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Abstract

Logistic regression (LR), discriminant analysis (DA), and neural networks (NN) were used to

predict ordered and disordered regions in proteins. Training data were from a set of non-redundant

X-ray crystal structures, with the data being partitioned into N-terminal, C-terminal and internal

(I) regions. The DA and LR methods gave almost identical 5-cross validation accuracies that

averaged to the following values: 75.9 � 3.1% (N-regions), 70.7 � 1.5% (I-regions), and 74.6 �

4.4% (C-regions). NN predictions gave slightly higher scores: 78.8 � 1.2% (N-regions), 72.5 �

1.2% (I-regions), and 75.3 � 3.3% (C-regions). Predictions improved with length of the disordered

regions. Averaged over the three methods, values ranged from 52% to 78% for length = 9-14 to �

21, respectively, for I-regions, from 72% to 81% for length = 5 to 12-15, respectively, for N-regions,

and from 70% to 80% for length = 5 to 12-15, respectively, for C-regions. These data support the

hypothesis that disorder is encoded by the amino acid sequence.

1 Introduction

The current paradigm is that protein function depends on 3D structure [10, 16, 18], yet some proteins

are partially or completely unfolded in their native states [2, 3, 7, 24, 26]. For such "natively unfold-

ed" [30], "natively disordered" [9] or "intrinsically unstructured" [31] proteins, the lack of a �xed 3D

structure can be an integral part of the function. Are such disordered proteins common or rare?

To estimate the commonness of disordered proteins, we applied predictors of disorder to appropriate

databases [20]. The results suggested that intrinsic disorder is common [21], but lack of structural

information limits con�dence in these �ndings. Since the needed structural information will be slow

in coming, we are revisiting the question of commonness by improving our disorder predictions.

A limitation of our previous studies was that only neural networks (NNs) were tried. By comparing

NNs with discriminant analysis (DA) and logistic regression (LR), we can gain additional con�dence

in the suitability of prediction for identifying ordered and disordered protein.

Technical limitations of our previous algorithms resulted in absence of predictions on 15 residues

at each end [20], resulting in non-prediction of a signi�cant fraction of the residues. Here we modi�ed

the algorithms to extend the predictions to the N- and C-termini.

2 Materials and Methods

2.1 Data

Using missing electron density in X-ray structures as indicating disorder [19], we identi�ed 115 N-

terminal, 84 C-terminal and 69 internal (I) disordered regions (DRs) that were contained in 197

unrelated proteins listed in PDB-select-25 [11]. The minimum lengths used were 5 and 9 for termini



and I-regions, respectively. The various DRs contained the following numbers of residues 1,644 (N-

regions), 1,347 (I-regions) and 1,250 (C-regions). A set of 130 unrelated, disorder-free proteins that

were also from PDB-select-25 [11] was used to generate the ordered residues used for predictor training.

2.2 Attribute Generation

Composition-based and property-based attributes were calculated over sliding windows [20, 32] . A

total 51 attributes were examined, where the sets of amino acids represented some property such as

aromaticity, charge, sheet formers, etc (Table 1).

Var. Attributes Var. Attributes Var. Attributes Var. Attributes

X1 FWY X14 WCFIYVLHM X27 WY X40 P

X2 FWY(H/2) X15 ATRGQSNPDEK X28 A X41 Q

X3 KR-D-E X16 WYFAS X29 C X42 R

X4 KR-D-E(H/2) X17 WYFKR X30 D X43 S

X5 KRDE X18 WYFKRH X31 E X44 T

X6 KRDE(H/2) X19 WYFDE X32 F X45 V

X7 WFYC X20 WYFEDH X33 G X46 W

X8 WFYC(H/2) X21 FWYKRDE X34 H X47 Y

X9 STQHNDERK X22 FWYKRDEH X35 I X48 PEVK

X10 WEYCVILMP X23 EMAL X36 K X49 Flexibility

X11 VILM X24 YNPG X37 L X50 Hydropathy

X12 STQHN X25 VIYFW X38 M X51 Coordination number

X13 GSA X26 SGKPDE X39 N

Table 1: Attributes list.

Composition-based attributes were the sums of the numbers of the indicated amino acids in a given

window. For example, aromaticity, X1 = FWY, the number of phenylalanines (F) + tryptophans (W)

+ tyrosines (Y) within a given window. The number of histidines was sometimes divided by 2 (e.g.

H/2) due to its small ring size or partial charge. For the net charge attributes, X3 and X4, the number

of each negative residue was subtracted (e.g. -D, -E) from the number of positive residues.

Property-based attributes were the sums the residue property-values. For X49 = 
exibility, the

value for each residue was based on its backbone-atom B-factors averaged over 92 unrelated protein

structures [28]. The values for X50 =l hydropathy were from the Kyte-Doolittle scale [15]. X51 =

coordination number is the average number of side chain neighbors that are in contact with the given

side chain when it is fully buried as determined from a set of 33 non-homologous proteins [8].

As in previous studies [20], a window of 21 was used for I-regions. A window of 11 was used for

positions 6 onwards and for -6 backwards for N- and C-regions, respectively. Predictions at positions

1 to 5 and -1 to -5 used windows of size 6 to 10, respectively. For N-regions, these windows included

residues from the end to 5 positions beyond the position being predicted, and for C-regions, from the

end to 5 positions before.

2.3 Logistic Regression Model and Attribute Selection

The logistic regression (LR) model was developed for dealing with the situation in which the dependent

variable is binary [5]. Here we used order = 0, and disorder = 1. SAS (Release 6.12, SAS Institute,

Cary, NC) was used for the calculations.
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For a given threshold probability, an observation is classi�ed into the category with the probability

higher than the threshold. In the logistic model, the probability is estimated from the following

equation:

ln[
p

1� p
] = b0 + b1Xi1 + b2Xi2 + � � � + bjXij

where p = P (Yi = 1 for ordered) and 1� p = P (Yi = 0 for disordered ); i = 1,2...n, where n is the

sample size; j = 1, 2, ..., j, where j is the attribute number; and Xi1; � � � ;Xij are attributes used for

prediction.

The parameters bi are estimated by maximizing the following function:

nX

i=1

P (B; Yi) =
nX

i=1

ln(
1

1� e�BXi
)

where B is the vector of parameters need to be estimated. After all bi values are estimated, p can

be calculated as:

p =
1

1 + e�BXi

For order = 0 and disorder = 1, the threshold is set to be 0.5; if p � 0:5, then the amino acid is

predicted to be disordered; otherwise, ordered. The LR is applied each time an attribute is introduced

or removed, and the Chi-square test is executed [1]. The process is repeated until introduction or

removal of an attribute leads to no change at a signi�cance level of 0.05. Eight selected attributes

were used in LR predictor even though a few more number passed the signi�cance test.

2.4 Discriminant Analysis Model

For discriminant analysis (DA), it is assumed that prior probabilities are equal, that the variables

(attributes) are independent, and that all attribute values satisfy the normal distribution. Since we

used sliding windows to obtain data and since many of the attributes share dependencies on the

same amino acids, the assumption that the data are independent is not true. However, this lack of

independence didn't seem to cause serious problems since this approach gave results comparable to

the other methods in this study. Again, SAS (Release 6.12, SAS Institute, Cary, NC) was used to

carry out the calculations for this model.

For the ordered and disordered data � = fxi; yig; i = 1 � � �n; yi = f0; 1g, where y = 0 for an ordered

amino acid, y = 1 for a disordered one. The xi values are the attributes data. We used Bayesian

discriminant analysis method to predict the probability that a given amino acid belongs to an ordered

or disordered regions. The posterior (conditional) probability that a residue belongs to an ordered or

disordered region is given by the following equation:

P (Cj j x) =
P (x j D)P (D)

P (x j D)P (D) + P (x j O)P (O)

where j = 0 (ordered) or 1 (disordered); P(O) and P(D) are the a priori probabilities of a residue being

ordered and disordered residues, respectively. P (x j D) and P (x j O) are the conditional densities of

disordered and ordered residues, respectively. P (Cj j x) is given by the following relationship:

P (Cj j x) =
e
Cj0+b

0

j
x

Pm
k=1 e

(bk0 + b
0

k
x)

=
1

1 + e(bd0�bo0)+(bd+bo)
0x

Using observed data, the parameters bd0 and bo0 and the vectors bd and bo can be estimated. The

classi�cation for a given pattern x is determined as: Class = argmaxfP (Cj j xg, where class is 0 or

1 for ordered or disordered, respectively.

The attributes were repeatedly introduced or removed, and the F-test was applied after each

operation, until no attributes could be introduced or removed at a signi�cance level of 0.05 [6]. The

top eight selected attributes were used for establishing the DA predictor even though a greater number

were accepted at the signi�cance level indicated.
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2.5 Neural Network Model

The application of NNs to order/disorder prediction has been described elsewhere in more detail [20].

The feed forward NN used in this study is fully connected with an 8x8x1 architecture, which has eight

inputs (selected by LR), one hidden layer with 8 nodes and one output layer with one node. The back

propagation method was used for data training [23].

3 Results

3.1 Attribute selection

A list of 51 attributes was used in this study (Table 1). Many of the attribute values are correlated. In

addition, some attributes make little contribution in distinguishing the ordered and disordered regions.

Finally, 51 attributes is simply too many for the amount of disordered data. These characteristics

necessitated the selection of a subset of the attributes for the predictors.

Stepwise DA and stepwise LR were used for attribute selection on ordered and disordered data

from the N-, C- and I- regions. Although more than 8 attributes were selected for the data at a

signi�cance level of 0.05, the ninth and later selected attributes make relatively little contribution, as

shown by the prediction accuracy upon addition of attributes in their order of importance (Fig. 1).

Figure 1: Contribution of selected attributes on prediciton

The selected attributes in Table 2 start with the most important. For the top 8 sequence attributes

in a given protein region, the DA and LR models selected almost the same ones. That is, 5/8, 6/8,

and 8/8 attributes were selected in common by the two methods for the N-, I-, and C-region data,

respectively. In contrast, the selected attributes were very di�erent for the di�erent regions. Only 1

sequence attribute was selected in common for all three regions. For the 3 pairs of regions, only 4/8

were selected in common for N- and C-regions, just 3/8 for the N- and I-regions, and a mere 2/8 for

the C- and I-regions. These results suggest that sequence characteristics leading to disorder depend

on the location of the region in the sequence.

3.2 Prediction Accuracies

The prediction accuracies of the 3 models over the 3 regions are given in Table 3. The DA and LR

models gave almost identical accuracies for each region, with the largest di�erence being 0.3% (for

I-regions). Also, using the N-regions as an example, the 0.1% di�erence between the two methods is

4



Attributes 1 2 3 4 5 6 7 8

DA: N-terminal region X25 X38 X51 X34 X20 X35 X31 X39

LR: N- terminal region X25 X38 X51 X34 X30 X45 X48 X39

DA: Internal region X49 X42 X11 X34 X43 X31 X40 X35

LR: Internal region X49 X42 X7 X14 X43 X31 X40 X35

DA: C-terminal region X51 X34 X42 X25 X38 X50 X44 X48

LR: C-terminal region X51 X34 X42 X25 X38 X50 X44 X48

Table 2: Attributes selected according to the signi�cance in DA and LR.

much less than the � 3.5% and � 2.7% variation among the 5-cross validation trials. Thus, the DA

and LR models give essentially indistinguishable prediction accuracies overall.

Model Region 1 2 3 4 5 Average

Neural N region 79.0% 78.8% 78.7% 78.9% 78.7% 78.8% (�1:2%)

Network I region 72.2% 72.6% 73.1% 72.2% 72.4% 72.5% (�1:2%)

C region 75.1% 75.5% 74.9% 74.4% 76.5% 75.3% (�3:3%)

Discriminant N region 74.2% 78.4% 75.9% 73.7% 77.2% 75.9% (�3:5%)

Analysis I region 70.1% 71.3% 70.0% 71.8% 71.1% 70.9% (�1:4%)

C region 72.7% 71.6% 77.0% 76.3% 75.9% 74.7% (�4:1%)

Logistic N region 74.0% 77.3% 76.3% 74.2% 77.2% 75.8% (�2:7%)

Regression I region 69.6% 70.62% 69.8% 71.7% 71.4% 70.6% (�1:6%)

C region 72.0% 71.3% 77.3% 76.6% 75.5% 74.5% (�4:7%)

Table 3: Five-cross validations of the predictors developed by three methods.

The NN approach gives slightly higher predictions for all three regions. In the following, the �rst

number in each pair is the NN accuracy and the second number is the average of the DA and LR

accuracies: 78.8 � 1.2% versus 75.9 � 3.1% (N-regions), 72.5 � 1.2% versus 70.7 � 1.5% (I-regions),

and 75.3 � 3.3% versus 74.6 � 4.4% (C-regions).

3.3 Cross Prediction

Each predictor was applied to the data from the regions not used for its training, here called cross

prediction. In Table 4 accuracies observed during 5-cross validation (indicated by *) are compared

with the accuracies for cross predictions (no *). For the most part, as expected, the accuracy of a

given predictor drops when applied to the data from a region di�erent from its training set. However,

for both the LR and DA models trained on I-regions, the accuracies remain essentially the same when

the predictors are applied to C-region data. That is, the LR model only changes from 70.6% on its

I-regions training data to 70.9% when applied to C-region data, and the DA model, from 70.9% to

71.2%. This failure to drop in accuracy is especially surprising since I- and C-regions predictors share

just 2/8 attributes.

3.4 Length dependence of prediction accuracy.

To estimate accuracy versus length, the prediction outputs were partitioned according to length with

the number of residues in each class indicated in parenthesis (Table 5). For the DA and LR predictions

in Table 5, the models from 5-cross validation were retrained on 5/5 of the data, whereas for the NN
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Predictors Region N-terminal Data Internal DR Data C-terminal Data

Discriminant Model N-region 75.9%� 52.9% 61.5%

Internal region 64.9% 70.9%� 71.2%

C-region 71.3% 68.8% 74.7%�

Logistic Model N-region 75.8%� 44.6% 57.6%

Internal region 66.3% 70.6%� 70.9%

C-region 71.6% 68.9% 74.5%�

Table 4: Cross-prediction speci�city for disordered regions.

predictions, retraining on the whole set of data was not performed. Instead, one of the NN models,

which was trained on 4/5 of the data, was used. For DRs of 9 to 14, the roughly 52% accuracy

(averaged over the 3 methods) corresponds to essentially random classi�cation. For DRs of 15 to 20,

the average accuracy increased to 74%, and for DRs � 21 the average increased still further to about

78%. Since the windows are 21 in length, the shorter DRs �ll only a fraction of their windows, and

therefore the poor accuracies are expected.

Predictors 9-14 AA (379) 15-20 AA (262) 21AA or longer (707)

NN 52.8% 73.7% 78.6%

DA 50.9% 74.4% 77.9%

LR 52.2% 74.4% 78.2%

Table 5: Prediction accuracies for di�erent I-DR lengths.

The lowered prediction rates due to the short disordered windows probably helps to explain the

surprising cross prediction results that occur when the predictors trained on I-regions are applied to

C-region data as described above.

The N- and C-region data also show length-dependent accuracies (Table 6). For N-region data,

the accuracies, averaged over the three methods, change from 72% (length = 5), to 83% (length =

6-8), to 77% (length = 9-11) to 81% (length = 12-15). For C-region data, the respective averaged

accuracies are 69%, 78%, 72% and 80%.

DR Predictors for DR=5 AA DR=6-8AA DR=9-11 AA DR=12-15AA

Regions N and C regions (N:60; C:65) (N:269; C:117) (N219; C135) (N:137; C:163)

N NN 75.0% 83.6% 77.1% 86.0%

DA 71.7% 83.3% 78.1% 81.0%

LR 70.0% 82.2% 76.3% 77.4%

C NN 70.5% 73.1% 74.2% 85.2%

DA 67.7% 74.4% 63.0% 75.5%

LR 67.7% 74.4% 63.0% 76.1%

Table 6: Prediction accuracies for di�erent N- or C-DR lengths.
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3.5 Position-by-position accuracy for N- and C-regions

The position-by-position error rates were determined; all three predictors give similar outputs that

result in fairly complex curves (�gure 2). The data in �gure 2 are incommensurate with the data in

Table 6, so these should not be compared directly. This is discussed below in more detail.

Figure 2: Prediction accuracy over AA positions in N- and C- regions.

4 Discussion

4.1 Data

Disorder characterized by X-ray di�raction can be static or dynamic [13]. In our previous studies we

attempted to remove this ambiguity by �nding independent information such as protease sensitivity

or NMR spectra [20], but most often the information was lacking. As an alternative, we compared

X-ray-characterized disorder with disorder characterized by other methods especially NMR [9]. The

results indicate that ambiguity of X-ray characterized disorder is not fatal, but probably leads to the

introduction of noise into the training data.

4.2 Comparison of Prediction models

There is no single best algorithm for pattern recognition problems. Performance for a given algorithm

depends on the data set being investigated [14]. DA, LR and NN approaches are among the most

commonly used, and all have been applied to sequence analysis problems. DA has been successfully

used for predicting internal exons of DNA sequences [25] and protein secondary structure [27, 33]. LR

has been used for identifying regulatory regions of genes [29]. NNs have also been used for predicting

secondary structure [22]. Considering the characteristics of the three methods, we decided to try all

of them in this study.

The LR and DA models exhibited nearly identical performance for the disorder predictions whereas

the NN gave a slightly higher accuracy (Table 3). Application of Cochran's test [4] indicates a real

signi�cance for the superiority of the neural network. However, prediction accuracy is a simplistic

indicator, so it seems inappropriate to rank the methods on this basis alone.

Olson [17] reported that, with proper selection of attributes, both statistical and neural network

classi�ers yield essentially identical accuracies for a given test case. From this, there are two implica-

tions that arise from the possible superiority of the NN predictors. First, other factors not included

in Table 1 might a�ect the determination of order or disorder. To test this, other attributes need to

be investigated. Alternatively, the predictors might not be optimized.

DA is fast and performs well except for very skewed data [14]. LR was developed for binary data

and so might be the most robust for predicting two states, order and disorder. DA and LR methods

need much less computation time than NN, and produce results that are easier to interpret.

Back propagation NN, in most cases, performs well especially for noisy data. Noisy data is of par-

ticular concern due to the ambiguity of X-ray-characterized disorder. With appropriate architecture,
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a back propagation neural network can be a universal approximator for arbitrary �nite inputs [12].

No assumptions are required for the input and output parameters.

There are some general disadvantages, however, in using NNs. For example, the selection of the

architecture (number of layers, number of neurons) is empirical. If too few hidden neurons are used,

training convergence is often poor, whereas if too many are used, the network might converge well,

but generalization is typically poor. A further shortcoming of NNs is the failure to provide insight.

That is, there is no deterministic way to carry out attribute selection. For these reasons, we carried

out an entirely separate study to gain understanding of our problem [32]. A signi�cant advantage of

the LR and DA methods is the ability to carry out step-wise addition of the various attributes.

4.3 Attribute Selection

Both our previous studies and the studies on I-region data presented here used windows of 21 residues.

Despite the very di�erent databases in the two studies, the previously selected attributes closely

resemble those reported here. That is, 6 of 8 attributes were selected in common by the LR and DA

methods; these were X49 (
exibility), X42 (R), X43 (S), X31 (E), X40 (P), and X35 (I) as shown in

Table 2. Of the 6 attributes in common, 5 were selected in our previous studies on completely di�erent

databases of order and disorder; only the last, and least important attribute found here, X35, was not

selected previously. Of the 4 attributes not selected in common, e.g. X11 (VILM) and X34 (H) by

DA and X7 (WFYC) and X14 (WCFIYVLHM) by LR, all are identical to, or share amino acids with,

attributes selected previously on completely di�erent data.

The prediction of order or disorder for I-regions depends on a balance of di�erent types of attributes.

X49 (
exibility), X42 (R), X43 (S), X31 (E), and X40 (P) are attributes that, at high value, favor

disorder, whereas X35 (I), X11 (VILM), X7 (WFYC), and X14 (WCFIYVLHM) all favor order.

This is the �rst study of the relationship between amino acid sequence and disorder at the ends of

proteins. Comparing attributes for N- and C-regions with each other and with attributes for I-regions

provides insight regarding disorder at the ends of proteins.

Although just 4/8 attributes are in common between the two ends, these include the top two

attributes for each (Table 2). That is, the top two attributes, X25 (VIYFW) and X 38 (M), for N-

regions data rank fourth and �fth, respectively, for C-regions data. Also, the �rst, X51 (Coordination

Number), and second, X34 (H) for C-regions rank third and fourth, respectively, for N-regions. From

�gure 1, these top attributes are the most important. Of the attributes speci�c for each end, some of

these contain residues with charges opposite to the charge at the termini (Table 2). For example, the

positive charge at the N-terminus is opposite to the negative charges (E and D) in X20 (WYFEDH)

and to that of X31 (E). Likewise, the negative charge of the C-terminus is opposite to the positive

charge of X42 (R).

The attributes selected for the N- and C-regions can for the most part be described as being

associated with the formation of ordered structure, whereas the attributes selected for I-regions appear

to be more balanced between attributes favoring order and those favoring disorder. Even the charged

attributes, X31 (E), and X42 (R), which are associated with disorder in I-regions, are selected at the

ends in a manner that brings about charge balance and so could be promoting order in these regions.

Perhaps I-regions are neutral with respect to order or disorder, whereas perhaps N- and C-regions tend

to be naturally disordered. If so, order or disorder in I-regions is determined by the overall balance of

various types of attributes, whereas overcoming the natural disorder tendency at the ends may require

the presence of order-inducing amino acids in these regions.

4.4 Prediction accuracies

If only the longer I-regions data are considered, the estimated accuracy here (Table 5) is slightly better

than we found earlier. That is, here we �nd about 78% (average of DA and LR) versus about 73% -

74% (NN) reported previously [20]. The slight improvement probably relates to the increased number
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of attributes surveyed, 51 here versus 24 previously. More speci�cally, only single amino acids were

used in the original study, whereas the expanded set used here contains combinations of amino acids.

Several of the selected combinations include groups of the single amino acids selected in the original

study, thus creating space for additional inputs that bring more information to bear on the problem.

The length-dependence of I-region predictions shows a very large gradient, from almost random

predictions (near 52% averaged over the three methods) for length = 9-14 to fairly strong predictions

(about 78% averaged over the three methods) for length � 21. Because windows of 21 were used,

the shorter lengths only partially �lled the windows and so the essentially random predictions are a

reasonable outcome when the disorder training examples contain large amounts of order.

Here we report our �rst attempt to predict to the ends of the protein. We included down to very

short DRs (5 amino acids) with the expectation that we would �nd some minimum length below

which the predictions would fail completely. Such failure would give random predictions like those

observed for the shortest I-regions data, although for di�erent reasons. To our surprise, even DRs as

short as 5 amino acids at the ends yielded good prediction accuracies, about 72% (N-regions) and 70%

(C-regions) when averaged over the three methods (Table 6). Although not monotonic, increases in

accuracy reached 82% (N-regions) and 80% (C-regions) for DRs of length 12-15. These high values

suggest the possibility of special e�ects at the ends of proteins.

The NN, LR, and DA methods give similar curves for the position-dependent accuracies at each

end (�gure 2), with high value followed by minima that are very noticeable for the N-region curves

and barely noticeable for the C-regions curves. The causes of these minima near positions 9-10

are uncertain. One possibility is that windows at the 9-10 positions for the disorder data contain

substantial fractions of ordered residues, resulting from a combination of the distribution of disorder

lengths in the training data and the way in which the windows were speci�ed. Based on this idea, we

are exploring alternative window speci�cations with the goal of reducing these minima.

The data in �gure 2 were grouped di�erently from the data in Table 2. This leads to false

discrepancies such as the > 80% accuracies for positions 1-5 (N-regions, �gure 2) which appear to be

better than the 72% accuracy for N-region DRs = 5 AA (averaged over the 3 methods from Table

6). The false discrepancy arises because the data for Table 6 come from the speci�ed lengths whereas

the data for �gure 2 are predictions at particular positions from DRs of all di�erent lengths. So, the

higher accuracy of > 80% for the �rst 5 positions results from contributions from DRs longer than 5,

which yield predictions over the �rst 5 positions better than the 72% observed for DRs of length = 5.

4.5 Implications for Future Research

The high accuracy of prediction of very short DRs at the termini might be special, due to end e�ects,

or the high accuracy might be simply the result of the use of very short windows. If the latter is true,

then use of shorter windows might be of bene�t for I-region predictions as well.

A second task will be to merge our various predictors into one, making it possible to predict

disorder from the amino to the carboxyl terminus of a protein. This will open the way for a variety

of projects, such as improving predictions of disorder on a genomic basis and such as using disorder

predictions to indicate which proteins are likely to crystallize and which ones are not.
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