44
Mitochondrion 0.53 0.81 0.26
Membrane 0.52 0.93 0.12
hydrolase activity 0.52 0.79 0.25
integral to membrane 0.52 0.47 0.57
Transport 0.52 0.63 0.41

Table 6 Top 10 GO terms with respect to significant clusters
of Molecular Function by cluster-based FEPS

Gene Ontology Term Accuracy  Specificity  Sensitivity
hemoglobin complex 0.8 0.84 0.77
oxygen transporter activity 0.8 0.84 0.77
oxygen binding 0.79 0.84 0.73
oxygen transport 0.78 0.84 0.72
binding 0.62 0.84 0.39
mitochondrion 0.55 0.82 0.28
transport 0.52 0.77 0.27
membrane 0.52 0.65 0.38
integral to membrane 0.51 0.3 0.72
nucleic acid binding 0.51 0.96 0.06

Table 7 Top 10 GO terms with respect to significant clusters
of Cellular Component by cluster-based FEPS

Gene Ontology Term Accuracy  Specificity  Sensitivity
hemoglobin complex 0.8 0.84 0.77
oxygen transporter activity 0.8 0.84 0.77

195

oxygen binding 0.79 0.84 0.73
oxygen transport 0.78 0.84 0.72
binding 0.61 0.84 0.38
aminoacyl-tRNA ligase activity 0.54 0.98 0.1

tRNA  aminoacylation  for 0.54 0.98 0.09
protein translation

mitochondrion 0.53 0.84 0.23
integral to membrane 0.52 0.34 0.7

ligase activity 0.51 0.98 0.04

Although significant clusters are obtained by considering
different categories of gene ontology [11], the frequent GO terms
are not restricted to the categories. So, there are GO terms that
are common in the three tables. The prediction accuracy reaches
up to 83%, which is lower than the accuracy of the prediction
obtained by non-cluster-based FEP. Also observe that although
some functions have very low accuracy, they have very high
specificity, such as ,membrane’ in Table 5, ,nucleic acid
binding’ in Table 6, and ,ligase activity’ in Table 7.

3.5 Comparing cluster-based FEP method
and non-cluster-based FEP method

Here we compare the cluster-based FEP method with the non-
cluster-based FEP method besides the prediction accuracy. Table
8 shows the differences of the two methods. Although the
cluster-based FEP method has better prediction accuracy than
non-cluster-based FEP method, the former one makes use of a
larger number of genes to build FEPs than the later one, and
more genes are correctly annotated with at least a gene function
than those annotated by non-cluster-based FEP.

Table 8 Comparing cluster-based FEP method and non-
cluster-based FEP method

Gene Ontology Biological Molecular Cellular
Process Function Component
Cluster-
based 5414 5891 5586
Number of | FEPs
genes used Non-
cluster- 1182 872 571
based FEPs
Cluster-
Number of | based 3234 4009 3560
genes FEP
correctly Non-
annotated cluster- 271 273 162
based FEP
Non-cluster-based method detects 48, 52, and 12 FEPs

respectively to the categories of gene ontology, whereas cluster-
based method detects 17, 21 and 24 respectively to the same
categories. The cluster-based method finds out fewer FEPs
because over 90 percent of the functions are annotated with less
than 10 genes out of 7883 genes, so that a very small number of
functions are found to be frequent in a significant cluster.

There are few intersections between the FEPs (or gene functions)
obtained by the two methods. Table 9 shows the intersections
and their prediction accuracies. For the same gene functions,
KNN has the worst prediction accuracy and non-cluster-based



FEP method is slightly better than the cluster-based FEP method.
The small number of intersections indicates that the two methods
can detect different kinds of gene functions.

Table 9 Prediction accuracies of FEP Intersections between
non-cluster-based and cluster-based methods

Non- Cluster-
Intersection KNN cluster- based FEP
based FEP
) ) Transport 0.5 0.51 052
Biological
Process oxygen
transport 0.5 0.82 0.8
oxygen
transporter 0.5 0.84 0.8
Molecular activity
Function —
Binding 0.5 0.61 0.6
oxygen binding 0.5 0.81 0.79
mitochondrion
Cellular . 0.5 0.55 0.53
Component | hemoglobin
complex 0.58 0.84 0.8

4. DISCUSSION

In this study, we focus on the analysis of gene expression maps
obtained by voxelation and processed with microarrays.
Information about the genes that are being expressed in each one
of the voxels which are spatially registered in the mice brain is
being collected and analyzed. Gene expression profiles are
extracted by wavelet transformation on the averaged hemisphere
of the mice brain, taking into account the correlation between
neighboring voxels. This work tries to improve upon the results
obtained by related research work based on gene expression
profiles that do not consider spatial information.

Our study is based on the hypothesis that genes with similar gene
expression maps may have similar gene functions. This
hypothesis was confirmed for a number of genes by our previous
analysis [11]. The hypothesis might not hold for all genes, but we
showed that it holds for at least a set of genes. Therefore, a gene
function might be related to a certain gene expression map. In
this paper, we examine the gene functions associated with at
least two genes to see if these genes have similar gene
expression profiles. By ranking the pair-wise correlation
coefficient for all the expressions profiles of genes associated to
a given function, a significant expression profile is reported. We
call this specific expression profile which is associated with the
given gene function, Functional Expression Profile (FEP). FEPs
are used here to annotate genes with functions by comparing the
unknown gene's profile with all the identified FEPs. The
function whose FEP is significant similar to the gene“s profile is
assigned to the unknown gene. Another method we propose for
getting FEPs is identifying significant clusters of genes which
have both similar gene functions and gene expression profiles.
We denote the average profile of a cluster as FEP and we assign
frequent functions observed in the cluster to this FEP.
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Experimental results show that our proposed function annotation
approach which uses non-cluster-based FEPs can reach accuracy
of up to 99 percent. The cluster-based FEP approach can reach
up to 84 percent accuracy and has high specificity and low
sensitivity. The K-NN method fails to achieve better than 50
percent accuracy which may be due to the extremely unbalanced
data distribution for a given function annotation. The reason for
the reduced performance of the cluster-based FEP compared to
the non-cluster-based FEP might be that the significant clusters
do not include all the genes of the dataset (see Table 1). This is
related to the fact that cluster-based FEP has high specificity and
low sensitivity. Also it can be attributed to the fact that FEPs
obtained by the cluster-based method have much more blurred
images (see Figure 6) than those obtained by the non-cluster-
based approach (see Figures 8-10). So, the non-cluster-based
FEPs have better quality.

We further compare the cluster-based FEP and the non-cluster-
based FEP methods by examining the number of genes included
in FEPs, the number of genes correctly annotated with at least a
gene function, and the number of FEPs detected. The cluster-
based method identifies less FEPs, but it has many more genes
involved in FEPs and more genes correctly annotated by at least
one function. This means that the functions associated with FEPs
obtained by the two methods are quite different. The functions
identified by the non-cluster-based method are specific and
infrequent in our dataset, whereas the functions identified by the
cluster-based method are common and frequently appearing in
genes. Therefore, although the non-cluster-based method has
better prediction accuracy than the cluster-based method, the
cluster-based one remains a useful approach and it is more
advanced in some cases, such as the case where we need to study
common gene functions.

Another way, we can examine the results is by connecting gene
expression images of FEPs with their prediction accuracies. For
example, let us consider the “thyroid hormone generation” which
has a prediction accuracy of 98 percent (Table 2). The FEP of
this function is visualized in the second small image on the top
row of Figure 8. This image is very interesting because it shows
very high expression in a single voxel. Some of the images of
FEPs are in good agreement with anatomical components of
mice's brain. We believe that these findings can provide
meaningful information to biologists.

So far, the FEPs we found are based on a single gene function.
This means that one FEP is associated with one function. A
question to explore is what will happen if we take into account
two or three functions together, such as the frequent itemsets of
functions that have been identified in [17]. In future work, we
will consider the problem of detecting FEPs for a set of certain
gene functions.
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