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ABSTRACT 
Gene expression profiles have been widely used in functional 
genomic studies. However, not much work in traditional gene 
expression profiling takes into account the location information 
of a gene's expressions in the brain. Gene expression maps, 
which contain spatial information regarding the expression of 
genes in mice‟s brain, are obtained by combining voxelation and 
microarrays. Based on the idea that genes with similar gene 
expression maps may have similar gene functions, we propose an 
approach to identify gene functions. A gene function can 
potentially be associated with a specific gene expression profile. 
We name this specific gene expression profile, Functional 
Expression Profile (FEP). A functional expression profile can be 
obtained either by directly finding genes with a certain function, 
or by analyzing clusters of genes that have similar expression 
maps and similar functions. By taking advantage of the identified 
FEPs, we can annotate gene functions with high accuracy. 
Compared to the traditional K-nearest neighbor method, our 
approach shows higher accuracy in predicting functions. The 
images of FEPs are in good agreement with anatomical 
components of mice‟s brain, and provide valuable insight in 
terms of function prediction to biological scientists. 
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1. INTRODUCTION 
The use of microarrays for gene expression profiling has been 
widely used in recent functional genomic studies. Gene 
expression signatures in the mammalian brain hold the key to 
understanding neural development and neurological disease. 
While research [1-4] has been done to detect gene functions, 
most of the time it has not taken into account the locations of a 
gene's expressions in the brain to identify gene functions. 
Voxelation is a new approach that involves dicing the brain into 
spatially registered voxels (cubes). It produces multiple 
volumetric maps of gene expression analogous to the images 
reconstructed in biomedical imaging systems [5-7]. Related 
research suggests that voxelation is a useful approach for 
understanding how the genome constructs the brain. Gene 
expression patterns obtained by voxelation show good agreement 
with known expression patterns [8-9]. Based on the genome-wide 
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atlases of expression patterns in the brain [10-11], gene function 
identification can be greatly improved in terms of accuracy. 

Researchers at the David Geffen School of Medicine at UCLA 
used voxelation in combination with microarrays for acquisition 
of genome-wide atlases of expression patterns in the brain [10]. 
They acquired 2-dimensional images of gene expression for 
20,847 genes. The procedure of obtaining the raw data is 
described here briefly. A fresh brain is removed from a sacrificed 
mouse, and then a 1mm slice of the brain at the level of striatum 
is obtained (Figure 1). The coronal slice is put on a stage and is 
cut by a matrix of blades that are spaced 1 mm apart, thus 
resulting in cubes (voxels) that are 1mm3. There are voxels like 
A3, B9..., as Figure 2 shows. A1, A2, B1... are in red, signifying 
that voxels were not retrieved from these spots, and are empty 
cubes that were assigned to maintain a rectangular. So, each gene 
is presented by the 68 gene expression values in 68 voxels to 
compose a gene expression map of a mouse‟s brain. This data 
has been found to be of good quality based on multiple 
independent criteria and insights provided by others [8-10] into 
the molecular architecture of the mammalian brain. 

 

 

 

 
Our previous analysis of the gene expression maps [11] focused 
on the identification of the relationship between the gene 
functions and gene expression maps. We used wavelet features to 
determine the similarity of gene expression maps and a function 
distance in the gene ontology structure to determine the 
similarity of gene functions. In certain cases, the group of genes 
that was identified as similar to a target gene shared very similar 
gene functions in at least one gene function category. Moreover, 
clustering analysis detected a number of clusters of genes that 
have both similar gene expression maps and similar gene 
functions. These clusters were denoted as significant clusters. 
That work confirmed that the hypothesis that genes with similar 
gene expression maps have similar gene functions holds for a 
certain set of genes.  Therefore, genes with currently unknown 

gene functions may have functions similar to those of known 
genes with which they have similar expression maps.  

In this study, our goal is to identify gene functions based on the 
multiple volumetric maps of gene expression in mice brains. We 
take advantage of the relationship between gene expression maps 
and gene functions to predict gene functions. For a given gene 
function, there might be a specific gene expression map (profile) 
that is associated with the given function. The genes that have 
similar gene expression maps to the specific profile are supposed 
to hold similar gene functions. We name this specific gene 
expression profile, Functional Expression Profile (FEP). An FEP 
can be obtained directly by studying each gene function related to 
the dataset and identifying if the function has a specific gene 
expression profile, or it can be obtained through the average 
profiles of significant clusters of gene expression maps obtained 
by our previous analysis. We propose a gene function annotation 
method that takes advantage of the results of identified FEP. We 
compare the method with the traditional K-nearest neighbor 
(KNN) method  that has been used in identifying gene functions 
[15, 16], which simply annotates a given gene with the functions 
of the top k genes in the training set with the highest correlation 
coefficient to that gene. The experimental results show that the 
accuracy of the identifying gene functions is high, in some cases 
reaching 99 percent, and the proposed approach compares 
favorably to the K-nearest neighbor method. Moreover, the FEPs 
obtained directly from gene functions have better performance in 
function prediction than the FEPs obtained by significant 
clusters. 

2. DATA AND METHODS 

2.1 Gene expression maps 
The data set we consider in this study is a 20,847 by 68 matrix, 
in which each row represents the 68 expression values of a 
particular gene, and each column represents the log2 ratio 
expression values for all the probes (genes) in a given voxel. The 
68 voxels are located in mice‟s brain, as Figure 2 shows. By 
using different colors to show different values of gene 
expression, the expression map for a certain gene can be 
visualized as in Figure 3.  

 

 
From the analysis we discard genes whose 68 expression values 
are all between -1 and 1. The remaining 13,576 genes‟ IDs are 
imported into the SOURCE [12] database [13] to retrieve their 
Gene Ontology (GO) annotation information. Out of the 13576 
genes, 7883 genes are known genes and are annotated with at 
least one GO term. There are 2416 unique GO terms in total. 
Among those 2416 GO terms, 1065 are biological processes 

Figure 3  A visualized gene expression map 

 
 

Figure 1  The mouse brain at bregma = 0 

. 

 
 

Figure 2  Voxels of the coronal slice 

. 
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where 693 of them are associated with at least two genes. 1103 
GO terms belong to molecular functions where 707 of them are 
associated with at least two genes. 248 GO terms belong to 
cellular components where 207 of them are associated with at 
least two genes. 

2.2 Averaging hemispheres  
Since there is a large amount of noise in microarray experiments, 
we average the data over both hemispheres to improve the signal. 
Additionally, the averaging of hemispheres takes advantage of 
the inherent bilateral symmetry of mice‟s brain. Mice do not 
have "handedness" or speech-centers in the brain, which are 
known to be localized to one hemisphere in humans.  Therefore, 
a voxel or two that stands out is probably more reliable if it has a 
corresponding voxel located in the same general location in the 
other hemisphere. In the process of averaging, for each row of the 
map, we average the framed cells, as shown in Figure 4. Then, 
we replace B1 with B11, A2 with A10, and the averaged gene 
expression map is obtained as in Figure 5. 

 

 

2.3 Wavelet transformation 
Here we describe how we use the wavelet transform to extract 
new features from the original 68 expression values of each gene 
expression map. In the data set that we study, each row 
represents the gene expression values corresponding to the 68 
voxels in the selected slice of mice‟s brain. Intuitively, if an 
expression value is similar to other values in its spatial 
neighborhood, it is more reliable. However the original vectors of 
gene expression values ignore the spatial information. In order to 
measure the spatial consistency of expression values with others 
in their spatial neighborhood and to take into account the spatial 
factors of voxels in the brain map, we employ the wavelet 
transform to extract new features. 

The wavelet transform is a tool that cuts up data, functions or 
operators into different frequency components and studies each 

component with a resolution matched to its scale [14]. Here, we 
use the discrete wavelet transform (DWT) with single-level two-
dimensional wavelet decomposition employing the Daubechies 
wavelet function to extract features based on the gene expression 
matrix (see Figure 2). The output of the wavelet transformation 
consists of approximation coefficients, which are the average of 
gene expression values in neighborhood voxels, and detail 
coefficients, which indicate the difference of each voxel from the 
average. For the averaged map of 6 by 7 cells, by employing 
multilevel 2-D wavelet decomposition at level 3, we obtain 42 
coefficients (combining approximation and detail coefficients to 
approach the best results).  

2.4 Functional expression profiles 

2.4.1 Identifying FEPs by non-cluster-based method 
One method to obtain FEPs is to explore each GO term (gene 
function) and identify all the genes that contain this GO term. 
Since not all genes with similar gene expression map have 
similar gene functions, we need to rank the group of gene 
expression patterns to determine if the genes with identical 
function have similar expression profiles. We study GO terms 
associated with at least two genes and use a statistical procedure 
to identify GO terms with average pair-wise gene profile 
correlation significantly higher than the correlation expected to 
be present at random. The random model assumes that genes 
corresponding to a given GO term are selected at random from 
the available pool of genes. The algorithm we use to test the null 
hypothesis assuming the random model is shown below. 

Algorithm for identifying FEPs 

1. Calculate the average pairwise correlation coefficient 
between n gene expression profiles associated with a given 
GO term; 
2. Select n genes randomly from the dataset. Compute the 
average pairwise correlation coefficient in the random set of 
genes; 
3. Repeat Step 2 M times, and report as p-value the 
proportion of the random sets with average pairwise 
correlation larger than that of the original gene set. 
4.  If the p-value obtained from Step 3 is less than a given 
threshold ґ, average the gene expression profiles, where 
genes are associated with the given function to create the 
Functional Expression Profile (FEP).  

 
The remaining GO terms with p-values larger than the threshold 
are discarded since there is no sufficient evidence to demonstrate 
that the corresponding genes are correlated. We call this method 
non-cluster-based FEP method. The number of iterations M has 
been set to 10,000 and the threshold r has been set to 0.05 in our 
experiments, as discussed in Section 3. 

2.4.2 Identifying FEPs by cluster-based method 
During our previous analysis of this gene expression dataset [11], 
a number of significant gene clusters were identified with both 
similar gene expression maps and similar gene functions. Based 
on the 7883 known genes, the significant clusters were detected 
for the three categories of gene ontology (Cellular Component, 
Molecular Function, and Biological Process) separately.  

Figure 5  Averaged gene expression map 

. 

 
 

Figure 4  Averaging left and right hemispheres 

. 
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Figure 6 The 38 significant clusters found with respect to Cellular Component. 

 

Table 1 shows the number of significant clusters we detected and 
the total number of genes in these clusters. Figure 6 shows the 
average of gene expression maps of significant clusters with 
respect to the category "Cellular Component". Each small image 
in this figure shows an average map of the 68 gene expression 
values for all genes in a cluster. This image can be viewed as 
FEP. We call this method cluster-based FEP method. 

Table 1.  Number of significant clusters 

GO Category Number of 
Significant Clusters 

Number of genes in all  
significant clusters 

Cellular 
Component 38 5651 

Molecular 
Function 50 6112 

Biological 
Process 43 5520 

 

For each significant cluster, we examined all unique GO terms 
shown in the genes of the cluster. Suppose that there are N genes 
that include a certain GO term in the cluster, and that the size of 
the cluster is S. The GO terms with ratio N/S larger than a given 
threshold are reported. Those GO terms are associated with the 
average gene expression maps of the corresponding cluster, 
which are viewed as FEPs. Because the same GO term can 
appear frequently in different significant clusters, a GO term can 
be associated with several FEPs. Moreover, there can be several 
frequent GO terms within a significant cluster, or there can be no 
frequent GO terms within a cluster. The strategies to deal with 
the above cases are presented in Section 2.5.  

2.5 Annotating unknown gene functions using 

identified FEP 
In this study, our objective is to identify gene function by using 
gene expression maps. Traditional approaches for identifying 
unknown gene functions have numerous difficulties, e.g., the 

naive KNN method in which the neighborhood of a given point 
becomes very sparse in a high dimensional space [15]. Here we 
propose a gene function annotation method which takes 
advantage of the identified FEPs. We show the benefit of our 
approach by comparing it to the traditional K-nearest neighbor 
method. 

The voxelation dataset is randomly split into two disjoint subsets: 
a training set and a test set. The training set contains 3/4 of the 
data. The remaining data forms the test set. For those 3126 gene 
ontology terms associated with the known and significant 7883 
genes, we evaluate our approach for each function separately. 
That is, for each given function GOj {1<j<3126}, our target label 
set is a 7883 by 1 vector. The value of the entry i {1<i<7883} of 
this vector is a binary variable where „1‟ indicates that gene G i is 
annotated with function GOj, and „0‟ otherwise. We first build 
the prediction model using the training set. Then we use the 
obtained model to label the test set and compare the assigned 
binary labels to the real labels. The accuracy is measured as the 
average of specificity and sensitivity. We repeat our approach for 
all functions and for each function we report the accuracy of the 
prediction. 

For the functional expression profile approach, the training set is 
used to obtain the biological process and molecular function FEPs 
using the algorithm described earlier. For a given test set of 
genes, if its gene expression profile (map) is significantly 
correlated with a given FEP of GO term GOj, the gene will be 
identified as annotated with function GOj. We consider a gene 
expression map as significantly correlated with a FEP if the 
correlation coefficient of the gene expression map and FEP is 
higher than 95% of the 10,000 randomly selected pairs of gene 
expression maps. For the K-NN approach, we set K to 1. For a 
given function GOj and a given gene in the test set, we compute 
the correlation coefficients between the given gene and all genes 
in the training set and rank the correlations. The function label (0 
or 1) of the gene with the highest correlation coefficient in the 
training set is used as the predicted label for the given gene in the 
test set. 
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For the FEPs obtained by the cluster-based method, a GO term 
might be connected to several FEPs. In this case, a given gene 
will be annotated with this GO term if its gene expression profile 
is significantly correlated with any one of these FEPs associated 
with the GO term. In the case that a number of GO terms are 
shown in one cluster, i.e., several GO terms are associated with 
one FEP, the same FEP (average gene expression profile of the 
cluster) is assigned to these GO terms. 

3. RESULTS 

3.1 Identifying functional expression profiles 
The training set is used to identify functional expression profiles 
using the algorithm described earlier in Section 2.4.1. A sample 
set of gene expression profiles and its corresponding functional 
expression profile (“thyroid hormone generation; GO: 0006590”) 
is shown in Figure 7. The two gene expression maps are much 
correlated to each other. The FEP preserves the characters of the 
expression maps fairly well. 
For these experiments, we set the threshold ґ of the p-value of 
step 3 of the algorithm to 0.05, and set M to 10,000. The method 
identifies 48, 12 and 52 FEPs for biological processes, molecular 
functions, and cellular components respectively. These FEPs are 
visualized in Figures 8-10. Each small image in the figures 

denotes an FEP for a certain GO term. The GO ID of the GO 
term is given above each small image. The FEPs are sorted in 
descending order of the prediction accuracies of gene functions. 
The top 10 GO terms and their accuracies are presented later in 
Tables 2-4 for biological process, molecular function, and cellular 
component respectively.  

a) 

 

b） 

 
 

 

 
 

Figure 8 The 48 FEPs for biological processes 

. 

 
 

Figure 7 a) Gene Expression Profiles of genes with the 

function “thyroid hormone generation; GO: 0006590”. 

b) Functional Expression Profile (FEP) of the function.  
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Figure 10 The 12 FEPs for cellular components 

 

3.2 Function prediction using the KNN 

approach 
The KNN approach results are summarized in Tables 2-4. We see 
that the KNN method fails to perform better than an arbitrary 
classification model (accuracy ~ 50%) for almost all functions. 
This is due to the extremely unbalanced data distribution for the 
given function annotation. Only a very small fraction of genes are 
annotated with the given functions. Although the specificities are 
very high, the sensitivities are almost close to 0 (Tables 2-4). As 
shown in Figure 11, over 90 percent of the functions are 
annotated with less than 10 genes out of 7883 genes.  This makes 
it extremely hard for the KNN method to correctly identify gene 
functions based on its nearest neighbor. 
 

 

 

Figure 11 Number of genes annotated with a given 

function. The function index is sorted by the number 

of genes with the function 

Figure 9 The 52 FEPs for molecular functions 

 

. 
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3.3 Function prediction using non-cluster-

based FEPs 
Using Functional Expression Profiles improves the accuracy for a 
large fraction of functions. We compare the results of the non-
cluster-based FEP method to those obtained by the KNN method. 
Here the FEPs are obtained directly by finding genes with a given 
GO term.  We show the top 10 results for biological processes, 

molecular functions and cellular components in Tables 2, 3 and 4 
respectively. From these tables we see that the prediction 
accuracy is up to 99%, and a large number of functions show 
significant improvement compared to the traditional KNN 
method. Some of the functions such as “snRNA export from 

nucleus” have more than 40% improvement as shown in Table 2. 

 

Table 2 Top 10 GO terms of Biological Process 

Gene Ontology Term 
Accuracy Specificity Sensitivity 

Non-cluster-
based FEP 

KNN Non-cluster-
based FEP 

KNN Non-cluster-
based FEP 

KNN 

cellular morphogenesis during differentiation 0.99 0.75 0.97 1 1 0.5 

thyroid hormone generation 0.98 0.71 0.96 1 1 0.43 

DNA damage checkpoint 0.97 0.69 0.94 1 1 0.39 

ER overload response 0.97 0.63 0.94 1 1 0.25 

wax biosynthetic process 0.96 0.58 0.93 1 1 0.16 

acetylcholine receptor signaling, muscarinic 

pathway 
0.95 0.57 0.91 1 1 0.13 

cysteine biosynthetic process from serine 0.94 0.55 0.88 0.98 1 0.12 

regulation of immunoglobulin secretion 0.93 0.5 0.85 1 1 0 

snRNA export from nucleus 0.92 0.5 0.85 1 1 0 

mitotic cell cycle spindle assembly checkpoint 0.87 0.5 0.94 1 0.8 0 
 

Table 3 Top 10 GO terms of Molecular Function  

Gene Ontology Term 
Accuracy Specificity Sensitivity 

Non-cluster-
based FEP 

KNN Non-cluster-
based FEP 

KNN Non-cluster-
based FEP 

KNN 

lysosphingolipid and lysophosphatidic acid 

receptor activity 
0.99 0.71 0.98 1 1 0.43 

insulin-like growth factor receptor binding 0.98 0.69 0.97 1 1 0.39 

glycine dehydrogenase (decarboxylating) activity 0.97 0.67 0.95 1 1 0.34 

ribosome binding 0.97 0.67 0.94 1 1 0.34 

long-chain-fatty-acyl-CoA reductase activity 0.96 0.63 0.93 1 1 0.25 

prolactin receptor binding 0.96 0.55 0.91 1 1 0.12 

cystathionine beta-synthase activity 0.94 0.5 0.88 1 1 0 

acyl-CoA binding 0.93 0.5 0.86 1 1 0 

inhibition of cell differentiation 0.93 0.5 0.86 1 1 0 

5'-nucleotidase activity 0.92 0.5 0.85 0.98 1 0 
 

Table 4 Top 10 GO terms of Cellular Component 

Gene Ontology Term 
Accuracy Specificity Sensitivity 

Non-cluster-
based FEP 

KNN Non-cluster-
based FEP 

KNN Non-cluster-
based FEP 

KNN 

glycine cleavage complex 0.97 0.75 0.95 1 1 0.5 

nuclear euchromatin 0.97 0.69 0.94 1 1 0.38 

hemoglobin complex 0.84 0.58 0.88 1 0.81 0.16 

protein complex 0.83 0.58 0.99 0.99 0.67 0.16 

Arp2/3 protein complex 0.79 0.56 0.86 0.95 0.71 0.16 

A ribosome that is found in the cytosol of the cell 0.75 0.57 0.87 1 0.63 0.13 

protein kinase CK2 complex 0.73 0.54 0.87 0.98 0.6 0.1 

proton-transporting two-sector ATPase complex 0.71 0.5 0.93 1 0.5 0 

ribosome 0.71 0.5 0.87 1 0.55 0 

signal recognition particle, endoplasmic reticulum 

targeting 

0.68 0. 5 0.85 1 0.5 0 

194



3.4 Function prediction using cluster-based 

FEPs 
Here the FEPs are obtained from the average gene expression 
maps of the significant clusters with respect to biological 
process, molecular function and cellular component. For each 
significant cluster, we find out the most frequent GO terms, i.e., 
those terms for which the ratio of genes with the GO term to the 
size of the cluster is bigger than 0.2. So there might be several 
frequent GO terms for some clusters, but also there could be no 
frequent GO terms for a cluster. We find 17 frequent GO terms 
of the clusters with respect to biological process, 21 GO terms 
with respect to molecular function, and 24 GO terms with respect 
to cellular component. Table 5 shows the top 10 GO terms and 
their accuracies of gene function prediction based on the 
corresponding FEPs obtained from the clusters with respect to 
biological process. Tables 6 and 7 show the top 10 results with 
respect to the other two ontologies. 
 

Table 5 Top 10 GO terms with respect to significant clusters 

of Biological Process by cluster-based FEPs 

Gene Ontology Term Accuracy  Specificity Sensitivity 

hemoglobin complex 0.83 0.81 0.85 
oxygen transporter activity 0.83 0.81 0.85 
oxygen binding 0.8 0.81 0.8 
oxygen transport 0.8 0.81 0.79 
Binding 0.62 0.81 0.44 
Mitochondrion 0.53 0.81 0.26 
Membrane 0.52 0.93 0.12 
hydrolase activity 0.52 0.79 0.25 
integral to membrane 0.52 0.47 0.57 
Transport 0.52 0.63 0.41 

 

Table 6 Top 10 GO terms with respect to significant clusters 

of Molecular Function by cluster-based FEPs 
Gene Ontology Term Accuracy  Specificity Sensitivity 

hemoglobin complex 0.8 0.84 0.77 
oxygen transporter activity 0.8 0.84 0.77 
oxygen binding 0.79 0.84 0.73 
oxygen transport 0.78 0.84 0.72 
binding 0.62 0.84 0.39 
mitochondrion 0.55 0.82 0.28 
transport 0.52 0.77 0.27 
membrane 0.52 0.65 0.38 
integral to membrane 0.51 0.3 0.72 
nucleic acid binding 0.51 0.96 0.06 

 

Table 7 Top 10 GO terms with respect to significant clusters 

of Cellular Component by cluster-based FEPs 

Gene Ontology Term Accuracy  Specificity Sensitivity 

hemoglobin complex 0.8 0.84 0.77 
oxygen transporter activity 0.8 0.84 0.77 

oxygen binding 0.79 0.84 0.73 
oxygen transport 0.78 0.84 0.72 
binding 0.61 0.84 0.38 
aminoacyl-tRNA ligase activity 0.54 0.98 0.1 
tRNA aminoacylation for 

protein translation 

0.54 0.98 0.09 

mitochondrion 0.53 0.84 0.23 
integral to membrane 0.52 0.34 0.7 
ligase activity 0.51 0.98 0.04 

 
Although significant clusters are obtained by considering 
different categories of gene ontology [11], the frequent GO terms 
are not restricted to the categories. So, there are GO terms that 
are common in the three tables. The prediction accuracy reaches 
up to 83%, which is lower than the accuracy of the prediction 
obtained by non-cluster-based FEP. Also observe that although 
some functions have very low accuracy, they have very high 
specificity, such as „membrane’ in Table 5, „nucleic acid 

binding’ in Table 6, and „ligase activity’ in Table 7. 

3.5 Comparing cluster-based FEP method 

and non-cluster-based FEP method 
Here we compare the cluster-based FEP method with the non-
cluster-based FEP method besides the prediction accuracy. Table 
8 shows the differences of the two methods. Although the 
cluster-based FEP method has better prediction accuracy than 
non-cluster-based FEP method, the former one makes use of a 
larger number of genes to build FEPs than the later one, and 
more genes are correctly annotated with at least a gene function 
than those annotated by non-cluster-based FEP.  

Table 8 Comparing cluster-based FEP method and non-

cluster-based FEP method 

Gene Ontology Biological 
Process 

Molecular 
Function 

Cellular 
Component 

Number of 

genes used 

Cluster-

based 

FEPs 

5414 5891 5586 

Non-

cluster- 

based FEPs 

1182 872 571 

Number of 

genes 

correctly 

annotated  

Cluster-

based 

FEP 

3234 4009 3560 

Non-

cluster- 

based FEP 

271 273 162 

 

Non-cluster-based method detects 48, 52, and 12 FEPs 
respectively to the categories of gene ontology, whereas cluster-
based method detects 17, 21 and 24 respectively to the same 
categories. The cluster-based method finds out fewer FEPs 
because over 90 percent of the functions are annotated with less 
than 10 genes out of 7883 genes, so that a very small number of 
functions are found to be frequent in a significant cluster.  
There are few intersections between the FEPs (or gene functions) 
obtained by the two methods. Table 9 shows the intersections 
and their prediction accuracies. For the same gene functions, 
KNN has the worst prediction accuracy and non-cluster-based 
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FEP method is slightly better than the cluster-based FEP method. 
The small number of intersections indicates that the two methods 
can detect different kinds of gene functions.   

Table 9 Prediction accuracies of FEP Intersections between 

non-cluster-based and cluster-based methods 

Intersection KNN 
Non-

cluster-
based FEP 

Cluster-
based FEP 

Biological 
Process 

Transport 0.5 0.51 0.52 
oxygen 

transport 0.5 0.82 0.8 

Molecular 
Function 

oxygen 

transporter 

activity 
0.5 0.84 0.8 

Binding 0.5 0.61 0.6 
oxygen binding 0.5 0.81 0.79 

Cellular 
Component 

mitochondrion 0.5 0.55 0.53 
hemoglobin 

complex 0.58 0.84 0.8 

 

4. DISCUSSION 
In this study, we focus on the analysis of gene expression maps 
obtained by voxelation and processed with microarrays. 
Information about the genes that are being expressed in each one 
of the voxels which are spatially registered in the mice brain is 
being collected and analyzed. Gene expression profiles are 
extracted by wavelet transformation on the averaged hemisphere 
of the mice brain, taking into account the correlation between 
neighboring voxels. This work tries to improve upon the results 
obtained by related research work based on gene expression 
profiles that do not consider spatial information.  

Our study is based on the hypothesis that genes with similar gene 
expression maps may have similar gene functions. This 
hypothesis was confirmed for a number of genes by our previous 
analysis [11]. The hypothesis might not hold for all genes, but we 
showed that it holds for at least a set of genes. Therefore, a gene 
function might be related to a certain gene expression map. In 
this paper, we examine the gene functions associated with at 
least two genes to see if these genes have similar gene 
expression profiles. By ranking the pair-wise correlation 
coefficient for all the expressions profiles of genes associated to 
a given function, a significant expression profile is reported. We 
call this specific expression profile which is associated with the 
given gene function, Functional Expression Profile (FEP). FEPs 
are used here to annotate genes with functions by comparing the 
unknown gene‟s profile with all the identified FEPs. The 
function whose FEP is significant similar to the gene‟s profile is 
assigned to the unknown gene.  Another method we propose for 
getting FEPs is identifying significant clusters of genes which 
have both similar gene functions and gene expression profiles. 
We denote the average profile of a cluster as FEP and we assign 
frequent functions observed in the cluster to this FEP.  

Experimental results show that our proposed function annotation 
approach which uses non-cluster-based FEPs can reach accuracy 
of up to 99 percent. The cluster-based FEP approach can reach 
up to 84 percent accuracy and has high specificity and low 
sensitivity. The K-NN method fails to achieve better than 50 
percent accuracy which may be due to the extremely unbalanced 
data distribution for a given function annotation. The reason for 
the reduced performance of the cluster-based FEP compared to 
the non-cluster-based FEP might be that the significant clusters 
do not include all the genes of the dataset (see Table 1). This is 
related to the fact that cluster-based FEP has high specificity and 
low sensitivity. Also it can be attributed to the fact that FEPs 
obtained by the cluster-based method have much more blurred 
images (see Figure 6) than those obtained by the non-cluster-
based approach (see Figures 8-10). So, the non-cluster-based 
FEPs have better quality. 

We further compare the cluster-based FEP and the non-cluster-
based FEP methods by examining the number of genes included 
in FEPs, the number of genes correctly annotated with at least a 
gene function, and the number of FEPs detected. The cluster-
based method identifies less FEPs, but it has many more genes 
involved in FEPs and more genes correctly annotated by at least 
one function. This means that the functions associated with FEPs 
obtained by the two methods are quite different. The functions 
identified by the non-cluster-based method are specific and 
infrequent in our dataset, whereas the functions identified by the 
cluster-based method are common and frequently appearing in 
genes. Therefore, although the non-cluster-based method has 
better prediction accuracy than the cluster-based method, the 
cluster-based one remains a useful approach and it is more 
advanced in some cases, such as the case where we need to study 
common gene functions.  

Another way, we can examine the results is by connecting gene 
expression images of FEPs with their prediction accuracies. For 
example, let us consider the “thyroid hormone generation” which 
has a prediction accuracy of 98 percent (Table 2). The FEP of 
this function is visualized in the second small image on the top 
row of Figure 8. This image is very interesting because it shows 
very high expression in a single voxel. Some of the images of 
FEPs are in good agreement with anatomical components of 
mice‟s brain. We believe that these findings can provide 
meaningful information to biologists.  

So far, the FEPs we found are based on a single gene function. 
This means that one FEP is associated with one function. A 
question to explore is what will happen if we take into account 
two or three functions together, such as the frequent itemsets of 
functions that have been identified in [17]. In future work, we 
will consider the problem of detecting FEPs for a set of certain 
gene functions. 
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